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Abstract: Minimization of the dead zone (DZA) in the process of material forming is a materials 

science problem. Geometric and kinematic approaches to the minimization of the DZA during Equal 

Channel Angular Extrusion (ECAE) have been proposed, developed, analyzed, and documented. The 

present article is focused on a 2D Computational Fluid Dynamics (CFD) description of the kinematic 

effects of punch shape geometry and inlet (IDW) and outlet (ODW) die wall motion on the DZA 

during ECAE of Viscous Incompressible Continuum (VIC) through a Segal 2θ-die for a range of 

channel angles 60° ≤ 2θ ≤ 135°. Due attention has been given to the independent alternating transport 

motions of the IDW and ODW. Punch shape geometry and the kinematic modes of IDW and ODW 

motions for DZA minimization have been determined with a numerical solution of the boundary 

value problem for the Navier-Stokes equations in curl transfer form for VIC. Experimental 

verification was accomplished with an introduction of initial circular gridlines-based physical 

simulation techniques. For the first time, experimental verification of CFD-derived results was made 

through an additional superposition of empirically-derived digital photos with deformed elliptical 

gridlines in the channel intersection deformation zones and correspondent 2D numerical plots with 

CFD-derived flow lines and full flow velocities. An empirical DZA localization was experimentally 

determined as the location of minimally-deformed near circular markers. The computational DZA 

localization was numerically determined as a flow-lines-free zone (the first hypothesis) or as a zone 
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with near-zero values of full flow velocities (the second hypothesis). The relative DZA was 

estimated as a ratio of the measured DZA with respect to the area of the deformation zone in the 

channel intersection region. A good agreement was obtained between DZA values obtained with the 

first hypothesis and experimental results. 

Keywords: ECAE; punch shape; dead zone; viscous flow; movable inlet die wall; movable outlet die 

wall; CFD 

Nomenclature 

SPD is Severe Plastic Deformation; 

ECAP is Equal Channel Angular Pressing; 

ECAE is Equal Channel Angular Extrusion; 

CFD is Computational Fluid Dynamics; 

BCs are boundary conditions; 

a ; a  is the channel width of the ECAE die, [m];  

2θ  is the channel intersection angle of the ECAE die, [deg]; 

The 2θ -die is the ECAE die ABC–abc with channel intersection angle 
 1802θ0  ; 

2θ die of Segal geometry is the angular die ABC–abc with channel intersection angle  (ABC) = 

 (abc) = 2θ without external and internal radii in channel intersection zone; 

02θ  is the punch angle, [deg]; 

02θ2θ  , [deg] is experimentally determined geometric condition for dead zone size reduction and 

for minimization of dangerous macroscopic rotation in workpiece volume, obtained with physical 

simulation techniques only for the case of the fixed die walls of Segal ECAE die with Vab = Vbc = 0; 

Re is Reynolds number of viscous workpiece model (given more fully below); 

0U  is a characteristic punching velocity of ECAE forming, where vector U0 is directed into ECAE 

punching direction [m/s]; 

u ; u  is x-projection of velocity of the point of viscous continuum, [m/s], where 0/Uuu  ; 

v ; v  is y-projection of velocity of the point of viscous continuum, [m/s], where 0/Uvv  ; 

abV  is dimensional velocity of inlet die wall ab, [m/s]; 

bcV  is dimensional velocity of outlet die wall bc, [m/s]; 

Vab (Vbc)↑↑U0 is called as “Vab (Vbc) & U0 are parallel” and means that velocity vectors Vab (Vbc) 

and U0 are parallel to each other and directed into one side, along ECAE punching direction U0; 

Vab (Vbc)↑↓U0 is called as “Vab (Vbc) & U0 are anti-parallel” and means that velocity vectors Vab 

(Vbc) and U0 are parallel to each other but directed into opposite sides, i.e., Vab (Vbc) is directed into 

opposite side to ECAE punching direction U0; 
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x ; y ; x ; y  are Cartesian rectangular coordinates of the points of viscous continuum, [m], where 

axx / ; ayy /  or utx Re ; vty  Re ; 

 ;   is a curl function for viscous continuum, [1/s], where 0Ua  ; 

vis  is dimensional kinematic viscosity of viscous continuum, [m
2
/s]; 

  visvis  is dimensional dynamic viscosity of viscous continuum, [Pa·s]; 

  is the dimensional density of viscous physical model of polymer material, [kg/m
3
]; 

 ;   is a flow function, [m
2
/s], where  aU0  ; 

p ; p  is ECAE punching pressure, [Pa], where )( 2

0Upp  ; 

t ; t  is time, [s], where  2att vis   or  2att vis ; 

visaU 0Re  is Reynolds number of viscous continuum; 

N  is the quantity of ordinate steps along the channel width; 

 ; ξ  is the horizontal coordinate step along x-axis; 

 ; η  is the vertical coordinate step along y-axis; 

itt ; itt  is time iteration step, [s]; 

trt ; trt  is transition time, [s]; 

k  is iteration number; 

n  is the number of time step; 

i; j are numbers of difference grid cells, where i corresponds x-axis, and j corresponds y. 

 

1. Introduction 

1.1. Background and the State of the Art 

Severe Plastic Deformation (SPD) techniques [1–30] are closely associated with material 

forming (or material pressure working) methods and their application has increased over the last 40–

50 years [1,3–8,10–25,27–30]. The classical SPD processing methods are Segal’s Equal Channel 

Angular Extrusion (ECAE) and Equal Channel Angular Pressing (ECAP) material forming 

techniques [1,3–8,10–23,25,28,29,30], which appeared in the 70s years in the USSR (Figures 1–20). 

Classical ECAE or ECAP is based on one or several extrusion passes of a lubricated metal or 
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polymer material through die tooling with two intersecting channels of equal  

cross-section [1,3–8,10–23,25,28,29,30]. Material processing by ECAE results in the accumulation 

of large shear strains and material structure refinement with physical properties  

enhancement [1,7,8,29]. The standard ECAE die geometry ABC–abc for SPD processing is the so-

called Segal 2θ-die geometry, where the inlet AB–ab and outlet BC–bc die channels have an 

intersection angle 2θ (Figures 1, 2, 17–20). Moreover Segal ECAE 2θ-dies have neither external nor 

internal radii at the channel intersection points B; b and usually have fixed motionless die walls ab 

and bc in the inlet and outlet die channels (Figures 1, 2, 17–20). This apparent simplicity and 

materials science-related effectiveness of the ECAE technique has attracted tremendous world-wide 

research attention to this pressure-forming scheme for the last 20–25 years and distinguished this 

process among other ways of lateral extrusion in material forming. However, the relatively mature 

ECAE process has not found wide manufacturing applications due to such shortcomings as restricted 

length of the pressure formed workpiece (intermittence or discontinuity of process), edge effects, and 

dead zone formation. The restricted length problem is beyond the scope of the present research. Edge 

effects during ECAE are associated with the problem of high material waste in multi-pass ECAE-

induced processing and were partially addressed in previous researches [11,12,17]. 

Research into the mechanics of ECAE-induced dead zone formation has been regularly reported 

in numerous publications for the last 20 years. Practical problems of partial or complete dead zone 

elimination in ECAE pressure forming are usually solved by changing the die tooling  

geometry [6,11,12,14,15,20,30], by varying the classical punch shape [7,8,17,18], and by kinematic 

introduction of additional translational motion in the die walls [14,22]. Geometric ideas concerning 

punch shape variation are very limited and restricted in these schemes due to the geometric 

simplicity of the classical ECAE die tooling shapes. As a result, the possible modified geometric 

punch shapes are usually inclined or bevel-shaped forms of the punch surface [7,8,17,18]. Therefore 

numerous discussions concerning the importance and priority of researches by Nejadseyfi et al. [7,8] 

or by Perig et al. [17,18] are rather superficial because in 2017 we know that geometric design ideas 

which are shown in Figures 1(a), 2, 17–20 for the first time were reported 30 years ago in restricted 

access patents of the USSR in 1987 by other researchers. The geometric ideas of that patent were 

completely unavailable for the SPD-research community due to the 30 years-long non-disclosure 

period. As a result, the geometric ideas of an inclined punch shape introduction for more efficient 

ECAE realization were independently and simultaneously re-invented by Nejadseyfi et al. [7,8] and 

by Perig et al. [17,18]. These above mentioned facts confirm the actuality and the importance of the 

present research study, which improves consistency, integrity and sustainability of SPD-related 

research results between different scientific schools and research communities. 

The complex rheological behavior of ECAE worked materials requires the introduction of a 

wide variety of computational techniques for analytical and numerical ECAE description. 

Applications of Upper Bound Method (UBM) with trial continuous and discontinuous velocity 

fields provide a simple phenomenological estimation of energy-power parameters for metal 

workpieces in ECAE and is outlined in the works [5,13,16,19,30], and others. Koutcheryaev [3,4] 

has applied continuum mechanics based plastic flow description of the ECAE process for 

mathematical simulation of SPD-induced flow lines. Tóth et al. [29] and Rejaeian et al. [25] have 

applied flow field based continual description of textures evolution during ECAE of metals through 

flow function introduction. 
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Finite Element Method (FEM)-based ECAE simulation is mainly accomplished with an 

introduction of commercial FEM software and is outlined in the works of Minakowski [6], 

Nejadseyfi et al. [7,8], Perig et al. [11,12,17], and the others. The article by Perig et al. [17] is FEM-

based solution of plastic flow problem for ECAE metal workpiece forming through 2θ-die with an 

application of inclined punch shape, derived only for ECAE die with 2θ = 75° and only for the case 

of the fixed die walls with Vab = Vbc = 0. 

For three recent years, one could see major research interest in the introduction of fluid 

mechanics techniques [3,4,6,9,10,14,15,18,20–23,25,26,28] to the solution of ECAE  

problems [1,3–8,10–23,25,28,29,30] in the works of Koutcheryaev [3,4], Minakowski [6], Perig  

et al. [10,14,15,18,20–23], and Rejaeian et al. [25]. The article by Perig et al. [18] is a CFD-based 

solution of a viscous flow problem for ECAE forming through 2θ-die with an application of inclined 

punch shape, derived only for an ECAE die with 2θ = 75° and only for the case of the fixed die walls 

with Vab = Vbc = 0. This interest is assumed by growing applications of ECAP SPD techniques to 

processing of polymers [1,6,9,10,14,15,18,20–23] and powder materials where viscosity effects 

become essential. 

At the same time, the phenomenological description of polymer materials flow through Segal 

2θ-dies with movable die walls and different punch shapes with introduction of Navier-Stokes 

equations has not been adequately addressed in previously known  

publications [1,3–8,10–23,25,28,29,30]. This underlines the importance of the present research, 

dealing with fluid dynamics 2D simulation of material flow through non-rectangular Segal 2θ-dies 

with channel intersection angles of 2θ > 0° with movable inlet and outlet die walls and different 

punch shape geometries. 

Another flow problem during ECAE material processing through the acute-angled Segal 2θ-dies 

with 2θ < 90° and 2θ > 90° is connected with the formation of large dead zones (3) in the viscous 

material flow in Figures 1(b), 19 as well as enormous and dangerous mixing Δα of viscous material 

(2) in Figures 1(b), 19 during viscous continuum ECAE through the acute-angled dies with channel 

intersection angles of 2θ < 90° when standard classical rectangular punches (4) are applied  

(Figures 1(b), 19). So simple physical simulation experiments in Figures 1(b), 19 for viscous 

continuum ECAE through the die ABC–abc with 2θ = 75° confirm the disadvantages of using a 

standard punch (4) with rectangular shape AD–ad (2θ0 = 90°) in Figures 1(b), 19. It is very important 

to note that known approaches in published articles [1,3–8,10–23,25,28,29,30] have never addressed 

the possibility of changing the standard rectangular punch shape AD–ad in Figures 1(b), 19 for 

material ECAE through the acute-angled and obtuse-angled Segal 2θ-dies with 2θ < 90° and 2θ > 90°, 

and for Segal 2θ-dies with movable inlet and outlet die walls.  

This fact emphasizes the importance and underlines the prime novelty of the present article 

addressing the fluid dynamics viscous description of the influence of classical (Figures 1(b), 19) and 

novel modified 2θ-inclined or 2θ-beveled (Figures 1(a), 1(c), 2, 17, 18, 20) punch shape AD–ad and 

motion of inlet ab and outlet cd external die walls on viscous flow features of processed workpieces 

during ECAE SPD pressure forming through a Segal 2θ-die with channel intersection angle 2θ > 0° 

with movable inlet and outlet die walls. 
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1.2. Aims and Scopes of the Article. Prime Novelty of Research 

The present article is focused on the experimental and theoretical description of viscous 

workpiece flow through 2θ angular dies of Segal geometry during ECAE with a classical rectangular 

punch and a novel modified 2θ0-inclined or 2θ0-beveled punch for Segal 2θ-dies with movable inlet 

and outlet die walls. 

The aim of the present research is the phenomenological continuum mechanics based 

description of viscous workpiece flow through 2θ angular dies of Segal geometry during ECAE with 

an application of classical rectangular and novel modified 2θ0-inclined or 2θ0-beveled punch shapes 

for Segal 2θ-dies with movable inlet and outlet die walls. 

The subject of the present research is the process of ECAE working through the 2θ angular dies 

of Segal geometry with viscous flow of polymeric workpiece models, forced by the external action 

of classical rectangular and novel modified 2θ0-inclined or 2θ0-beveled punch shapes for Segal 2θ-

dies with movable inlet and outlet die walls. 

The object of the present research is to establish the characteristics of the viscous flow of 

workpiece models through the subject dies with respect to workpiece material rheology, geometric 

parameters of different punch shapes and movable inlet and outlet die walls of the subject dies on 

technological process of viscous ECAE-assisted working by pressure. 

The experimental novelty of the present article is based on the introduction of initial circular 

gridlines to study the punch shape influence on viscous workpiece ECAE flow through the 2θ 

angular dies of Segal geometry for the case of the fixed motionless die walls with Vab = Vbc = 0. 

The prime novelty statement of the present research is the numerical finite-difference solution 

of Navier-Stokes equations in the curl transfer form for the viscous workpiece flow through the 2θ 

angular dies of Segal geometry with movable inlet and outlet die walls during ECAE, taking into 

account the classical rectangular and novel modified 2θ0-inclined or 2θ0-beveled punch shapes with 

due account for independent alternating transportation motion of inlet and outlet die walls of Segal 

2θ-dies. 

2. Materials and Methods 

2.1. Physical Simulation Study of Punch Shape Influence on Viscous Flow 

Physical simulation techniques using plasticine workpiece models are often used in material 

forming practice [2,5,10–23,27,29,30]. 

In order to estimate the character of viscous flow during ECAE through a 2θ angular die of 

Segal geometry ABC–abc under the action of a classical rectangular punch and novel modified 2θ0-

inclined or 2θ0-beveled punch shapes in the case of the fixed die walls with Vab = Vbc = 0 we have 

utilized physical simulation techniques in Figures 1, 2, 17–20. The plasticine workpiece models in 

Figures 1, 2, 17–20 have been extruded through an ECAE die ABC–abc with channel intersection 

angle 2θ = 75° using a standard punch (4) with rectangular shape (2θ0 = 90°) in Figures 1(b), 19 and 

novel modified 2θ0 = 75°-inclined or 2θ0 = 75°-beveled punch (1) in Figures 1(a), 1(c), 2, 17, 18, 20 

as the first experimental approach to polymeric materials flow (Figures 1, 2, 17–20). 

The aim of physical simulation is an experimental study of dead zone abc formation and 

deformation zone abc location during viscous ECAE flow of workpiece plasticine models under the 
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external action of rectangular and inclined punches in the case of the fixed motionless die walls with 

Vab = Vbc = 0. The physical simulation in Figures 1, 2, 17–20 is also focused on the experimental 

visualization of rotary modes of SPD during ECAE of viscous polymer models for the different 

punch geometries. The experimental results in Figures 1, 2, 17–20 are the original experimental 

research results, obtained by the authors. 

The plastic die model of ECAE die ABC–abc with channel intersection angle  ABC =  abc 

= 2θ = 75° and the width of inlet aA–bB and outlet bB–cC die channels 35 mm is shown in Figures 1, 

2, 17–20. Potato flour was used as the lubricator in Figures 1, 2, 17–20. 

 

Figure 1. Physical simulation with soft models-based experiments of punch shape (1, 4) 

influence on ECAE flow of viscous continuum (2) through the acute-angled Segal non-

rectangular die ABC–abc with channel intersection angle 2θ = 75° < 90°; (4) is classical 

punch of rectangular shape AD–da with 2θ0 = 90° in (b); (1) is modified shape of 

inclined 2θ0-punch AD–da in (a) and (c) with 2θ0 = 2θ = 75° < 90°; (3) is the 

experimentally derived shape of the dead zone for viscous material flow during ECAE in 

the case of the fixed die walls with Vab = Vbc = 0. 

The main experimental visualization technique in Figures 1, 2, 17–20 is based on the 

manufacture of the initial plasticine physical models of the workpieces in the shapes of rectangular 

parallelepipeds, freezing of these rectangular parallelepipeds, marking the initial circular gridlines on 

the front sides of the frozen parallelepipeds, perforation of through-holes in the parallelepipeds at the 

centers of the initial circular gridlines, repeated freezing of the plasticine (Figures 1, 2, 17–20) 

parallelepipeds, heating of the plasticine (Figures 1, 2, 17–20) pieces with different colors to the half-

solid state, and placing the half-solid multicolor plasticine (Figures 1, 2, 17–20) into the through-

holes of the frozen parallelepipeds using a squirt without needle experimental physical simulation 

technique. In this way the initial plasticine-based (Figures 1, 2, 17–20) circular gridlines were 

marked throughout the initial plasticine (Figures 1, 2, 17–20) workpieces. The initial circular 

gridlines transform into deformed elliptical ones as workpieces flow from inlet to outlet die channels 

during ECAE (Figures 1(a), 1(c), 2, 17–20). The gridline-free dead zones (p. b) were visualized 

through the physical simulation techniques introduction in Figures 1, 2, 17–20. It was found that 



1247 

AIMS Materials Science                                                   Volume 4, Issue 6, 1240-1275. 

dead zone (p. b) formation takes place in the vicinity of the external angle abc of channel intersection 

zone Bb in the case of the fixed die walls with Vab = Vbc = 0. 

 

Figure 2. Soft physical model of the workpiece after 3 ECAE passes through acute-

angled Segal 2θ-die via route C with modified shape of 2θ0-inclined or 2θ0-beveled 

punch, where 2θ0 = 2θ = 75° < 90° and Vab = Vbc = 0. 

It was experimentally shown that the best reduction of dead zone size (3) for an ECAE die with 

2θ = 75° could be achieved through the replacement of the standard rectangular punch AD–ad with 

(2θ0 = 90°) in Figure 1(b) with the new 2θ0-inclined or 2θ0-beveled punch AD–ad with 2θ0 = 75° in 

the case of the fixed die walls with Vab = Vbc = 0 in Figure 1(c). 

It was experimentally found in Figures 1, 2, 17–20 that the deformation zone BCDc during 

ECAE of viscous models is not located in the channel intersection zone Bb but is located in the 

beginning of the outlet die channel BC–bc in the case of the fixed die walls with Vab = Vbc = 0. 

The relative location of the elliptical markers in outlet die channel BC–bc show the formation of 

two rotary modes of SPD during ECAE (Figures 1, 2, 17–20). Checking the successive locations of 

one color elliptical markers in Figures 1, 2, 17–20, we see that the major axis of every elliptical 

marker rotates with respect to the axis of the outlet die channel bc. We define the term of 

macroscopic rotation as the relative rotation of the major axis of an elliptical marker with respect to 

the flow direction axis bc. The macroscopic rotation is the first visually observable rotary mode 

during ECAE forming of viscous workpiece model. Visual comparison of Figures 1(b), 19 with 

Figures 1(a), 1(c), 2, 17, 18, 20 show that the macroscopic rotation is the unknown function of ECAE 

die channel intersection angle 2θ, punch shape 2θ0-geometry and transportation velocities of inlet ab 

and outlet cd external die walls. However under SPD ECAE treatment some deformed elliptical 

markers within the viscous material have additional bending points and have the form of “commas” 

or “tadpoles” in Figures 1, 2, 17–20. If the elliptical marker has the additional bending point during 

ECAE, then we will call the vicinity of the marker with this “waist” a zone of rotational 

inhomogeneity within the workpiece material, which is usually located at the beginning of the outlet 

die channel BC–bc in Figures 1, 2, 17–20. The rotational inhomogeneity is the second visually 

observable rotary mode during ECAE forming of the viscous workpiece model, which strongly 
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depends on the ECAE die channel intersection angle 2θ, punch shape 2θ0-geometry and transport 

velocities of inlet ab and outlet cd external die walls. 

The experimental results in Figures 1, 2, 17–20 have outlined the formation of the following 

zones within worked materials’ volumes: (I) the dead zone (p. b); (II) the deformation zone BCDc; 

(III) the macroscopic rotation zone (BC–bc), and (IV) the zone of rotational inhomogeneity (BC–bc). 

The complex of physical simulation techniques in Figures 1, 2, 17–20 introduces the initial circular 

gridlines technique with the application of plasticine workpieces with the initial circular colorful 

gridlines in the shape of initial colorful cylindrical plasticine inclusions (Figures 1, 2, 17–20). The 

application of the initial circular gridlines experimental techniques and the introduction of novel 

modified 2θ0-inclined or 2θ0-beveled punch shapes has not been addressed in previous known ECAE 

research [1,3–8,10–23,25,28,29,30]. 

The proposed complex of experimental techniques for physical simulation of SPD during ECAE 

in Figures 1, 2, 17–20 will find further applications in the study of viscous ECAE through dies with 

more complex Iwahashi, Luis-Perez, Utyashev, Conform and equal radii geometries with movable 

inlet and outlet die walls for the different punch shape 2θ0-geometries and different routes of multi-

pass ECAE polymer working. 

2.2. Boundary Value Problem Posing. Navier-Stokes Equations in Curl Transfer Form 

To use both dimensional and dimensionless values, we will mark dimensional values with 

overline symbols as is written in Nomenclature Chapter. 

Navier-Stokes equations for x-and y-projections of dimensional velocities have the following 

form [9,26]: 
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In equations (1)–(2) and further the dimensional quantities are marked with overline symbols, 

i.e., with top underscores (see Nomenclature). Here we have two equations with three unknown 

functions u , v  and punching pressure p . In order to close the system (1)–(2) we have to add the 

equation of continuity to the formulae (1)–(2): 

0









y

v

x

u
.          (3) 

The initial conditions for the system (1)–(3) have no basic importance because we study mainly 

the stationary solution of the system (1)–(3). For the derivation of the numerical solution in  

Figures 3–20, we transform system (1)–(3) and introduce the curl transfer equation in order to solve 

only one equation instead of the system (1)–(3). We will differentiate equation (1) with respect to y  
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and equation (2) with respect to x . Then we will eliminate punching pressure p  and define the 

dimensional curl function   as 

x

v

y

u
ζ


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 .          (4) 

So we will have the following transfer equation for dimensional curl function  : 
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In conservative form equation (5) is written as 
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The conservative form of equation (6) implements the integral conservation laws, which are 

valid for the original equations (1)–(3). 

We define the dimensional flow function   according to the following formulae: 

u
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Equation (4) for the dimensional curl function may be written as: 
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The curl transfer equation (6) in dimensionless variables will have the following form: 
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where the dimensionless curl function will be defined as: 

x
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
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 .          (10) 
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2.3. Finite-Difference Form of Curl Transfer Equation. Initial and Boundary Conditions for Curl 

Transfer Equation 

It is possible to write equations (9)–(10) in finite-difference form for further numerical 

integration according to the method of alternating directions for the cases of i↑j↑; i↓j↓; i↑j↓ and i↓j↑ 

(Figures 3–20). In finite difference form of equation (9), we will use upper indices (superscripts) near 

dimensionless functions  ,  , u , v  to denote the number of the time step and lower indices 

(subscripts) near dimensionless functions  ,  , u , v  to denote cell numbers, where the first 

subscript will mark cell numbers along the dimensionless abscissa x  (Figures 3–20), and the second 

subscript will mark cell numbers along the dimensionless ordinate y  (Figures 3–20). For the 

numerical simulation we define the inclined die wall with inclination angle θ, which diagonally 

crosses the cells of the computational grid. 

 

Figure 3. The finite difference mesh for the 2θ equal channel angular die of Segal geometry. 

Dimensional coordinate steps we will define as    θcos
1

ξ 



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
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N
xd  and 

   θsin
1

η 







 a

N
yd . 

Dimensionless coordinate steps we will define as 
 

 θcos
1ξ









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1η
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


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Na
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a
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If  ji , , then  
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If  ji , , then  



































 














 


 









22

1,1,1,1,,1,1,1,1

,

1

,

n

ji

n

ji

n

ji

n

ji

n

ji

n

ji

n

ji

n

jin

ji

n

ji

vvuu
Re       

















































































 














 





















222

1,,
1

1,

2

1
,1,,1

11
1

1
n

ji
n

ji
n

ji
n

ji
n

ji
n

ji
.  (13) 
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Flow function ψ we find with Richardson iteration method as 
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where 












 . 

We now study the steady-state regime of viscous flow for a physical model of polymer material 

(Figures 3–20). So the initial conditions we will assume in the form of a rough approximation to the 

stationary solution (Figures 3–20): 

00 ji,u ; 00 ji,v ; 0ζ0 ji, ; 0ψ0 ji, .       (16) 

The boundary conditions for the die walls we will define as the viscous material “sticking” to 

the walls of the die (Figures 3–20). Material sticking condition means that material velocity has a 

zero value at the die wall surfaces. 

The die wall is a flow line. Therefore the flow function is a constant along the whole length of a 

die wall. Equations (7) show that it is possible to satisfy an equation concerning unity value of 

dimensionless flow velocity for a unit dimensionless channel width by fulfillment the following 

condition for a flow function. The following dimensionless flow function rule for fluid flow in 

channels takes in account that, in the case of the unit dimensionless channel width and the unit 

dimensionless average flow velocity, the dimensionless flow function at the left flow boundary have 

to be greater by unity than at the right flow boundary. For the right die wall we may assume a zero 

value for the dimensionless flow function. Then, for the left die wall, we will get a unity value for the 

dimensionless flow function. Therefore we will assume that at the right and left flow boundaries the 

dimensionless flow functions are 0, ji  and 1, ji  in Table 1, respectively. 

It is possible to systematize all necessary boundary conditions into a Table 1. 

Concerning dD, we can comment, that the local velocity at the whole length of the frontal punch 

edge dD is equal to the averaged flow velocity, which has a unity value. So the dimensionless flow 

function has to increase linearly along the punch length dD from zero value at point d(id, jd) to unit 

value at point D(iD, jD). 

It is possible to derive the last boundary condition in Table 1 for the angular point D by series 

expansion of dimensionless flow function. For the point with coordinates (i, jw) lying on the 

horizontal boundary we have the following series expression 
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According to (7) and taking into account condition for adhesion of the viscous fluid we have the 

following expression 
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Moreover left hand side of (18) yields that 
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According to (10) the dimensionless curl function is defined as ζ = (∂u/∂y) − (∂v/∂x). Now let’s 

take into account that at the wall we have 

0const v .         (20) 

Equations (10), (19) and (20) yield that  
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So using (18) and (21) the series expression (17) yields that 
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Table 1. Boundary conditions. 

Boundary Boundary conditions 

BC  0u ; 0v ; 1 ; 
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where 0U  is punch velocity (average flow velocity) and abV  is velocity of a movable die wall ab; 
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where 0U  is punch velocity (average flow velocity) and bcV  is velocity of a movable die wall bc; 

cC  jijijiji ,1,3,4, 22    ; jijijiji ,1,3,4, 22    ; 
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We can now derive a generalized boundary condition in Table 1 for the curl function w  at the 

inlet boundary by a series expansion of the flow function 1w  at the node, which is located one step 

away from the wall, measured normal to the wall. We can now write the following expression in the 

vicinity of the node point with a Taylor series expansion, analogous to (17): 
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No-slip condition and formulae (7) yield the following generalization of (18): 
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Moreover (8) yields the following generalization of (19): 
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Substitution of (24) and (25) into (23) yields the following generalization of (22): 
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where Δn is the distance measured normal to the wall ranging from the nodal point w + 1 nearest to 

the wall to nodal point wall projection w. Therefore, it is possible to estimate the curl function 

expression at boundary (26) regardless of die wall orientation. 

We can now derive the boundary conditions in Table 1 for the outlet boundary cC with the 

following Taylor series expansion: 
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Equation (27) yields the first equation for cC in Table 1: 

134 22   llll  .       (28) 

We can now derive the second equation for cC in Table 1 by making similar transformations, 

which are completely analogous to (27)–(28), attaining the following expression for the curl: 

134 22   llll  .       (29) 
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2.4. Numerical Values of Physical Parameters for the Problem 

The numerical results of integration curl transfer equations (9)–(15) with initial (16) and 

boundary (Table 1 and (17)–(29)) conditions are outlined in Figures 4–20 for the following 

numerical values: 

Table 2. Numerical values of parameters for BVP (1)–(29), Table 1 and plots in Figures 4–20. 

Parameter Numerical Value Comments and References 

The dimensional width of inlet 

and outlet die channels 
a  = 35 (mm) Figures 1–20 

The dimensional length of die 

channel 
 316 16 35 10 mL a      ; 

 m0.56L  

Figures 4–20 

The dimensional average 

ECAE punching velocity 
 3

0
0.1 10 m sU    Figures 4–20 

The dimensional time of 

processed workpiece material 

motion in die channel 

0

* ULt  ; 

     * 3
0.56 m 0.1 10 m st


  ; 

 s5600* t  

Figures 4–20 

The maximum value of 

dimensionless curl 
1  Figures 4–20 

The dimensional curl  aU0  

     3 30.1 10 m/s 35 10 m   ; 

 3 12.86 10 s     

Figures 4–20 

The dimensional average 

angular velocity of rotation for 

viscous material layers 

22rot   w


; 

 3 11.43 10 s     

Figures 4–20 

The number of turns for 

viscous material layers during 

the time of workpiece material 

motion in die channel 

  2** tN  

   31.43 10 5600 2 3.14   ; 

27.1* N  

Figures 4–20 

The dimensional density of the 

viscous plasticine physical 

model of extruded polymer 

material 

  1850 (kg/m3) Figures 1–20 

The dimensional plasticine 

yield strength 
s  217 (kPa) Sofuoglu et al. [27] 

The dimensional specific heat 

capacity of plasticine material 
c  1.004 (kJ/(kg·K)) Figures 1–20 

The dimensional thermal 

conductivity 
  0.7 (J/(m·s·K)) Chijiwa et al. [2] 

The dimensional punching 

temperature 
tempt  20 (°C) Figures 1–20 

The dimensional dynamic 

viscosity for viscous 

Newtonian fluid model of 

plasticine workpiece during 

ECAE 

vis  1200 (kPa·s) Figures 4–20 
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The dimensional kinematic 

viscosity for viscous 

Newtonian fluid model of 

plasticine workpiece during 

ECAE 

 visvis  ; 

   6 21.2 10 1850 m s
vis

   ; 

 sm648.486 2vis  

Figures 4–20 

Reynolds number 
visaU 0Re ; 

visaU 0Re ; 

9
5.396 10


 Re  

Figures 4–20 

The half number of coordinate 

steps along the x- and y-axes 
N = 40 Figures 4–20 

The number of coordinate steps 

along the x- and y-axes 
2N = 80 Figures 4–20 

The relative error of iterations e = 1/1000 Figures 4–20 

The dimensional time moment 

for the first isochrone building 
t1 = 100 (s) Figures 4–20 

die channel intersection angle 

of Segal die 
2θ = 60° Figures 4(a), 4(b), 7(a), 7(b), 

10(a), 10(b)  

2θ = 75° Figures 1,2, 4(c), 4(d), 5, 7(c), 

7(d), 8, 10(c), 10(d), 11, 14–20 

2θ = 90° Figures 13(a), 13(b) 

2θ = 105° Figures 4(e), 4(f), 7(e), 7(f), 

10(e), 10(f) 

2θ = 120° Figures 6(a), 6(b), 9(a), 9(b), 

12(a), 12(b) 

2θ = 135° Figures 6(c), 6(d), 9(c), 9(d), 

12(c), 12(d) 

punch shape inclination angle 

adD 
2θ0 = 60° Figures 4(b), 7(b), 10(b) 

2θ0 = 75° Figures 1(a), 1(c), 2, 4(d), 5(b), 

7(d), 8(b), 10(d), 11(b), 14(b), 

14(d), 14(f), 14(h), 15(b), 

15(d), 15(f), 15(h), 16(b), 

16(d), 16(f), 16(h), 17, 18, 20 

2θ0 = 90° Figures 1(b), 4(a), 4(c), 4(e), 

5(a), 6(a), 6(c), 7(a), 7(c), 7(e), 

8(a), 9(a), 9(c), 10(a), 10(c), 

10(e), 11(a), 12(a), 12(c), 13(a), 

13(b), 14(a), 14(c), 14(e), 

14(g), 15(a), 15(c), 15(e), 

15(g), 16(a), 16(c), 16(e), 

16(g), 19 

2θ0 = 105° Figures 4(f), 7(f), 10(f) 

2θ0 = 120° Figures 6(b), 9(b), 12(b) 

2θ0 = 135° Figures 6(d), 9(d), 12(d) 

The dimensional horizontal and 

vertical coordinate steps along 

the x- and y-axes 

ξ  1.01 (mm) and η  1.75 (mm) for ECAE 

die with 2θ = 60° 

Figures 4(a), 4(b), 7(a), 7(b), 

10(a), 10(b) 

ξ  1.10 (mm) and η  1.44 (mm) for ECAE 

die with 2θ = 75° 

Figures 1, 2, 4(c), 4(d), 5, 7(c), 

7(d), 8, 10(c), 10(d), 11, 14–20 

ξ  1.24 (mm) and η  1.24 (mm) for ECAE 

die with 2θ = 90° 

Figures 13(a), 13(b) 
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ξ  1.44 (mm) and η  1.10 (mm) for ECAE 

die with 2θ = 105° 

Figures 4(e), 4(f), 7(e), 7(f), 

10(e), 10(f) 

ξ  1.75 (mm) and η  1.01 (mm) for ECAE 

die with 2θ = 120° 

Figures 6(a), 6(b), 9(a), 9(b), 

12(a), 12(b) 

ξ  2.286 (mm) and η  0.947 (mm) for 

ECAE die with 2θ = 135° 

Figures 6(c), 6(d), 9(c), 9(d), 

12(c), 12(d) 

The dimensional time iteration 

step 
 ittτ  680 (μs) for ECAE die with 2θ = 60° Figures 4(a), 4(b), 7(a), 7(b), 

10(a), 10(b) 

 ittτ  610 (μs) for ECAE die with 2θ = 75° Figures 1, 2, 4(c), 4(d), 5, 7(c), 

7(d), 8, 10(c), 10(d), 11, 14–20 

 ittτ  590 (μs) for ECAE die with 2θ = 90° Figures 13(a), 13(b) 

 ittτ  610 (μs) for ECAE die with 2θ = 105° Figures 4(e), 4(f), 7(e), 7(f), 

10(e), 10(f) 

 ittτ  680 (μs) for ECAE die with 2θ = 120° Figures 6(a), 6(b), 9(a), 9(b), 

12(a), 12(b) 

 ittτ  830 (μs) for ECAE die with 2θ = 135° Figures 6(c), 6(d), 9(c), 9(d), 

12(c), 12(d) 

The dimensional transition time trt  12.6 (s) for ECAE die with 2θ = 60° Figures 4(a), 4(b), 7(a), 7(b), 

10(a), 10(b) 

trt  11.3 (s) for ECAE die with 2θ = 75° Figures 1, 2, 4(c), 4(d), 5, 7(c), 

7(d), 8, 10(c), 10(d), 11, 14–20 

trt  10.9 (s) for ECAE die with 2θ = 90° Figures 13(a), 13(b) 

trt  11.3 (s) for ECAE die with 2θ = 105° Figures 4(e), 4(f), 7(e), 7(f), 

10(e), 10(f) 

trt  12.6 (s) for ECAE die with 2θ = 120° Figures 6(a), 6(b), 9(a), 9(b), 

12(a), 12(b) 

trt  15.5 (s) for ECAE die with 2θ = 135° Figures 6(c), 6(d), 9(c), 9(d), 

12(c), 12(d) 

3. Results and Discussion 

3.1. CFD-based Numerical Simulation of Viscous Flow through Segal ECAE 2θ-Dies with Movable 

Inlet & Outlet Die Walls for the Different Punch Shape 2θ0-Geometries 

In order to derive the mathematical model of viscous material flow during ECAE through a non-

rectangular Segal 2θ-die taking into account the punch shape AD–ad effect on viscous flow 

dynamics we will apply the Navier-Stokes equations (1)–(29) and Table 1. The results of the 

numerical simulation study are shown in Table 2 and in computational diagrams in Figures 4–20. 

Computational results in Figures 4–20 illustrate punch shape influence on geometry (Figures 4–

6, 14, 17, 19, 20), kinematics (Figures 10–12, 13(b), 16, 18) and dynamics (Figures 7–9, 13(a), 15) of 

the viscous flow during ECAE. Computational plots in Figures 4–20 are based on a finite-difference 

solution (11)–(15) of Navier-Stokes equations (1)–(3) in curl transfer form (4)–(10) with initial (16) 

and boundary (Table 1 & (17)–(29)) conditions. 

Instabilities of the numerical solutions, which appear at the outlet frontiers cC (Figures 4–20), 

propagate upstream. 

The numerical solution (Figures 4(c), 4(d), 5, 7(c), 7(d), 8, 10(c), 10(d), 11, 14–20) for the 

ECAE through the die with 2θ = 75° satisfactorily agrees with the physical simulation results 
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(Figures 1,2, 17–20) only when the outputs cC of viscous flows are located well away from channel 

intersection bisector bB, i.e., ideally the channel outputs cC have to be infinitely distant from bisector 

bB. So the finite difference grid cells near the outputs cC for i > 30 were rejected from the plots in 

Figures 4–20. 

CFD-derived computational flow lines in Figures 4–6, 14, 17, 19, 20 and full flow velocities in 

Figures 10–12, 13(b), 16, 18 directly show the formation of shear stress-free dead zone areas dDbc 

during ECAE of viscous continuum through the acute-angled Segal 2θ-dies with 2θ < 90°. 

CFD-derived computational flow lines in Figures 4–6, 14, 17, 19–20 and full flow velocities in 

Figures 10–12, 13(b), 16, 18 outline the reduction of dead zone areas dDbc when we use the 

modified 2θ0-inclined or 2θ0-beveled punch shapes (Figures 4(b), 4(d), 4(f), 5(b), 6(b), 6(d), 7(b), 

7(d), 7(f), 8(b), 9(b), 9(d), 10(b), 10(d), 10(f), 11(b), 12(b), 12(d), 14(b), 14(d), 14(f), 14(h), 15(b), 

15(d), 15(f), 15(h), 16(b), 16(d), 16(f), 16(h), 17, 18, 20) with 2θ0 = 2θ. 

CFD-derived computational flow lines in Figures 4–6, 14, 17, 19–20 and full flow velocities in 

Figures 10–12, 13(b), 16, 18 also outline the largest dead zone areas dDbc when we use the standard 

punch (Figures 4(a), 4(c), 4(e), 5(a), 6(a), 6(c), 7(a), 7(c), 7(e), 8(a), 9(a), 9(c), 10(a), 10(c), 10(e), 

11(a), 12(a), 12(c), 13(a), 13(b), 14(a), 14(c), 14(e), 14(g), 15(a), 15(c), 15(e), 15(g), 16(a), 16(c), 

16(e), 16(g), 19) with standard rectangular shape (2θ0 = 90°). 

CFD-derived computational flow lines in Figures 14(a), 14(b), flow functions in Figures 15(a), 

15(b), and full flow velocities in Figures 16(a), 16(b) show significant sharpening and reduction of 

dead zone areas dDbc because of shifting of flow lines to movable inlet die wall ab when inlet die 

wall ab moves parallel to the viscous flow Vab↑↑U0 with velocity Vab = U0, and outlet die wall bc is 

a fixed one with Vbc = 0 during ECAE of viscous continuum through the acute-angled Segal 2θ-dies 

with 2θ < 90°. 

CFD-derived computational flow lines in Figures 14(c), 14(d), flow functions in Figures 15(c), 

15(d), and full flow velocities in Figures 16(c), 16(d) directly show complete vanishing and 

disappearance of dead zone areas dDbc when inlet die wall ab is a fixed one with Vab = 0; and outlet 

die wall bc is a movable one and bc moves parallel to the viscous flow Vbc↑↑U0 with Vbc = U0 during 

ECAE of viscous continuum through the acute-angled Segal 2θ-dies with 2θ < 90°. 

CFD-derived computational flow lines in Figures 14(e), 14(f), flow functions in Figures 15(e), 

15(f), and full flow velocities in Figures 16(e), 16(f) show significant enhancement and broadening 

of dead zone areas dDbc because of shifting of flow lines from movable inlet die wall ab when inlet 

die wall ab moves anti-parallel to the viscous flow Vab↑↓U0 with velocity Vab = U0 , and outlet die 

wall bc is a fixed one with Vbc = 0 during ECAE of viscous continuum through the acute-angled 

Segal 2θ-dies with 2θ < 90°. 

CFD-derived computational flow lines in Figures 14(g), 14(h), flow functions in Figures 15(g), 

15(h), and full flow velocities in Figures 16(g), 16(h) outline formation of macroscopic rotation zone 

with significant mixing of viscous material in vicinity of the external outlet die wall bc when inlet die 

wall ab is a fixed one with Vab = 0; and outlet die wall bc is a movable one and bc moves anti-

parallel to the viscous flow Vbc↑↓U0 with Vbc = U0 during ECAE of viscous continuum through the 

acute-angled Segal 2θ-dies with 2θ < 90°. 
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Figure 4. CFD-derived computational flow lines for the Segal dies with 2θ = 60° (a, b), 

2θ = 75° (c, d), and 2θ = 105° (e, f), derived for the rectangular punch AD–da (2θ0 = 90°) 

(a, c, e) and for the beveled inclined punch AD–da (2θ0 = 2θ) (b, d, f) for Vab = Vbc = 0. 

 

Figure 5. CFD-derived computational flow lines for the Segal dies with 2θ = 75° (a, b), 

derived for the rectangular punch AD–da (2θ0 = 90°) (a) and for the beveled inclined 

punch AD–da (2θ0 = 2θ) (b) at the final stage of ECAE-assisted deformation for Vab = 

Vbc = 0. 
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Figure 6. CFD-derived computational flow lines for the Segal dies with 2θ = 120° (a, b), 

and 2θ = 135° (c, d), derived for the rectangular punch AD–da (2θ0 = 90°) (a, c) and for 

the beveled inclined punch AD–da (2θ0 = 2θ) (b, d) for Vab = Vbc = 0. 

 

Figure 7. CFD-derived computational isolines of flow function ψ for the Segal dies with 

2θ = 60° (a, b), 2θ = 75° (c, d), and 2θ = 105° (e, f), derived for the rectangular punch 

AD–da (2θ0 = 90°) (a, c, e) and for the beveled inclined punch AD–da (2θ0 = 2θ) (b, d, f) 

for Vab = Vbc = 0. 
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Figure 8. CFD-derived computational isolines of flow function ψ for the Segal dies with 

2θ = 75° (a, b), derived for the rectangular punch AD–da (2θ0 = 90°) (a) and for the 

beveled inclined punch AD–da (2θ0 = 2θ) (b) at the final stage of ECAE-assisted 

deformation for Vab = Vbc = 0. 

 

Figure 9. CFD-derived computational isolines of flow function ψ for the Segal dies with 

2θ = 120° (a, b), and 2θ = 135° (c, d), derived for the rectangular punch AD–da (2θ0 = 

90°) (a, c) and for the beveled inclined punch AD–da (2θ0 = 2θ) (b, d) for Vab = Vbc = 0. 
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Figure 10. CFD-derived computational isolines of full flow velocity w for the Segal dies 

with 2θ = 60° (a, b), 2θ = 75° (c, d), and 2θ = 105° (e, f), derived for the rectangular 

punch AD–da (2θ0 = 90°) (a, c, e) and for the beveled inclined punch AD–da (2θ0 = 2θ) 

(b, d, f) for Vab = Vbc = 0. 

 

Figure 11. CFD-derived computational isolines of full flow velocity w for the Segal dies 

with 2θ = 75° (a, b), derived for the rectangular punch AD–da (2θ0 = 90°) (a) and for the 

beveled inclined punch AD–da (2θ0 = 2θ) (b) at the final stage of ECAE-assisted 

deformation for Vab = Vbc = 0. 
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Figure 12. CFD-derived computational isolines of flow velocity w for the Segal dies 

with 2θ = 120° (a, b), and 2θ = 135° (c, d), derived for the rectangular punch AD–da (2θ0 

= 90°) (a, c) and for the beveled inclined punch AD–da (2θ0 = 2θ) (b, d) for Vab = Vbc = 0. 

 

Figure 13. CFD-derived computational isolines of flow function ψ (a) and full flow 

velocity w (b) for the Segal dies with 2θ = 90°, derived for the standard rectangular 

punch AD–da (2θ0 = 90°) (a, b) for Vab = Vbc = 0. 
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Figure 14. CFD-derived computational flow lines for the Segal die with channels’ 

intersection angle 2θ = 75° for the rectangular punch AD–da (2θ0 = 90°) (a, c, e, g) and 

for the beveled inclined punch AD–da (2θ0 = 75°) (b, d, f, h), where I) inlet die wall ab is 

a movable one with Vab = U0; Vab↑↑U0; and outlet die wall bc is a fixed one with Vbc = 0 

(a, b); II) inlet die wall ab is a fixed one with Vab = 0; and outlet die wall bc is a movable 

one with Vbc = U0; Vbc↑↑U0 (c, d); III) inlet die wall ab is a movable one with Vab = U0; 

Vab↑↓U0; and outlet die wall bc is a fixed one with Vbc = 0 (e, f); and IV) inlet die wall 

ab is a fixed one with Vab = 0; and outlet die wall bc is a movable one with Vbc = U0; 

Vbc↑↓U0 (g, h). 
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Figure 15. CFD-derived computational isolines of flow function ψ for the Segal die with 

channels’ intersection angle 2θ = 75° for the rectangular punch AD–da (2θ0 = 90°) (a, c, 

e, g) and for the beveled inclined punch AD–da (2θ0 = 75°) (b, d, f, h), where I) inlet die 

wall ab is a movable one with Vab = U0; Vab↑↑U0; and outlet die wall bc is a fixed one 

with Vbc = 0 (a, b); II) inlet die wall ab is a fixed one with Vab = 0; and outlet die wall bc 

is a movable one with Vbc = U0; Vbc↑↑U0 (c, d); III) inlet die wall ab is a movable one 

with Vab = U0; Vab↑↓U0; and outlet die wall bc is a fixed one with Vbc = 0 (e, f); and IV) 

inlet die wall ab is a fixed one with Vab = 0; and outlet die wall bc is a movable one with 

Vbc = U0; Vbc↑↓U0 (g, h). 
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Figure 16. CFD-derived computational isolines of full flow velocity w for the Segal die 

with channels’ intersection angle 2θ = 75° for the rectangular punch AD–da (2θ0 = 90°) 

(a, c, e, g) and for the beveled inclined punch AD–da (2θ0 = 75°) (b, d, f, h), where I) 

inlet die wall ab is a movable one with Vab = U0; Vab↑↑U0; and outlet die wall bc is a 

fixed one with Vbc = 0 (a, b); II) inlet die wall ab is a fixed one with Vab = 0; and outlet 

die wall bc is a movable one with Vbc = U0; Vbc↑↑U0 (c, d); III) inlet die wall ab is a 

movable one with Vab = U0; Vab↑↓U0; and outlet die wall bc is a fixed one with Vbc = 0 

(e, f); and IV) inlet die wall ab is a fixed one with Vab = 0; and outlet die wall bc is a 

movable one with Vbc = U0; Vbc↑↓U0 (g, h). 
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3.2. Experimental Verification of CFD-derived Results for Dead Zone Geometry 

It is possible to provide experimental verification of CFD-derived results in Figure 17 by 

comparing the dead zone areas through making an additional superposition of the physical 

simulation-based result in Figure 1(a) with CFD-developed flow lines in Figure 4(d). Figure 17 

illustrates the first geometric hypothesis that the symmetrical dead zone of ECAE-worked material is 

the flow-lines-free dead zone DZfl (dbee1b1d1). This first hypothesis is supported by the empirically-

determined location of three almost undeformed markers with nearly circular shapes within the flow-

lines-free dead zone area (dbee1b1d1). 

 

Figure 17. Comparison of experimentally-determined circular gridlines-based dead zone 

and the CFD-derived flow-lines-free dead zone DZfl (dbee1b1d1) in the case of ECAE 

through an acute-angle die with modified shape of 2θ0-inclined or 2θ0-beveled punch, 

where 2θ0 = 2θ = 75° < 90° and Vab = Vbc = 0. 

The relative area  111 dbdbeeA  of dead zone DZfl in Figure 17 can be determined as a ratio of the 

area  111 dbdbeeA  of dead zone (dbee1b1d1) to the area  FbEBA  of the deformation region (FbEB): 

 
 

 FbEB

dbdbee

dbdbee
111

111 A

A
A  .         (30) 

Application of formula (30) to Figure 17 yields that   %303.029.0 
111 dbdbeeA  or 

     FbEBFbEBdbdbee 111
AAA  %303.0 . Therefore the first hypothesis, concerning the coincidence of 

the material dead zone with the flow-lines-free region results in a numerical value 30% for the 

relative area of the dead zone with respect to the area of the deformation region in the channel 
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intersection zone. The result of superposition in Figure 17 shows that the first hypothesis is valid 

because the dead zone (dbee1b1d1) contains 3 visually-observable slightly-deformed almost circular 

markers. Therefore Figure 17 shows a good agreement between the experimental result in Figure 1(a) 

and the theoretical result in Figure 4(d). 

It is also possible to provide experimental verification of the CFD-derived results in Figure 18 

by comparing dead zone areas through making an additional superposition of physical simulation-

based results in Figure 1(a) with CFD-derived dimensionless full flow velocities w in Figure 10(d). 

Figure 18 illustrates the second geometric hypothesis that the nearly symmetrical dead zone of 

ECAE-worked material coincides with the larger dead zone DZ(<w>=0.1) (bd0b0e0f0 with near-zero 

flow velocity <w> = 0.1) or with smaller dead zone DZ(<w>=0.2) (bd1b1e1f1 with small flow velocity 

<w> = 0.2). This second hypothesis is supported by the empirically-determined location of three 

barely deformed markers with nearly circular shapes within the larger dead zone area DZ(<w>=0.2) 

(bd1b1e1f1 with small flow velocity <w> = 0.2) and appearance of one circle marker near to corner b 

within smaller dead zone area DZ(<w>=0.1) (bd0b0e0f0 with near-zero flow velocity <w> = 0.1) in 

Figure 18. 

 

Figure 18. Comparison of experimentally-found circular gridlines-based dead zone and 

the CFD-derived dead zones DZ(<w>=0.1) (bd0b0e0f0 with near-zero flow velocity <w> = 

0.1) and DZ(<w>=0.2) (bd1b1e1f1 with small flow velocity <w> = 0.2) in the case of ECAE 

through an acute-angle die with modified shape of 2θ0-inclined or 2θ0-beveled punch, 

where 2θ0 = 2θ = 75° < 90° and Vab = Vbc = 0. 

The relative area  0000 febbdA  of the smaller dead zone DZ(<w>=0.1) in Figure 18 can be determined 

as a ratio of the area  0000 febbdA  of the smaller dead zone (bd0b0e0f0) to the area  FbEBA  of the 

deformation region (FbEB): 
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 
 

 FbEB

febbd

febbd
0000

0000 A

A
A  .         (31) 

Application of formula (31) to the smaller dead zone DZ(<w>=0.1) in Figure 18 yields that 

  %3.8083.0 
0000 febbdA  or      FbEBFbEBfebbd 0000

AAA  %3.8083.0 . 

The relative area  1111 febbdA  of the larger dead zone DZ(<w>=0.2) in Figure 18 can be determined as 

a ratio of the area  1111 febbdA  of the larger dead zone (bd1b1e1f1) to the area  FbEBA  of the deformation 

region (FbEB): 

 
 

 FbEB

febbd

febbd
A

A
A 1111

1111
 .         (32) 

Application of formula (32) to the larger dead zone DZ(<w>=0.2) in Figure 18 yields that 

  %2121.02084.0
1

febbd 111
A  or      FbEBFbEBfebbd 1111

AAA  %2121.0 . 

Therefore the second hypothesis concerning the coincidence of the material dead zone with the 

flow-velocity-free smaller region DZ(<w>=0.1) or with small flow velocities larger region DZ(<w>=0.2) 

results in the numerical values 8.3% and 21% for the relative areas of smaller and larger dead zones 

with respect to area of deformation region in channel intersection zone. The result of superposition in 

Figure 18 shows that the second hypothesis is also valid because the larger dead zone (bd1b1e1f1) 

contains 3 visually-observable slightly-deformed almost circular markers and the smaller dead zone 

(bd0b0e0f0) contains 1 non-deformed circular marker. Therefore Figure 18 shows a good agreement 

between the experimental result in Figure 1(a) and the theoretical result in Figure 10(d). 

It is possible to provide experimental verification of CFD-derived results in Figure 19 by 

comparing the dead zone areas through making an additional superposition of the physical 

simulation-based result in Figure 1(b) with CFD-developed flow lines in Figure 5(a) at the final stage 

of ECAE-assisted deformation. Figure 19 illustrates the first geometric hypothesis that the non-

symmetrical dead zone of ECAE-worked material is the flow-lines-free dead zone DZfl (dbee1b1d1), 

located in the lower corner b of an acute-angle die with 2θ = 75° < 90° after material deformation 

with classical punch of rectangular shape AD–da with 2θ0 = 90°. This first hypothesis is supported 

by the empirically-determined location of one large almost undeformed dark blue color marker with 

nearly circular shape within the flow-lines-free dead zone area (dbee1b1d1). 

The relative area  111 dbdbeeA  of dead zone DZfl in Figure 19 can be determined with formula (30) 

as a ratio of the area  111 dbdbeeA  of dead zone (dbee1b1d1) to the area  FbEBA  of the deformation region 

(FbEB). Application of formula (30) to Figure 19 yields that   %5.12125.0123.0 
111 dbdbeeA  or 

     FbEBFbEBdbdbee 111
AAA  %5.12125.0 . Therefore the first hypothesis, concerning the coincidence 

of the material dead zone with the flow-lines-free region results in a numerical value 12.5% for the 
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relative area of the dead zone with respect to the area of the deformation region in the channel 

intersection zone. The result of superposition in Figure 19 shows that the first hypothesis is valid 

because the dead zone (dbee1b1d1) partially contains one visually-observable slightly-deformed 

almost circular marker, located near to lower corner b. Therefore Figure 19 shows a good agreement 

between the experimental result in Figure 1(b) and the theoretical result in Figure 5(a). 

 

Figure 19. Comparison of experimentally-determined circular gridlines-based dead zone 

and the CFD-derived flow-lines-free dead zone DZfl (dbee1b1d1) at the final stage of 

ECAE-assisted deformation through an acute-angle die with classical punch of 

rectangular shape AD–da with 2θ0 = 90°, where 2θ = 75° < 90° and Vab = Vbc = 0. 

It is possible to provide experimental verification of CFD-derived results in Figure 20 by 

comparing the dead zone areas through making an additional superposition of the physical 

simulation-based result in Figure 1(c) with CFD-developed flow lines in Figure 5(b) at the final stage 

of ECAE-assisted deformation through an acute-angle die with modified shape of 2θ0-inclined or 

2θ0-beveled punch, where 2θ0 = 2θ = 75° < 90°. Figure 20 illustrates the first geometric hypothesis 

that the non-symmetrical dead zone of ECAE-worked material is the flow-lines-free dead zone DZfl 

(dbee1b1d1), located under the inclined punch. Application of formula (30) to Figure 20 yields that 

  %707.0 
111 dbdbeeA  or      FbEBFbEBdbdbee 111

AAA  %707.0 . Therefore the first hypothesis, 

concerning the coincidence of the material dead zone with the flow-lines-free region results in a 

numerical value 7% for the relative area of the dead zone with respect to the area of the deformation 

region in the channel intersection zone. The result of superposition in Figure 20 shows that the first 

hypothesis is valid because the relative area of dead zone 7% in Figure 20 is smaller than the relative 

area of dead zone 12.5% in Figure 19. Therefore Figure 20 shows a good agreement between the 

experimental result in Figure 1(c) and the theoretical result in Figure 5(b). 
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Figure 20. Comparison of experimentally-determined circular gridlines-based dead zone 

and the CFD-derived flow-lines-free dead zone DZfl (dbee1b1d1) at the final stage of 

ECAE-assisted deformation through an acute-angle die with modified shape of 2θ0-

inclined or 2θ0-beveled punch, where 2θ0 = 2θ = 75° < 90° and Vab = Vbc = 0. 

3.3. Discussion of Derived Results 

The technological problem addressed in this article has direct industrial importance in material 

pressure forming applications. The introduction of the fluid dynamics numerical simulation provides 

us with a better understanding of physical simulation results in Figures 1, 2, 17–20. 

Experimental comparison of physical simulation experiments and CFD-derived numerical 

results was done through a geometric comparison of the dead zone areas in additional Figures 17–20. 

It was found with two hypotheses that the relative area of the material dead zone with respect to 

the area of the deformation zone in the channel intersection region has a value from 8.3% to 21% in 

Figure 18 and a value of 30% in Figure 17. Therefore it is possible to estimate the relative area of the 

material dead zone as the value in the range of 20–26% of the deformation zone area, which is in 

good agreement with the visually-observable location of three almost non-deformed elliptical 

markers in the lower corner of the material deformation zone in Figures 17–18. 

It was found with the first hypothesis that the relative area of the material dead zone with 

respect to the area of the deformation zone in the channel intersection region has a value from 9.6% 

to 12.5% in Figure 19 and a value of 7% in Figure 20. Therefore it is possible to estimate the relative 

area of the material dead zone as the value in the range of 7–12.5% of the deformation zone area, 

which is in good agreement with the visually-observable location of the material deformation zone at 

the final stage of ECAE-assisted deformation in Figures 19–20. 

When we analyze the computational CFD-derived Figures 4–20, we find that in order for a 

viscous material to become a yielding material, it is necessary to apply all-round uniform hydrostatic 

compression until internal yield pressure is reached. Then it is necessary to create a longitudinal 
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pressure gradient for rectilinear forward translatory motion of viscous continuum and a transverse 

pressure gradient in order to change the direction of motion of the viscous material in the curved 

channel intersection zone. The normal component of the pressure force of punch surface front dD 

causes the formation of an all-round uniform hydrostatic compression and a longitudinal pressure 

gradient. The tangential component of the pressure force of the punch surface front dD causes the 

formation of a transverse pressure gradient. 

The novel modified 2θ0-inclined or 2θ0-beveled punch is completely identical to the standard 

classical punch with 2θ0 = 90° for ECAE of viscous continuum through the angular die with channel 

intersection angle 2θ = 90° as is shown in Figure 13. 

CFD simulation in Figures 14–16 allowed to identify the following two technologically 

favorable kinematic cases, shown in Figures 14(a–d), 15(a–d), 16(a–d). 

It was outlined in Figures 14(a), 14(b), 15(a), 15(b), 16(a), 16(b) that it is possible to achieve 

significant sharpening and reduction of dead zone areas dDbc because of shifting of flow lines to 

movable inlet die wall ab when inlet die wall ab moves parallel to the viscous flow Vab↑↑U0 with 

velocity Vab = U0 , and outlet die wall bc is a fixed one with Vbc = 0 during ECAE of viscous 

continuum through the acute-angled Segal 2θ-dies with 2θ < 90°. This is the first kinematically 

sound case for dead zone minimization during polymer ECAE realization. 

It was found in Figures 14(c), 14(d), 15(c), 15(d), 16(c), 16(d) that it is possible to achieve 

complete vanishing and disappearance of dead zone areas dDbc when inlet die wall ab is a fixed one 

with Vab = 0; and outlet die wall bc is a movable one and bc moves parallel to the viscous flow 

Vbc↑↑U0 with Vbc = U0 during ECAE of viscous continuum through the acute-angled Segal 2θ-dies 

with 2θ < 90°. This is the second recommended case for dead zone reduction. 

The most intensive case for generation of enhanced and large rotational modes of severe plastic 

deformation during ECAE corresponds to Figures 14(g), 14(h), 15(g), 15(h), 16(g), 16(h) and 

outlines formation of macroscopic rotation zone with significant mixing of viscous material in 

vicinity of the external outlet die wall bc when inlet die wall ab is a fixed one with Vab = 0; and 

outlet die wall bc is a movable one and bc moves anti-parallel to the viscous flow Vbc↑↓U0 with Vbc 

= U0 during ECAE of viscous continuum through the acute-angled Segal 2θ-dies with 2θ < 90°. This 

is the most severe kinematical case with no dead zone formation, suited for highly intensive pressure 

forming of non-brittle polymer workpieces. 

Technologically saying, the worst ECAE case with formation of largest dead zone is shown in 

Figures 14(e), 14(f), 15(e), 15(f), 16(e), 16(f). This kinematical case produces significant 

enhancement and broadening of dead zone areas dDbc because of shifting of flow lines from 

movable inlet die wall ab when inlet die wall ab moves anti-parallel to the viscous flow Vab↑↓U0 

with velocity Vab = U0 , and outlet die wall bc is a fixed one with Vbc = 0 during ECAE of viscous 

continuum through the acute-angled Segal 2θ-dies with 2θ < 90°. This kinematical case of ECAE 

pressure forming is surely not recommended on dead zone growth. 

4. Conclusions 

In the present work we addressed the technological problem of the kinematic effects of punch 

shape geometry and movable inlet and outlet die wall motion on material flow dynamics during 

ECAE through the numerical solution of the boundary value problem ((1)–(29) & Table 1) for 

Navier-Stokes equations in curl transfer form (Figures 4–20), taking into account the independent 



1273 

AIMS Materials Science                                                   Volume 4, Issue 6, 1240-1275. 

alternating transport motion of the inlet and outlet die walls as well as the standard rectangular and 

improved 2θ0-inclined or 2θ0-beveled punch shapes. 

CFD-derived flow lines (Figure 14) show significant reduction of dead zone areas when the 

inlet die wall is fixed and the outlet die wall is movable and moves parallel to the viscous flow 

during ECAE of viscous continuum through the acute-angled Segal 2θ-dies with 2θ < 90°.  

Computational flow lines (Figure 14) outline the formation of a macroscopic rotation zone with 

significant mixing of viscous material in the vicinity of the external outlet die wall with minimization 

of dead zone area when the inlet die wall is fixed and the outlet die wall is movable and it moves 

anti-parallel to the viscous flow. 

CFD-derived flow lines (Figure 14) show significant sharpening and reduction of dead zone 

areas because of shifting of flow lines to the movable inlet die wall when the inlet die wall moves 

parallel to the viscous flow and the outlet die wall is fixed. 

CFD-derived flow lines (Figure 14) show significant enhancement and broadening of dead zone 

areas because of shifting of flow lines from the movable inlet die wall when the inlet die wall moves 

anti-parallel to the viscous flow and the outlet die wall is fixed one. 

Both physical (Figures 1(b), 19) and CFD (Figures Figures 4(a), 4(c), 4(e), 5(a), 6(a), 6(c), 7(a), 

7(c), 7(e), 8(a), 9(a), 9(c), 10(a), 10(c), 10(e), 11(a), 12(a), 12(c), 14(a), 14(c), 14(e), 14(g), 15(a), 

15(c), 15(e), 15(g), 16(a), 16(c), 16(e), 16(g), 19) simulations show that the application of a standard 

rectangular punch with 2θ0 = 90° for workpiece ECAE through acute-angled Segal 2θ-dies with 2θ < 

90° and obtuse-angled Segal 2θ-dies with 2θ > 90° is highly undesirable because of the resulting 

large material dead zone areas dDb in the neighborhood of the external die angle 2θ =  (abc). 

Both physical (Figures 1(a), 1(c), 2, 17, 18, 20) and CFD (Figures 4(b), 4(d), 4(f), 5(b), 6(b), 

6(d), 7(b), 7(d), 7(f), 8(b), 9(b), 9(d), 10(b), 10(d), 10(f), 11(b), 12(b), 12(d), 14(b), 14(d), 14(f), 

14(h), 15(b), 15(d), 15(f), 15(h), 16(b), 16(d), 16(f), 16(h), 17, 18, 20) simulations reveal that the 

introduction of 2θ0-inclined or 2θ0-beveled punch shapes with 2θ0 = 2θ and dD||bc for material 

ECAE processing through the acute-angled Segal 2θ-dies with 2θ < 90°, and obtuse-angled Segal 2θ-

dies with 2θ > 90° is a very promising technique because of minimal material dead zone areas dDb 

and the resulting minimal material waste in the neighborhood of external die angle 2θ =  (abc), e.g., 

for 2θ = 75° (Figures 1, 2, 4(c), 4(d), 5, 7(c), 7(d), 8, 10(c), 10(d), 11, 14–20). 

The proposed CFD-based simulation of viscous material SPD during ECAE in Figures 4–20 

will find further applications in the study of viscous ECAE through dies with more complex 

Iwahashi, Luis-Perez, Utyashev, Conform and equal radii geometries with movable inlet and outlet 

die walls for the different punch shape 2θ0-geometries and different routes of multi-pass ECAE 

polymer working by pressure. 
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