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Abstract: My intention in this review article is to briefly discuss several major topics of present-
day computational materials science in order to show their importance for state-of-the-art materials
modeling and computer simulation. The topics I discuss are multiscale modeling approaches for
hierarchical systems such as biological macromolecules and related coarse-graining techniques, which
provide an efficient means to investigate systems on the mesoscale, and shock wave physics which
has many important and interesting multi- and interdisciplinary applications in research areas where
physics, biology, chemistry, computer science, medicine and even engineering meet. In fact, recently,
as a new emerging field, the use of coarse-grained approaches for the simulation of biological
macromolecules such as lipids and bilayer membranes and the investigation of their interaction with
shock waves has become very popular. This emerging area of research may contribute not only to
an improved understanding of the microscopic details of molecular self-assembly but may also lead
to enhanced medical tumor treatments which are based on the destructive effects of High Intensity
Focused Ultrasound (HIFU) or shock waves when interacting with biological cells and tissue; these
are treatments which have been used in medicine for many years, but which are not well understood
from a fundamental physical point of view.
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1. Introduction

A particularly fascinating problem in science is the description of phenomena involving multiple
spatial or temporal scales which together determine the behavior of a system. Many problems in
materials science are connected with this structure-property paradigm. The atomic interactions at the
microscopic level on the scale of nanometers and femtoseconds fully determine material behavior at
the macroscopic scale (on the order of centimeters and milliseconds and beyond). The idea of
performing material simulations across several characteristic length and time scales has therefore
obvious appeal not only for fundamental research but also as a tool for technological innovation, see
e.g., the discussions in [1–3].

For example, in engineering, understanding the key mechanisms of failure in materials on various
length- and time scales is a prerequisite for the design of new materials with desired superior
properties such as high strength or toughness. As “material” we understand all condensed forms of
matter, i.e., a state of matter, where the electrons are not separated from the atoms (a state which is
called “plasma”) and thus either form hard matter, i.e., crystalline solids, or soft matter, i.e., biological
macromolecules and cells. Most of biological cells are about 1–100 microns in size, and all cells use a
plasma membrane to separate and protect their chemical components from the outside environment.
The plasma membrane acts as a barrier that separates the interior of the cell from its exterior,
preventing the contents of the cell from mixing with the surrounding medium. It also allows certain
molecules to pass inward—across the membrane through channel—and waste products to pass out. A
plasma membrane is very flexible and deforms without tearing when a cell grows and changes shape.

The interior of the cell is made up of a liquid phase (cytosol), a nucleus, the cytoskeleton consisting
of many networks of microtubules, actin and intermediate filaments, organelles of different sizes and
shapes, and other proteins. The resistance of single cells to elastic deformation, as quantified by a huge
range of the effective elastic modulus as displayed in Figure 1, is orders of magnitude smaller than
that of typical engineering materials such as metals and ceramics. This is the reason why cells and
polymers are “soft” and governed in their behavior mostly by the interplay of entropy and energy. If
a cell’s plasma membrane is penetrated, it neither simply collapses, nor does it remain torn; instead, it
has the capability of resealing as has been shown in several single cell experiments [4]. This transient
permeability of a cell’s plasma membrane can also be achieved by exposing cells to shock waves,
as I have demonstrated in a recent publication where a new experimental set-up for exposing U87
glioblastoma tumor cells to laser-induced shock waves was introdced [5]. A shock wave treatment of
cells might make possible new interesting biological and medical applications, e.g., in gene therapy,
where the permeabilization of the membrane aims at delivering therapeutic molecules, genes or other
genetic material into the cells’ cytoplasm [6–16].

This review article is organized as follows: In Section 2, I provide a review of the basics of shock
wave physics. In Section 3, I discuss different aspects of multiscale modeling of materials. Section 4
introduces the concept of coarse-graining which is often (but not solely) used for modeling soft matter
systems on the mesoscopic scale. Then, in Section 5, I discuss several recent applications that
illustrate how different modeling approaches may be usefully combined in detailed computational
studies. Finally, in Section 6, a few general conclusions are drawn and several considerations are
offered.
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Figure 1. Range of values for the effective elastic modulus of organic materials in
comparison with those of typical engineering materials such as metals and ceramics. Figure
adapted from [17].

2. What is Shock Wave Physics?

The theoretical foundations of shock wave physics originated from 17th-century studies of classical
acoustics and 18th-century aeroballistics. With the emergence of high-speed photography in late 19th
century and further progress in experimental visualization techniques in 20th century, the study of
shock waves in different states of matter has gradually emerged from a very small and unnoticed
branch of physics to a major complex and interdisciplinary science [18, 19].

Shock waves are in essence discontinuous, entropy-increasing, rapid mechanical phenomena that
have been observed and studied in the laboratory and in nature, in microscopic as well as in
macroscopic dimensions and in all states of matter: gaseous [20, 21], liquid [22–24], solid [25–27],
plasma [28, 29], and even in Bose-Einstein condensates [30–32]. Terrestrial examples [33] of
naturally occurring discontinuities are high-energy events such as volcanic explosions, thunder,
meteorite impacts, sea- and earthquakes or tsunamis, while in outer space [34, 35] they encompass
plasma shock waves induced by solar wind, supernovae explosions, implosions of white dwarfs,
comet and asteroid impacts, and stellar or galactic jets. This variety of phenomena and in particular
the possible applications of shock waves in different areas such as biology, chemistry, physics,
medicine and even engineering renders the scientific study of shock waves a rather fascinating subject.

2.1. Definition of Shock Waves

A shock wave is a mechanical wave characterized by an area or sheet of discontinuity in which,
within a narrow region, thermodynamic quantities such as pressure p, density ρ, particle velocity ~v or
temperature T change abruptly. While a theory of shock waves with an infinitesimal jump condition
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can be developed mathematically in the framework of approximative continuum models of condensed
matter, i.e., based on the hydrodynamic equations of ideal fluids or gases, in physical applications,
shock wave theory is somewhat limited, because the width of a genuine shock wave is always of finite
size and because of the actually discrete atomic nature of condensed matter. It turns out that shock
waves are in essence small regions were non-adiabatic, i.e., irreversible energy dissipation occurs and
for which the shock wave is a mathematical idealization. The width of the shock wave, i.e., the size
of the dissipative region, establishes itself according to the conservation laws of continuum theory: the
conservation of mass, momentum and energy. In very strong, high-amplitude shock waves, their width
becomes so small that they are practically indistinguishable from the mathematical idealization of an
infinitesimally small perturbation with jump conditions for thermodynamic variables, see Figure 2.

Figure 2. Mathematical (ideal) and physical (genuine) shock waves. Top: the ideal,
undisturbed mathematical case, with zero viscosity of the surrounding medium and
infinitesimally small thickness of the area of discontinuity. Bottom: The case of a physical
shock wave, where the viscosity η of the medium leads to an increase of the width of a shock
wave.

In solids, physical shock waves are mechanical waves of finite amplitudes and arise when condensed
matter is subjected to a rapid compression. Shock waves can be defined by several major distinctive
properties as follows:

• the formation of a steep wave front with a sudden, irreversible change of thermodynamic
quantities;
• a pressure-dependent, supersonic velocity of propagation;
• the creation of entropy;
• non-linear superposition properties (for reflection and interaction).

Sometimes another criterion for a shock wave is listed in shock wave literature which is an
extremely short rise time of the pressure within tens of nanoseconds. However, this is not a defining
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criterion of shock waves, because no generally agreed upon definition exists of what “extremely
short” really is supposed to mean—it is a term of rather subjective nature. A nanosecond rise time
certainly applies for lithotripter shock waves which are used in medicine as a non-invasive technique
to comminute calculi [36] and for other therapeutic purposes [37]; however, in the geologic realm for
example, meteorite impacts, explosive volcanic eruptions and earthquakes can provoke drastic and
irreversible changes within seconds which is nine orders of magnitude slower.

One thing that distinguishes a shock wave from an ordinary sound wave is that the initial disturbance
in the medium that causes a shock wave is always traveling at a velocity greater than the phase velocity
of sound in the medium. The electromagnetic analog of this is called Cherenkov radiation [38], which
is caused by a charged particle traveling through a dielectric medium at a velocity faster than the speed
of light in that medium. Because a shock wave moves faster than the speed of sound, the medium
ahead of the shock front cannot respond until the shock strikes, and so the shock wave falling upon the
particles of matter initially at rest, is a supersonic phenomenon. In a steady flow with constant velocity
~v the speed at which a perturbation travels relative to a reference frame in which the laboratory is at
rest, is composed of two parts, see Figure 3. On the one hand the perturbation travels with velocity
~vs = ~c relative to the fluid into a direction ~n. On the other hand, the source of disturbance moves at
the same time with the velocity ~v of the fluid flow. Figure 4 exhibits one of the first ever published
schlieren picture of the bow shock wave generated by a projectile moving at supersonic speed. The
two vertical lines visible in Figure 4 are wires with a spark gap inserted for triggering the spark light
source. The projectile had a speed of v0 ≈ 530 m/s which resulted in a Mach cone angle of α ≈ 40◦

(cf. Figure 5b).

Figure 3. Stationary flow of a fluid with velocity ~v. A perturbation, e.g., a compression is
shown which propagates relative to the rest system of the fluid with the velocity of the speed
of sound vs = |~vs| = c.

For simplicity, we assume here constant flow velocity ~v and consider a perturbation in the fluid at a
fixed point O. This perturbation propagates with velocity ~v+c~n from O. We can see in Figure 5 that the
velocity depends on the direction of ~n. Vector ~n is a radial unit vector starting from point O with respect
to the moving fluid flow. The possible values of the velocity lie on the surface of a sphere according
to Figure 5. If vs < c, the vectors ~v + c~n can attain any direction in space, cf. Figure 5a. Hence, a flow
that propagates with subsonic speed will affect the whole domain of the fluid. For vs > c, the velocities
~v + c~n lie within a cone the tip of which is located in point O, cf. Figure 5b. This cone is the envelope
of the sphere, so we find for the total cone angle, the so-called Mach angle α the following relation:
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sinα =
c
v
. (1)

The ratio
Ma =

v
c

(2)

is called Mach number. For Ma > 1, the flow is supersonic and for Ma < 1 it is subsonic, respectively.

Figure 4. Ernst Mach’s schlieren photograph of a bow shock wave around a brass bullet
moving at supersonic speed (1887) [39]. This was one of the first ever published photographs
of a propagating shock wave in the history of shock wave research. The projectile is moving
from left to right in the figure. In general, one distinguishes compression and decompression
shock waves, depending on whether the shock wave moves into a region of lower or higher
density, respectively.

Hence, we find that a perturbation travels only with supersonic speed in the direction of flow
within the boundaries of a cone with angle 2α. Angle α gets smaller with increasing flow speed v, so
the perturbation in a flow has no effect in the region outside that cone. The boundary layer of the
region which can be influenced by a perturbation is called Mach’s cone, characteristic lines or simply
characteristics. The parts c) and d) in Figure 5 exhibit the situation in a fluid at rest through which a
perturbation moves with velocity ~v.

Another difference between a shock wave and an ordinary sound wave is that the entropy is
increased in a shock wav—hence, in contrast to ordinary sound waves, shock waves constitute an
irreversible process. In engineering applications, shock waves produced in air by an explosion and
radiating outward from its center are termed blast waves, because they cause a strong wind, while the
term shock wave is preferred for such waves occurring in water or the ground, because here the effect
is like that of a sudden impact. Impact experiments are often performed to study the fracture and
failure behavior of solids or in an attempt to determine a shock equation of state, describing a material
under extreme conditions of high pressure and/or temperature. Along with phenomenological
constitutive equations, this allows for numerically analyzing a material in a shocked state, e.g., in a
finite element analysis, cf. Figure 6.
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Figure 5. Stationary flow of a fluid with velocity ~v. A perturbation, e.g., a compression is
shown which propagates relative to the rest system of the fluid with the velocity of the speed
of sound vs = c. a) Flow velocity is smaller than the velocity of sound, i.e., v < c. b) Flow
velocity is larger than the velocity of sound, i.e., v > c. c) Perturbation in a fluid at rest. This
could be, e.g., a projectile with velocity vs < c moving from left to right in the figure. The
circles in this snapshot of the movement represent the positions of the wave fronts that have
been initiated at different positions and points in time, represented by small dots along the
green line. There is no envelope of the individual waves. d) The same as c) but with vs > c.
The individual waves have a cone as common envelope.

Figure 6. Shock wave simulation in a material block of aluminum oxide (Al2O3) of
dimension (1.6 × 1.6 × 3.2) µm3. The model consists of 176 grains with 1, 500.000 finite
elements (tetrahedra) in the analysis. a) A generated and optimized structure with the method
discussed in [40], indicating the different grains in the material specimen in different colors.
b) Snapshot of the shock wave simulation at 170 ps after initiation of the shock wave. The
color code displays the pressure levels in the range of ±1 GPa. Interestingly, typical for shock
waves in solids, the shock front of the elastic precursor wave (yellow shock front before the
green, unshocked zone) advancing the plastic wave (red color) can be detected.

AIMS Materials Science Volume 4, Issue 6, 1319-1357.



1326

Upon hydrostatic compression, a solid shrinks in volume and the pressure increases [41]. The
hydrostatic curve is smooth as a function of stress and volume. If the solid is compressed uniaxially,
stress and pressure also increase until the maximal shear stress of the material is reached. Then it will
yield and change from the uniaxially compressed state to hydrostatic compression. Many solid
materials under moderate shock loading exhibit this two-wave structure where the first one is
essentially an elastic wave followed by a slower plastic deformation wave front, which can be seen in
Figure 6, too. In the p − V-diagram this transition from elastic to plastic behavior is visible through a
cusp, called the Hugoniot elastic limit (HEL), and there are a considerable amount of experimental
data which illustrate these elastic–plastic–shock phenomena (EPSP) with an elastic precursor
wave [42].

Very often, impact experiments are used as test cases for the predictions obtained from numerical
multiscale models—such as the ones presented in Figure 6—which simulate a material specimen that
can be macroscopic in size and take several micro-structural features of the specific solid into
account. Another important use of impact experiments in the laboratory is to study the crack initiation
and propagation until ultimate failure occurs in a set-up that allows for very reproduciblex shock wave
generation. One of these set-ups is the so-called edge-on-impact test, see Figure 7, where an impactor
strikes the edge of a material specimen at high speed, initiating a well-defined plane shock wave
through the material that ultimately leads to fracture and destruction.

Figure 7. Schematic of the Edge-On-Impact Geometry, where an impactor hits the edge of a
material specimen with the purpose of initiating a very defined and reproducible plane shock
wave in the material according to [43].

Another important application of research in shock wave physics is the investigation of
hypervelocity impact phenomena (with relative speeds of objects beyond ∼ 2 km/s) which occur in
impact events in space. Here, scientists try to understand via novel computer simulations and impact
experiments on a laboratory scale the physics behind the formation of space debris clouds in the low
Earth orbit (LEO) [44]. Such clouds form when small debris objects from former space craft and
satellite missions impact a satellite in its orbit at hypervelocity speed. These types of investigations
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also contribute to the assessment of the socio-economic consequences that are involved in the risks in
space from orbiting debris.

Finally, also phase transitions in solids can be induced using shock waves and have been studied
experimentally and numerically using classical molecular dynamics simulations in a variety of
materials [26, 45–48]. The world record for the largest ever MD simulation of shock waves in a solid
is currently still held by Germann and Kadau [49] from Lawrence Livermore National Laboratories,
who simulated a simple cubic crystal consisting of 1 trillion (1012) atoms, treated as classical
Lennard-Jones particles. This corresponds to a chunk of matter of edge length of about 2.5 µm.

3. What is Multiscale Modeling?

In recent years, we have seen a very large increase in computing power and—at the same time—
progress in developing efficient algorithms. As a result, computer simulations have become very
popular and are used today in almost all areas of research [50–54]. Fast parallelized algorithms allow
for the solution of non-linear many body problems directly, without any mathematical approximations
involved. Usually, in analytic theory, practically all non-trivial problems are way too complex to be
solved with just pencil and paper. In this sense, computer simulations can provide a link between
experiment and analytic theory, thus allowing to test theories. But simulations can also be used as an
exploratory research tool under physical conditions not feasible in real experiments in a laboratory.
Thus, doing science with the help of computer systems has established a new, interdisciplinary
research approach which is often referred to as “Computational Physics” or “Computational Materials
Science”. This approach combines knowledge and methods of different research areas such as
chemistry, biology, physics, mathematics, engineering and even medicine and allows for performing
multiscale and multi-disciplinary simulations in situations relevant for real-world applications.

Figure 8. Structural hierarchies in a SEM micrograph of Al2O3 surface. a) Fracture surface
of Al2O3 after edge-on impact experiment [43] with striking speed of v ≈ 400 m/s. b)
Microstructural details of the Al2O3 surface. Photomicrographs are c©Martin O. Steinhauser.

Nowadays, with fast computational tools at hand, simulations have become feasible that are of
practical interest in engineering sciences for product design and testing. Many materials used in
industrial manufacturing are very heterogeneous and can be characterized by different kind of defects,
interfaces, and other microstructural features. As an example, in Figure 8 we display a Scanning
Electron Microscope (SEM) photograph of the fracture surface of Aluminum Oxide (Al2O3) after
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planar impact load. In general, inorganic crystalline materials have structural features such as grain
boundaries between crystals which are millimeters to micrometers in size, while on the atomic scale
dislocations and defects such as vacancies occur. Hence, these structures have to be studied from a
hierarchical perspective.

For example, simulations in material physics and chemistry often focus on the exploration of
lattice and defect dynamics on the atomic scale using MD and Monte Carlo (MC) methods based on
generalized force-fields (physical potentials), deduced from solving the non-relativistic Schrödinger
equation for a limited number of atoms [55–57]. Figure 9 displays several methods commonly
employed for atomic scale simulations along with their estimated maximum system size and the
typical time scales that can be treated. The highest precision and transferability of methods is
achieved with self-consistent first principles—so-called ab-initio—calculations which try to avoid
completely any empirical fitting parameters.

Figure 9. Various atomistic methods used in physics, chemistry and materials science
exhibiting their transferability level with respect to length and time scales. Also shown is
the rough number of atoms that can be processed in computer simulations within a couple of
days using current supercomputing systems. Adapted from [3].

Self-Consistent Field Theory (SCFT) is in essence based on the Hartree-Fock (HF) method which
itself is a mean-field approximation (MFA), using MFA for energy calculations always leads to values
which are larger than the exact energy values. Another approximation in HF calculations stems from
the need to find an analytic expression for the wave function, such functionals are only known exactly
for very few one-electron systems and therefore, usually some approximate functions are used
instead. Normally, as a simplification, one uses as basis wave functions either plain waves, Slater type
orbitals (STO) ∼ exp(−ax), or Gaussian type orbitals (GTO) ∼ exp(−ax2). The term “orbital” is just
another name for denoting a one-electron wave function. Correlations, i.e., interactions between the
electrons are treated within Møller-Plesett perturbation theory (MPn), where n is the order of
correction, Configuration Interaction (CI), Coupled Cluster theory (CP), or other methods. As a
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whole, these methods are referred to as correlated calculations.
An alternative method to SCE for calculating ground state energies of molecules is Density

Functional Theory (DFT). In DFT, the total energy of a system is not derived from a wave function
but in terms of an approximate Hamiltonian and thus from a Local Density Approximation (LDA).
DFT uses GTO potentials or plane waves as basis sets.

Tight Binding (TB) is a so-called semi-empirical method (see e.g., Porezag et al. [58] or
Pettifort [59]) which uses an approximation of the Hamiltonian H by approximating or neglecting
several terms (called Slater-Koster approximation), but re-parameterizing other parts ofH in a way so
as to yield the best possible agreement with experiments or ab initio simulations. In the simplest TB
version, the Coulomb repulsion between electrons is neglected. Thus, in this approximation, there
exists no correlation problem, but there is also no self-consistent procedure [60].

In classical MD methods, one integrates the classical Newtonian equations of motion for a large
number of particles, respectively atoms, which are fully treated as classical point particles or as
classical particles with tare volume. That is, MD in essence solved the classical N-body problem. A
separate consideration of the motion of the electrons, as in the ab-initio methods, is not done.
Interactions between particles are usually described via empirical, sometimes generic potentials
which may be fitted to the results of experiments or of quantum mechanical calculations. Due to the
increasing computing power of modern hardware, many-particle MD simulations taking into account
the degrees of freedom of several billion atoms are nowadays feasible [54, 61]. Molecular dynamics
simulations of this kind using generic potential models for a solid enhanced our understanding of the
basic processes that govern failure and crack behavior, such as the dynamical instability of crack
tips [62, 63], the limiting speed of crack propagation [64], the dynamics of dislocations [65], and the
universal features of energy dissipation in fracture [66].

In contrast to the natural sciences, simulations of materials in the area of mechanical engineering
typically focus on large-scale problems, where the N-body problem is often homogenized with
approximate continuum methods, such as Smoothed Particle Hydrodynamics (SPH) or the Finite
Element Method (FEM), utilizing additional, purely empirical constitutive relations [67]. The SPH
method is simply a re-formulation of the hydrodynamics equations for (pseudo-)particles [68]. This
methods suffers from certain important deficiencies such as convergence problems. Finally, the FEM
is simply a continuum approximation of material structures, where the structural details are
represented by a topologically connected mesh, where the mesh nodes are the integration points of the
continuum conservation equations. Usually, this method reaches its size limitations very quickly and
only meshes with a couple of million integration nodes for macroscopic structures can be simulated
on large computer systems. One disadvantage of this method is the use of a mesh which is very bad
for simulating large deformations in structures and which may lead to prohibitively small time steps
in the numerical procedure. Also, modeling failure and fracture with this method is very awkward and
leads to the introduction of artificial, unphysical corrections such as artificial viscosity in an attempt
to stabilize the numerical procedure.

Generally speaking, in materials with small grain size the diffusion distances are small. Hence,
processes governed by diffusion, such as sintering, are facilitated and can occur at lower temperatures
than would otherwise be possible. Being able to predict the properties and performance under load of
such materials is a major issue in current computational material research and for industrial product
design. Unfortunately, the complexity of structural hierarchies in solids on different scales does not
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allow for selecting one single computational model or physical theory which allows for explaining all
observed phenomena. Therefore, the different kind of microstructural features of different important
classes of materials such as metals, ceramics, or materials pertaining to soft matter (glasses or
polymers), have to be considered in different models, cf. Figure 10.

Figure 10. Hierarchical structure of important classes of materials: Displayed are inorganic
crystalline engineering materials (green) and self-organizing organic biological materials
(blue). It is interesting that at the nanoscale, the basic constituents of condensed matter
are just atoms bound together in chemical bonds. Figure adapted from [3].

3.1. Hierarchical Length and Time Scales

Solids comprise a span of length scales of roughly 10 to 12 orders of magnitude and the methods
of classical Newtonian physics are sufficient to describe many of the occurring phenomena, cf.
Figure 11. However, classical MC or MD methods lose their validity at length scales comparable to
the typical size of atoms (≈ 10−10 m). In classical theories atoms are treated as point particles or
spheres. In principle, the non-relativistic, time-dependent Schrödinger equation describes the
properties of molecular systems with high accuracy, but anything more complex than the equilibrium
state of a few atoms cannot be handled at this level. Therefore, approximations have to be introduced.
The approximation are the more severe, the more complex a system is and the longer the time scale of
the investigated processes are. At a certain point, the ab-initio approach has to be abandoned
completely and replaced by empirical parameterizations of the used model. Hence, depending on the
kind of problem that one investigates and depending on the desired accuracy with which specific
structural features of the considered are to be resolved, one has the choice between many different
models for different length and time scales. Unfortunately, there is no simple “hierarchy” that is
connected with a natural length scale according to which the great diversity of simulation methods
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could be sorted out. For example, Monte Carlo lattice methods can be applied at the femtoscale of
Quantumchromodynamics (10−15 m) [69], at the Ångstrømscale (10−10 m) of solid state crystal
lattices [70], or at the micrometerscale (10−6 m), simulating grain growth processes of polycrystal
solid states [71].

Figure 11. Schematic comparing the relevant length scales in materials science according
to [3].

The salient hierarchical structural features of materials have to be taken into account when
developing mathematical and numerical models. Here, usually one of two possible strategies is
pursued: In a “sequential modeling approach” one attempts to compile together a hierarchy of
computational approaches in which large-scale models use the coarse-grained representations with
information obtained from more detailed, smaller-scale models (“bottom-up” vs. “top-down”
approach), see Figure 11 and also compare Figure 12 in Section 4.

This sequential modeling technique has been used effectively for systems in which the different
scales are weakly coupled. The large majority of multiscale simulations are based on a sequential
approach. Examples of this approach are abundant in literature and it is not my intention to
comprehensively review the many publications in this field. The sequential approach includes
practically all MD simulations the potentials of which are derived from ab-initio calculations,
including classical coarse-grained simulations of macromolecules [72–74]. Due to the fractal nature
of polymers, they exhibit self-similar structures on various length scales. This leads to unique and
universal scaling properties which can be used to check the validity and quality of research codes.
This “Scale-Hopping in Computer Simulations of Polymers” [75] is typical for coarse-grained
simulations of soft matter systems.

The second strategy used in multiscale modeling and simulation is the “concurrent” or “parallel
approach”. Here, one links appropriate methods on each scale together in a combined model, where
the different scales of the system are considered concurrently and often communicate with some type
of hand-shaking procedure [76]. This approach is necessary for systems where the properties at each
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scale strongly depend on what happens at the other scales, for example dislocations, grain boundary
structure, or dynamic crack propagation in polycrystalline materials [77, 78].

4. What is Coarse-Graining?

The idea of using coarse-grained (CG) models for the description of molecular structures was
originally introduced by Warshel and Levitt [79] in a 1976 pioneering paper which dealt with the
structure of globular proteins. Since then, CG models have found their way into polymer physics as
so-called bead-spring models, taking advantage of universal scaling laws of long polymer chains
which are due to their fractal nature [80–83], as well as into chemistry, geophysics, engineering and
other areas of computational research [43, 84].

CG models of macromolecules provide a route to explore biomolecular systems on larger length and
time scales while still resolving important physical aspects of the molecular topology, for example, the
specific lipid bilayer structure of biological membranes [3, 72, 83, 85–89]. They constitute a class of
mesoscale models, in which many atoms or groups of atoms are treated by grouping them together
into new particles which act as individual interaction sites usually connected by entropic springs, see
Figures 12 and 13.

Figure 12. Schematic showing top-down and bottom-up strategies in coarse-
grained (CG) computational models for a common phospholipid molecule (DPPC,
dipalmitoylphosphatidylcholine, C40H80NO8P). This molecule is abundant in the plasma
membranes of biological cells [90]. A typical CG model of DPPC is based on individual
beads connected with inelastic springs: One hydrophilic head (H) particle and two
hydrophobic tail (T) particles are connected by bonds. Figure reprinted from [91] with
permission.
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Figure 13. CG model of a polymer chain where some groups of the detailed atomic structure
(yellow beads) are lumped into one coarse-grained particle (red). The individual particles
are connected by entropic springs (bead-spring model). Thus, information about the detailed
chemical structure including the degree of freedom of bond angles is lost. The semiflexibilty
of a polymer on a large scale (expressed by the persistence length Lp) however can be
captured in CG models by an appropriate choice of interaction potentials.

Such models have become popular [92, 93] because they remain particle-based while at the same
time reducing the computational cost. Another advantage of CG methods is that the groups of
particles can be constructed with various levels of detail, thus permitting, e.g., the study of biological
membranes on multiple length scales. A “bottom-up” CG model is a model of a particular system that
is constructed on the basis of a more detailed model for the same system as indicated in Figure 12. In
principle, the high-resolution, all-atom model may be based on atomistic data deduced from atomistic
structure calculations. In contrast, “top-down” models do not rely upon or directly relate to a more
detailed model for a particular system. Instead, they are usually related to the full complexity of the
real experimental system by addressing observables on length scales that are accessible to the CG
model. Often, these observables are thermodynamic averaged quantities such as pressure,
temperature, stress and strains or forces accessible by direct experimental measurement. Figure 12
illustrates schematically these two major approaches to coarse-graining.

CG simulations involve less computational effort than atomistic simulations, because the number
of interacting particles is reduced. Consequently, CG simulations are able to investigate much larger
length- and time-scales than is possible in all-atom approaches, let alone in quantum chemical
calculations [72, 94, 95]. CG models may simply remove certain degrees of freedom (e.g., vibrational
modes between two atoms) or they may in fact simplify the two atoms completely via a single particle
representation. The ends to which systems may be coarse-grained is simply bound by the accuracy in
the dynamics and structural properties one wishes to replicate. This area of research is still basically
in its infancy, and although it is commonly used in biological modeling, chemistry and polymer
physics, the analytic theory behind it is still poorly developed.

Recent literature dealing with multiscale methods in polymer physics includes the edited volume
Multiscale Molecular Methods in Applied Chemistry [74] and the treatment of multiscale
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computational methods in the monograph Computational Multiscale Modeling of Fluids and
Solids—Theory and Applications [3]. Additionally, very recent publications on this subject can be
found on the website of the special issue Computational Multiscale Modeling and Simulation in
Materials Science of the Journal Materials [96].

4.1. Coarse-Graining of Soft Matter: Polymers and Biomacromolecules

The research area of CG simulations of polymers and biological macromolecular structures has seen
major progress over the past 30 years, which is mostly due to the emergence of more physically based
modeling approaches in the biological sciences, which allowed for the exploration of soft biomaterials,
enhanced understanding of structures and diseases and which lead to the development of new medical
treatments and diagnostic methods [97–101]. The major challenge that material scientists are facing
in this research area is the extremely broad spectrum of length and time scales in the dynamics of
biological macromolecules. Because of their large length, macromolecules can exist in many possible
conformations that contribute to the total free energy of the system. In essence, the structural properties
of macromolecules are determined by an interplay between entropic and energetic contributions. The
hydrodynamic interactions of macromolecules with their surrounding solvents, covalent interactions,
intra- and intermolecular interactions and—particularly in biological macromolecules—the Coulomb
interactions between charged monomers along with hydrogen bonds add up with entropic forces to
build a very complex system of interacting constituents. Because of their large range of characteristic
time and length scales, macromolecules are used in many technological applications. The theoretical
description of such systems has to take into account some of their hierarchical salient features to ensure
equilibration on all relevant length and time scales and to efficiently sample their complex potential
energy hypersurface.

CG models—as shown in Figures 12 and 13—are used because atomistic models of long polymer
chains are usually intractable for time scales beyond nanoseconds, maybe microseconds on the largest
computer systems; however, these larger time scales are important for many physical phenomena (for
example diffusion processes) and for comparison with real experiments. Macromolecules, due to their
large molecular weight exhibit fractal properties. Hence, numerical models of this type molecules are
very useful for the investigation of fundamental scaling properties. In fractal systems, there exists some
property P of a system (with polymers, e.g., the radius of gyration Rg) which obeys a relation P ∝ Nk,
where N ∈ N is the size of the system, i.e., the number of monomers and k ∈ Q is the fractal dimension
which is of the form k = a/b with a , b, a ∈ N and b ∈ N. In order to extract the universal scaling
properties of polymers with CG numerical models it is sufficient to ensure the following features:

• The connectivity of monomers in a chain;
• The topological constraints, e.g., the impenetrability of chain bonds;
• The flexibility or stiffness of monomer bonds.

CG models of lipids and proteins have allowed for simulating lipoprotein assemblies and protein-lipid
complexes for several microseconds using just a couple of coarse-grained beads for each amino acid
of the protein. Without coarse-graining, such simulation would not have become possible.
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5. Research Examples in Polymer Physics and Computational Biology

Polymers are encountered in a large variety of chemical achievements, from biopolymers like
Desoxyribonucleic Acid (DNA), cellulose, proteins, and actin filaments, to synthetized polymers like
polyethylene (PE), polybutadiene (PB), polystyrene (PS), polymethylmethacrylate (PMMA)—which
is used in the production of compact discs—which are all of great industrial interest. They are
employed under numerous forms, in solutions, as gels, rubbers, synthetic fabrics, molded pieces, and
so on.

5.1. The Ideal Polymer Chain Model

Here, I limit myself to the description of main chain flexible polymers, whose prototypical monomer
is polyethylene [−CH2−]n. This monomer is repeated many times in polymerization reactions to form
what is called a polymer, i.e., a macromolecule that consists of many repetitions of one single monomer
unit. Other standard examples are provided in Figure 14.

Figure 14. Chemical structure of some common polymers. The respective repeat unit of the
polymers (i.e., the monomer) is indicated with the brackets.

Every single one of these polymers can be represented as a series of bonds linking successive
monomers; for the simple case of polyethylene (PE), the angular variation between neighboring carbon
atoms is given by Θn−1 = 0, ∆ϕn = [0,±120◦], see Figure 15.

The so-called trans configuration of polyethylene is characterized by ∆ϕn = 0 and ∆ϕn = ±120◦

denotes gauche configurations. Gauche and trans configurations differ from each other energetically.
The geometric picture shown in Figure 15 for polyethylene can be extended to any type of
homopolymer.

Assuming the successive values of ∆ϕn to be random, the polymer chain appears, when observed
at some scale much larger than the typical average bond length a of monomers, as a statistical coil.
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The persistence length Lp is then a measure for the degree of stiffness in such a polymer coil. Lp

denotes the length scale on which the chain looks like a sequence of rigid collinear segments in trans
configurations. Let ∆ε = εg − εt > 0 be the difference in energy between the gauche configuration and
the trans configuration. Then, the persistence length is given by

Lp = a exp
(

∆ε

kBT

)
, (3)

where T denotes temperature and kB is the Boltzmann constant. The concept of Lp is based on the idea
that the correlation between the orientations of the local tangent t(s) decays with the distance along
the filament contour according to 〈t(s) t(s′)〉 = exp

(
−|s − s′|/Lp

)
. The total chemical length of the

chain is given by L = Na, where N is the degree of polymerization, i.e., the number of repeat units
(or monomers) in the polymer. L has to be large compared with Lp for the chain to be considered as a
statistical coil, i.e., Lp/L � 1. The degree of polymerization N, i.e., the number of repeating monomer
units in a polymer is sometimes also called the number of segments which is not to be confused with
the bond vectors ~ai with the convention, that index i refers to the position vector connecting segment
number i − 1 with segment number i. Thus, the counting of bond vectors starts with i = 1 and ends
with N − 1. In a polymer model, one often just refers to the number N as the number of monomers,
or—in computer simulations—the number of particles.

Figure 15. Configurational model parameters of an ideal polyethylen chain.

An example of polymers with vastly different persistence lengths is displayed in Figure 16 which
shows a classification of polymer stiffness of the three major polymer components of the cytoskeleton
of eukariotic cells, namely microtubules (stiff rods), actin filaments (semiflexible polymers) and
intermediate filaments (flexible polymers).

Phenomenologically, the persistence length can be thought of as a characteristic length of the
thermal fluctuations of an elastic rigid rod. Let us assume, for the sake of simplicity, that the
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cross-section of the rod is isotropic. Then, the free energy per unit length of the rod can be written as:

F =
1
2
κr−2

c , (4)

where rc is the radius of curvature. We have r−1
c = ±|∂2~u/∂s2| = ∂ω/∂s, where ~u is the small

displacement of the rod with respect to the unstrained straight rod, s is the length measured along the
rod, and ω is the angle of deflection of the rod. lt is possible to show, by Fourier transforming the free
energy F = ∫

L
0 κr

2
c ds of a rod of length L, then applying the theorem of equipartition of energy, and

finally summing over all modes, that

〈ω2〉 = 2
kBT
κ

L. (5)

Taking 〈cosω〉 ≈ 1 − LkBT/κ equal to zero, which is the condition at which the elements of the rod at
s = 0 and s = L are decorrelated, one gets

Lp =
κ

kBT
. (6)

Thus, for L < Lp, the density of the free energy density can be written as

F =
1
2

kBT Lpr−2
c . (7)

Figure 16. Classification of cytoskeleton components by persistence length Lp. The
rhodamine-labeled microtubule, which has a persistence length Lp exceeding the filament
length L, is a typical example for a stiff rod. The semiflexible character of the rhodamine-
phalloidin-labeled actin filament can be expressed by the fact that Lp and L are comparable.
In the case of flexible polymers, like the rhodamine-labeled neurophilament, a random coiled
shape, which is dominated by entropy, can be observed. The high flexibility implies that the
persistence length Lp is smaller than the filament length L.
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We also mention the concept of a persistence time τp, i.e., a time characteristic of a change of
conformation. Let ∆E be the activation energy necessary for the trans-to-gauche isomerization. Then
we have

τp = τ0 exp
(

∆E
kBT

)
. (8)

The polymer chain appears as flexible during any observation time τ > τp. The characteristic time
τ0 is related to the thermal vibrations of the chain, and is of the order of 10−12 s.

5.2. Single-Chain Conformations

For a polymer chain there are three rotational isomeric states per bond: t, g+, and g−. Hence, a
polymer chain can attain 3N different configurations. Among those, some are special, as follows:

• Helix Configurations. In a helix configuration, all monomers are repeated along a helical
elongation of the chain. Helical configurations have minimal internal energy and are observed in
crystalline polymers. For polyethylene, this is the all-trans state: The chain exhibits a zigzag
structure along its elongation, rather than a true 3D helical structure. For polytetrafluoroethylene
(PTFE), it is a true helix, not far from the all-trans state, but differing from it by a superimposed
twist along the elongation, caused by the repulsive interactions between neighboring fluorines.
For polyoxymethylene (POM), there are several minimal helical energy states, obtained by
twisting the all-gauche configurations in slightly different ways.
• Coil Configurations. Here, we will occupy us only with molecules that are dynamically flexible,

i.e., whose chemical length L is large compared to Lp, and whose observation is made on durations
much larger than τp. These molecules run through the 3N configurational states. In such a case,
a number of properties are not dependent on the local scales, and the chemical features can be
ignored. On the other hand, all mesoscopic properties depend on N according to scaling laws, of
the type

R = aNν, (9)

where R is some quantity that describes the spatial extension of a molecule.

5.3. The Ideal (Gaussian) Chain Model

Assuming that the N elementary segments of a polymer chain have no interaction and are
independent one from the other. Such a chain is called ideal. The vector that points from one end of
the chain to the other one is called end-to-end vector Re and can be written as

~Re =

N∑
i=1

~ai. (10)

Taking the square of ~Re, and averaging over all possible configurations yields the mean squared end-
to-end vector:

〈~Re〉 =

N∑
i=1

~ai
2 + 2

N∑
i, j

〈~ai~a j〉 =

N∑
i=1

~ai
2 + 2 |~ai| |~a j|

N∑
i, j

〈cos(](~ai, ~a j)〉︸               ︷︷               ︸
=0

= Na2, (11)
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where we have used the (ideal) condition that segments i and j and thus, ~ai and ~a j are statistically
independent. Hence, the average separation of the ends, which can be viewed as the average size of
the chain, is

Re = R0 = 〈~Re
2〉1/2 = aN1/2, (12)

and exponent ν = 1/2. Subscript 0 in Eq. (12) indicates ideal chain behavior. For non-ideal chains,
the expression Re is used for the average size. Note, that here, Re , |~Re| as one might expect from the
usual use of the same variable for denoting a vector ~v and its absolute length |~v|.

The scaling law of Eq. (12) remains unchanged when introducing interactions between the
different monomers along the same chain (generally called bonded interactions, in contrast to
unbonded interactions, e.g., between monomers of different chains). One can show as a consequence
of the central limit theorem that the probability PN(~r) for the N-link chain to terminate at ~r = ~Re is
Gaussian distributed and given by:

PN(~r) =

(
3

2πR0
2

)3/2

exp
(
−

3
2

r2

R0
2

)
. (13)

5.4. Crossover-Scaling of Linear, Semiflexible Polymers

In this section, we discuss briefly an example of CG modeling of semiflexible polymers.
Semiflexibily, i.e., stiffness of a polymer chain is a hallmark of all biological macromolecules, which
is why it has to be introduced into modeling schemes for biological macromolecular systems. This
can be done with a bending potential that provides an energetic penalty in case the bond angle
(defined by the angle between consecutive bond vectors connecting the monomers along a polymer
chain) deviates from the preset angle.

In contrast to theoretical modeling, only very few simulation studies using mostly detailed
atomistic models have been performed on the behavior of semiflexible polymer systems [102–105].
In particular the results of atomistic simulations have shown that the mean square particle
displacements and the scattering functions deviate significantly from what is expected under ideal
(Gaussian) conditions [102].

The Kratky-Porod chain model (or worm-like chain model, WLC) [106] is a simple description of
semiflexible, inextensible polymers with spatial fluctuations that are governed by their bending energy
Ubend

UBend =
κ

2

∫ L

0
ds

(
∂2~r
∂s2

)2

(14)

of the inextensible chain of length L depends on the local curvature of the chain contour s, where ~r(s)
is the position vector of a mass point (a monomer) on the chain and κ is a constant [107].

A dynamic equation for the WLC model was formulated by Harris and Hearst by applying
Hamilton’s principle with the constraint that the second moment of the total chain length be fixed.
The resulting expressions for the bending ~FBend and tension forces ~FTens are:

~FBend = κ
∂4~r
∂s4 , (15)

~FTens = β
∂2~r
∂s2 . (16)
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Applying this result to elastic light scattering, the model yields correct results in the flexible coil
limit [108], but it fails at very high stiffness, deviating strongly from the theoretical solution obtained
for rigid rods [109].

For computer simulations, a discrete polymer chain model has to be employed. Here, the bending
rigidity, i.e., the stiffness of the chains which are composed of N mass points (monomers), is
incorporated into the CG polymer model by the following bending potential

Ubend =
κ

2

N−1∑
i=1

(~ui+1 − ~ui)2 = κ

N−1∑
i=1

(1 − ~ui+1 · ~ui) = κ

N−1∑
i=1

(1 − cos θi,i+1) , (17)

where ~u is the unit bond vector ~ui = ~ri+1 − ~ri/| ~ri+1 − ~ri |, connecting consecutive monomers and ~ri is
the position vector to the i-th monomer. Parameter κ scales the strength of the bending energy in the
model. In the discrete numerical model, Lp is fixed by parameter κ. A straightforward definition of the
persistence length Lp in a discrete simulation model with respect to the bond length d0 is given by:

Lp =
κd0

kBT
. (18)

In the simulations, Lp is varied in the range of Lp ∈ {5 d0, 10 d0, 20 d0, 50 d0}, and is thus large compared
to one bond length d0, which is the smallest length scale on which the model chains still exhibit
flexibility. This range of Lp is also larger than the persistence lengths used in most previous MD studies
of semiflexible chains which were in the range of Lp ∈ {1 d0, ..., 5 d0} [102–105]. Monodisperse chains
with monomer numbers N = 350 and N = 700 are simulated. Thus, the semiflexible regime of polymer
chains for which

d0 � Lp � L = (N − 1) d0 (19)

is investigated.
The simplest model for the description polymer chain dynamics in a melt, is the Rouse

model [107]. It is a three parameter model, including the monomeric friction (ξ), the chain
connectivity (modeled through harmonic springs with mean-squared bond length d0

2) and the degree
of polymerization of the chains N. This model is known to describe the dynamics of short,
unentangled melts reasonably well, though deviations appear at monomeric length scales, which are
affected by local excluded volume interactions and chain stiffness. For long, entangled chains, the
Rouse model describes the dynamics at intermediate time/length scales even though the longer scale
dynamics are strongly affected by constraints formed by surrounding chains. The Rouse modes,
p = 0, 1, 2, ...,N − 1, of a chain of length N are defined as:

~Xp =

√
2
N

N∑
i=1

~ri cos
[

pπ
N

(
i −

1
2

)]
. (20)

The p = 0 mode describes the motion of the chain center-of-mass, while the modes with p ≤ 1 describe
internal relaxations in polymer chains with a mode number p corresponding to a subchain of (N −1)/p
segments. Hence, a Rouse mode analysis is in essence analogous to a Fourier analysis.

Starting from the Langevin Equation of the Rouse model,

ξ ~̇r(s, t) = k
∂2

∂s2~r(s, t) + ~FS (s, t), (21)
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where s again is some parameter along the polymer chain that measures length—for details,
see [107]—the stiffness of the polymer chains can be taken into account by introducing an additional
entropic bending force ~FB of the form

~FB(s, t) = −LpkBT
∂4

∂n4~r(s, t), (22)

which can be derived by applying Hamilton’s principle to Eq. (14) [110]. The equation of motion then
becomes

ξ
∂

∂t
~r(s, t) =

3kBT
2lP

∂2

∂s2~r(s, t) −
3kBT Lp

2
∂4

∂s4~r(s, t) + ~FS (s, t) , (23)

where ~FS is a Gaussian stochastic force. Eq. (23) is similar to the equation of motion derived by Harris
and Hearst [109] and by Harnau et al. [111] who, as in the Rouse model, assume a Gaussian distribution
of each bond length. In essence, (23) is based on the Rouse model for flexible Gaussian chains and the
introduced bending force can be considered as a small and local perturbation of the system. A solution
of (23) can be achieved in terms of a normal Rouse mode analysis as shown in [112]:

〈 ~̃Xp
2(0)〉 =

kBT
kp

semi =

[
3π2

LLp
p2 +

3Lpπ
4

L3 p4
]−1

, (24)

where the effective force constant of semiflexible chains is introduced as:

kp
semi = kp

b + kp = (3kBT Lpπ
4 p4)/(L3) + (3kBTπ2 p2)/(LLp) . (25)

The value kp
b is due to the mechanical bending force and kp arises from the entropic tension. The

crossover scaling behavior of single polymers of different persistence lengths Lp is displayed in
Figure 17. As one can see, these chains follow the corresponding scaling laws as predicted from
theory (Eq. (24)). Introducing a critical Rouse mode pc upon which the crossover scaling from a p−2

to p−4 behavior, i.e., from entropic tension modes to mechanical bending modes occurs, we can see,
that all different simulations, independent of system size N fall on one universal master curve as
displayed in Figure 17. Since we discuss here CG models of polymers, much longer persistence
lengths Lp (see Eq. (18)) than in atomistic simulations of universal scaling properties can be
considered. Atomistic simulations done by Paul et al. [102, 105, 113] claimed the scaling exponents to
be in the range of ≈ p−2.3 to ≈ p−3.0, while theory predicts for the semiflexible regime a universal
exponent of p−4.0, where p is the Rouse mode number of Eq. (24). In the simulations presented
in [19] it was shown for the first time that the correct (theoretically predicted) crossover scaling in the
transition from fully flexible to semiflexible behavior of linear macromolecules can be obtained.

5.5. Coarse-Graining of Lipid Bilayer Membranes

In this section, I discuss a recently introduced CG model of lipid molecules which self-aggregate
to form stable bilayer membranes and which are subsequently exposed to shock waves. Biological
cell membranes are very interesting and complex supramolecular structures which form a barrier
between different compartments, or organelles, of cells. Membranes also exhibit many chemical
reactions essential to the existence and functioning of a cell [114]. For example, the plasma
membrane acts as a boundary that prevents the contents of a cell from escaping and mixing with the
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surrounding medium. Simultaneously, a cell’s plasma membrane enables the passage of critical
nutrients into the cell and the passage of waste products out. The most common membrane
constituents are lipid molecules with two physically separated subdomains, usually an elongated
hydrophobic domain made up of fatty acid tails, associated with a hydrophilic head group. The most
abundant lipids in cell membranes are the phospholipids, molecules in which the hydrophilic head is
linked to the rest of the lipid through a phosphate group [90], cf. Figure 18. The hydrophilic head
groups of lipids dissolve readily in water because they contain polar groups that are easily
incorporated in the hydrogen-bonding network of the surrounding water. In contrast, the hydrophobic
hydrocarbon tails are uncharged and non-polar and thus try to aggregate in energetically and
entropically favourable structures that minimize their contact with surrounding water molecules. The
nearly cylindrical shape of most membrane lipids makes the bilayer the most common geometrical
organization for spontaneous self-assembly of lipid molecules in aqueous environment.

Figure 17. Crossover scaling of single polymer chains and master curve. a) Transition in
the crossover scaling from fully flexible to semiflexible behavior. b) All different curves
lie on one master curve when introducing a dimensionless scaling variable that involves the
persistence length Lp, here displayed as Lp.
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Figure 18. An example of a common phospholipid (dipalmitoylphosphatidylcholine, DPPC,
chemical formula C40H80NO8P) and its coarse grained representation, cf. also Figure 12. The
CG model is composed of three parts, one hydrophilic head (H) bead and two hydrophobic
tail (T) beads, connected by harmonic bonds. Angle θ is the angle of the bending potential
of (17). We note here, that our model is by no means restricted in the number of head or
tail particles: We just decided here to use the simplest possible representation of our model
which involves only three particles. Figure adapted from [115].

All-atom MD simulations of lipid bilayers which resolve the dynamics of individual atoms are
limited to fairly small membrane samples (tens of nanometers in extension) and very short time scales
of at most a few hundred nanoseconds [116], leaving CG simulations as the only currently available
computational tool to access mesoscale phenomena such as the dynamics of molecular self-assembly
of lipid molecules.

There is a very large body of literature on computational studies of the static and dynamic properties
of biomembranes using atomistic and CG modeling approaches, see e.g., [117, 118] which have been
reviewed in depth, e.g., by Pandit and Scott [119] and Woods and Mulholland [95].

With the rise of so-called solvent-free, or implicit simulation schemes for membranes, which
became fashionable at the turn of the millennium, the number of publications in this field has
constantly increased. Solvent-free models of lipid bilayer structures do not explicitly take the fluid
molecules of the aqueous environment into account. These models are either based on a stochastic
Langevin equation of motion accounting for the Brownian random motion of the fluid molecules, or
on the complete modeling of all effects of the solvent by effective interaction potentials between the
constituent particles of the membrane only [120–123]. As one is usually only interested in the
structural and dynamic details of the membrane and not in the surrounding fluid, this allows to reduce
the number of necessary integrations and thus the computational costs considerably. Many of the used
potentials are either derived from intuition, from standard potentials routinely being using in polymer
physics or from quantum chemical calculations of force field parameterizations [117, 124–126].

5.5.1. Phase Diagram of a Lipid Bilayer Membrane Model

When employing a solvent-free model, the hydrophobic interactions of the lipid tails with water can
be considered using an attractive potential between all tail particles of different lipid chains as indicated
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in Figure 18:

Φattr(r) =


−ξ for r < rcut ,

−ξ cos2
(
π(r−rc)

2hc

)
for rc ≤ r ≤ rc + hc ,

0 else ,

(26)

where hc determines the range of the attractive potential, i.e., the larger hc the larger the
hydrophobicity of the lipid tails, and rcut =

6√2. A tunable potential of this type (involving a cosine
function) was introduced by Steinhauser in polymer physics for the realistic MD simulation of
polymer-solvent interactions with varying solvent qualities [83]. The decay range hc of Eq. (26)
directly determines the bending rigidity and rupture strength of the membrane. Thus, a variation of
this parameter in a computational study can be used to explore the properties of self-assembled lipid
bilayers with a broad range of mechanical properties. One finds stable bilayer structures within the
interval hc = [0.8 σ, 1.4 σ] at a temperature T = 310 K, which corresponds to physiological
conditions. For hc . 0.7 σ, the bilayer dissolves, while it is crystalline for hc & 1.5 σ.

Figure 19. Temperature–attraction (T, hc) phase diagram of a lipid bilayer membrane model
with some typical representations of membrane structures according to [115]. We can clearly
distinguish several regions where the lipids do not form stable structures (red), or fluid
structures (blue), crystalline-like structures (black) with a minimum amount of fluctuations
and finally a stable region where the lipids form stable vesicles (completely closed bilayer
membranes) which can serve as a model of the plasma membrane of eukariotic cells.

In Figure 19, the phase diagram of lipid membranes based on the two parameters temperature T and
attractive potential range hc is displayed. Each data point was actually generated from averaging and
analyzing 20 different simulations for the specific combination of (T, hc). The fluid character of the
bilayer within the stable range is verified by computing the in-plane diffusion coefficient D = 0.03 −
0.06 σ2/τ and observing a non-zero flip-flop rate, i.e., the probability per unit time that a single lipid
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changes from one surface to the other. The phase diagram of membrane structures obtained with this
model was calculated by averaging 100 simulation runs for each displayed combination of temperature
T and attractive potential range hc.

5.6. Simulation of Shock Wave Damage in Coarse-Grained Models of Membranes

CG models are nowadays routinely used in polymer and biophysics, mostly for equilibrium [127–
133], but also for non-equilibrium studies [75, 134–136] of lipid bilayer membranes and provide a
description of reduced complexity with respect to the molecular degrees of freedom [72, 137, 138].

Practically all reported simulation studies of the static and dynamic properties of biomembranes
have been performed very close to equilibrium. However, the exploration of the interaction of shock
waves with biomembrane structures constitutes a non-equilibrium physical process. In the few
existing computational studies exploring shock waves in soft matter none takes properly into account
the particular physical conditions of a shock wave and they are limited to unrealistically small
systems with explicitly modeled solvent [139–141].

In a recent research paper, I suggested a new multiscale approach to this problem, discussing the
fact that even in the largest existing all-atom simulation published even to date [139, 140], the size of
the considered system was several orders of magnitude too small in size and too limited with regards
to the time scale to be able to capture any relevant effects of shock waves in membranes observed in
experiments, such as transient permeability and subsequent self-repair of parts of the membrane in an
eukariotic cell [134]. It is well known that the exposure of biological cells to shock waves can cause
damage of varying extend to the cell membrane [142–145] depending on the pressure level of the
shock wave [5, 91]. However, the exact mechanisms by which shock waves interact with membranes
of biological cells is vastly unknown.

In medicine, the use of shock waves as a form of therapy has two major areas of application:

1. Gene therapy: Here, the plasma membrane is transiently punctured by the treatment with shock
waves, which can be used for delivering genetic material or therapeutic molecules into the
cytoplasm [8].

2. High Intensity Focused Ultrasound (HIFU): Here, tumor tissue is treated with HIFU which
transports energy to a focal point where it is converted into heat, leading to denaturation of
proteins in the cells (coagulative necrosis). A secondary and hard to control destructive effect
during HIFU treatment is caused by acoustic cavitation, i.e., the formation and implosion of
small gas bubbles at the focal point.

Experimentally, direct visualization of the dynamics of membrane rupture is very difficult to achieve,
because a typical cell membrane has thickness d ≈ 5 nm, while the pressure front of a shock wave
travels at supersonic speeds, i.e., with a velocity vs � 1430 ms−1 in water. The time-scale during
which a shock wave interacts with a cell membrane is thus on the order of a few picoseconds.

The intrinsic structural complexity of cell membranes bears an additional computational challenge:
A membrane is essentially a thin fluid layer with immersed proteins and carbohydrates, stabilized by a
subtle balance of competing hydrophobic and hydrophilic interactions which have to be reflected in a
corresponding CG model.
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5.6.1. Membrane Damage: Effects of Shock Wave Speed

Using a DPDE thermostat [146], recent shock wave computer experiments on square lipid bilayer
patches were performed for values of the lipid interaction parameter hc of Eq. (26) in the interval
hc ∈ [0.8, 1.4]σ, see Figure 20. For hc . 0.7 σ, the bilayer is just instable and dissolves, while it
attains a crystalline shape for hc & 1.5σ. Hence, the investigated range of interactions is representative
of a wide spectrum of lipid bilayers with different mechanical stability. Initial configurations are taken
from equilibrium runs performed in a tensionless state. The here shown system consists of Nlip = 3872
lipids, spread on an area of A = 15.012 nm2. The simulation box size along the direction normal to
the bilayer is chosen as L = 63.08 nm The total number of particles is N ≈ 1.1 × 106. The driving
speed of the piston that generates the shock wave is varied in the range vp ∈ [1892, 5676] ms−1 in order
to produce shock waves with different supersonic velocities. After 200 time steps of δt = 2.87 fs, the
piston is stopped, while the initiated shock wave continues to travel further along L. The lipid bilayer
is placed 9.435 nm in front of the initial piston position, far enough away not to be hit by the piston.
Snapshots of an exemplary simulation are shown in Figure 21, where the shock wave was initiated by
a piston with velocity vp = 4730 ms−1.

Figure 20. Snapshot of an equilibration state of a CG membrane model using particles and
water (blue particles) which is modeled numerically as a surrounding SPH continuum [147].
The coupling of the coarse-grained MD and the continuum SPH domain is indicated with
arrows.

There are a number of different phenomena associated with lipid bilayer damage:

• The bilayer can tear along well localized paths leaving the majority of its area intact;
• The two bilayers can inter-penetrate upon compression;
• Single lipids can move out of their equilibrium positions and orientations via diffusive

mechanisms.
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Figure 21. Snapshots of a shock wave simulation with a lipid bilayer in a shock tube at
different times [147]. The simulation box measures (62.90 × 15.01 × 15.01) nm3, comprising
1, 117556 particles. A piston, coming from the left and moving with a velocity of 4730 ms−1,
compresses the material ahead of it and induces a shock wave. a, b) and c, d) correspond to
simulation times of 0.72 ps and 8.61 ps, respectively. In a) and d) the particles are colored
according to type (blue: water, red: lipid head, green: lipid tail). In b, c) the pressure
distribution is shown, with blue and red signifying low and high pressure, respectively. Peak
pressures in b) are 38.4 GPa and 1.9 GPa in c), respectively.

All of these effects may conveniently be combined into a single scalar order parameter, Ψ, based on
the projection of the particle pair distribution function on rotational invariants [148]

C(r) =
1
πN

N∑
i> j

δ(r − ri j)
~ei · ~e j

r2 , (27)

where the sum runs over all pairs of lipids i and j, ri j is the pair distance as measured between the
central beads, and ~ei and ~e j are orientation vectors (the normalized distance vectors between the first
and the third bead of each lipid). C(r) is similar to the familiar radial distribution function, except
that it is additionally weighted by relative orientations. To convert this distance dependent correlation
function into a single scalar, C(r) is integrated up to a distance rc = 1.0 nm, which is chosen such as to
include the first coordination shell, i.e., the first peak in C(r), in the undamaged bilayer structure:

Ψ = 4π

rc∫
0

dr C(r)r2 . (28)

Disruption of the equilibrium bilayer configuration affects this order parameter in two different ways: If
the mutual orientation of neighboring lipids deviates from parallel alignment, or if lipids are separated
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from each other beyond their equilibrium distance rc, the value of Ψ is reduced, thus providing a
quantitative means to characterize lipid bilayer damage.

Figure 22 shows the damage caused by shock waves of different impact velocities vs for membrane
systems of medium stability with an interaction parameter hc = 1 σ. As one can see, higher impact
velocities cause a stronger decrease of Ψ, i.e., larger damage. The initial descent of Ψ is almost
instantaneous for the here simulated shock front speeds, however, for large simulation times Ψ

increases within a few ps, indicating reversible damage. This is consistent with the experimentally
observed self-repair of biomembranes that are transiently permeable when exposed to shock
waves [4]. For small shock front velocities vs . 3050 ms−1, no such clear increase of Ψ is observed.
Thus, the existence of a critical shock front velocity for self-recovery of membranes can be deduced
from our calculations.

Figure 22. Membrane damage induced by shock waves of different initial velocities vs.
The data shown are for the CG lipid model with interaction parameter hc = 1.4 σ and two
different system sizes: filled circles and open squares are for bilayers with 103 and 104 lipids,
respectively.

6. Conclusions

The combination of shock wave physics, coarse-graining and multiscale modeling in computer
simulations will continue to be a very important part of state-of-the-art computational materials
science. The combination of research results and expertise of these different research areas has led to
the new emerging area of investigating shock wave effects in biological, i.e., soft matter systems and
will eventually overcome (at least partly) the traditional and artificial barriers between scientists from
different branches such as mathematics, physics, computer science, biology, chemistry, etc. who
usually do not work well together. The importance of materials modeling across length and time
scales will likely further increase in the future with the development of novel computational
techniques and the advent of exascale computers. Currently, mostly sequential multiscale modeling
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and bridging of few scales is state of the art, while concurrent modeling concepts begin to emerge. It
can be expected that the future will bring more concurrent modeling for a variety of materials that
would enable design of materials at the macroscale by using an inverse engineering design
methodology. Concurrent modeling can be achieved through further development of a systematic
coarse-graining methodology that retains microstructure heterogeneities and chemistry of the system
at higher scales while the reverse process will utilize general backmapping algorithms that can
uncover underlying atomistic structure and local heterogeneity from the high-level coarse-grained
representation.

New algorithms will likely improve the efficiency and validity of computations at every scale by
making the representation of the total material system more accurate with better estimates of the
uncertainties that have arisen. For example, embedded and adaptive methods may enable more
accurate calculations of the material system at the various scales (quantum, atomistic, micro- and
meso-scales) subjected to a dynamically adjusted environment. Current, predetermined a priori
representation of the multiscale material system for atomistic simulations (force fields) or for FE
techniques (constitutive equations) could be calculated on the fly, thus adding accuracy and less
uncertainty to the material system simulation.

Undoubtedly, with increased coupling of different algorithms across spatiotemporal scales,
understanding deficiencies and the range of applicability of models, as well as estimation of error on
simulations, will become of vital importance. The field of verification, validation, and uncertainty
quantification will become an integral part of concurrent multiscale modeling. In the future, we can
expect an increasing integration of multiphysics within multiscale modeling, allowing for realistic
simulations under various external fields and extreme conditions. Bulk calculations might be replaced
with realistic simulations including local heterogeneities, such as stochastically distributed defects,
grain and interface boundaries or microphase-separated morphologies that can dynamically evolve
upon influence of external fields.

What would probably really be needed to address the interesting developments in computational
science outlined in this review is a change of traditional curricula at universities worldwide that barely
offer inter- or multi-disciplinary courses that combine e.g., physical theories and mathematical
modeling with traditional wet-lab cancer research or e.g., look into the application of quantum
mechanics in biology—another new emerging area that has become known under the name quantum
biology. Also, computational science courses that combine techniques and research results from
different areas in integrated courses are currently rarely offered. One problem here might be, that the
present academic teachers at universities themselves have not grown up in a multi- and
interdisciplinary environment when they obtained their own degrees, and then most likely have been
busy for many years following the infamous “publish-or-perish” fetish which most likely produces
countless numbers of redundant research papers that serve mostly only for one thing: To act as
research currency for academic careers and funding.
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