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Abstract: In this study, we derive and analyze the analytical expressions for stress components of 

the dislocation elastic field induced by a near-surface basal screw dislocation in a semi-infinite 

elastically anisotropic material with hexagonal crystal lattice. The variation of above stress 

components depending on “free surface–dislocation” distance (i.e., free surface effect) is studied by 

means of plotting the stress distribution maps for elastically anisotropic crystals of GaN and TiB2 that 

exhibit different degrees of elastic anisotropy. The dependence both of the image force on a screw 

dislocation and the force of interaction between two neighboring basal screw dislocations on the 

“free surface–dislocation” distance is analyzed as well. The influence of elastic anisotropy on the 

latter force is numerically analyzed for GaN and TiB2 and also for crystals of such highly 

elastically-anisotropic materials as Ti, Zn, Cd, and graphite.  

The comparatively stronger effect of the elastic anisotropy on dislocation-induced stress 

distribution quantified for TiB2 is attributed to the higher degree of elastic anisotropy of this 

compound in comparison to that of the GaN. For GaN and TiB2, the dislocation stress distribution 

maps are highly influenced by the free surface effect at “free surface–dislocation” distances roughly 

smaller than ≈15 and ≈50 nm, respectively. It is found that, for above indicated materials, the relative 

decrease of the force of interaction between near-surface screw dislocations due to free surface effect 

is in the order Ti > GaN > TiB2 > Zn > Cd > Graphite that results from increase of the specific shear 

anisotropy parameter in the reverse order Ti < GaN < TiB2 < Zn < Cd < Graphite. The results 

obtained in this study are also applicable to the case when a screw dislocation is situated in the “thin 

film–substrate” system at a (0001) basal interface between the film and substrate provided that the 

elastic constants of the film and substrate are the same or sufficiently close to each other.   
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effect; gallium nitride; titanium diboride; graphite 

 

1. Introduction  

The dislocation strain/stress field substantially affects mechanical, optical, electrical, and other 

physical properties of bulk materials and their thin films [1,2,3]. Therefore, the theoretical 

investigations of the dislocation stress field are of practical importance and enable to quantify the 

influence of dislocations on structure-property relationships. The character of the stress distribution 

produced by an individual dislocation in a crystalline material strongly depends on the type of 

dislocation (screw, edge or mixed), elastic properties of the material (elastic constants), and relative 

location of the dislocation with respect to free surface(s) [1]. Regardless of the type of dislocation 

and elastic properties of the material, the dislocation elastic field drastically changes with approach 

of the dislocation position to a free surface [1,4]. This necessitates, in the calculations of the stress 

field of a near-surface dislocation, a proper account of the interaction of dislocation with the free 

surface.  

The influence of a free surface on the dislocation elastic field and the Peierls stress have been 

analyzed within the frameworks of the theory of isotropic elasticity in a large number of publications: 

particularly in studies [1,4–8] and other investigations.  

For materials with pronounced elastic anisotropy, the elastic anisotropy was taken into account 

in theoretical studies of the dislocation stress field and other elastic characteristics for dislocation 

location in an infinite medium [9–14], close to interfacial surface in bicrystals [15–19], and at 

near-surface positions [10,18,19,20]. The elastic field for near-surface dislocation positions was 

theoretically studied for different types of the crystal lattice: cubic, trigonal, hexagonal, and other 

types [1,10,11,12,14,15,17–21]. 

However, the review of the results reported in above cited references and other similar studies in 

literature show that, for hexagonal crystals with considerable elasticity anisotropy, the theoretical 

investigations of the stress field produced by near-surface individual basal dislocations have received 

a little attention. A broad variety of elastically anisotropic compounds with hexagonal crystal lattice 

(BN, AlN, GaN, InN, SiC, TiB2, graphite, etc.) has extensive applications in production of optical, 

semiconductor, microelectronic, and other type devices [2,22,23]. Production of these devices is 

mostly accompanied by formation of unavoidable dislocations that are located at hetero-interfaces 

(misfit dislocations) and/or in the vicinity of a free surface (near-surface dislocations). It is of 

particular interest to study the peculiarities of the stress field of near-surface basal dislocations in the 

case when the free surface by itself is a (0001) basal plane. In the technologies of heteroepitaxial 

deposition of semiconductor thin films with hexagonal crystal lattice, a frequently used deposition 

surface both for epitaxial films and substrates is the (0001) basal surface [2,22,24]. Especially for 

materials with pronounced elastic anisotropy, the above specified investigations will be helpful for 

precise quantification of the dislocation energy and interaction of the dislocation with neighboring 

near-surface defects (other individual dislocations, dislocation arrays, and point defects) and the 

(0001) free surface. It is also of interest to quantify and compare the effect of the elastic anisotropy 

on dislocation stress field for materials with hexagonal crystal lattice exhibiting different degrees of 

elastic anisotropy. In above comparative analysis, it may be helpful to use the so-called elasticity 

anisotropy parameters that are in detail analyzed in studies [25,26,27] and quantified for group 
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III-nitrides in our earlier work [28].  

In this study, on the basis of the Chou’s theoretical results [11,12], we derive and analyze the 

analytical expressions for stress components of the dislocation elastic field induced by a near-surface 

basal screw dislocation in a semi-infinite elastically anisotropic material with hexagonal crystal 

lattice. The variation of above stress components depending on “free surface–dislocation” distance 

(i.e., free surface effect) is studied by means of plotting the stress distribution maps for elastically 

anisotropic crystals of GaN (gallium nitride) and TiB2 (titanium diboride) that exhibit different 

degrees of elastic anisotropy. The dependence both of the image force on a screw dislocation and the 

force of interaction between two neighboring basal screw dislocations on the “free 

surface–dislocation” distance is analyzed as well. The influence of elastic anisotropy on the latter 

force is numerically analyzed for GaN and TiB2 and also for crystals of such highly 

elastically-anisotropic materials as Ti, Zn, Cd, and graphite.  

2. Statement of the Problem 

Our theoretical study is restricted to the following conditions: 

(i) a basal-plane perfect screw dislocation is situated near a free surface of an elastically 

anisotropic bulk single crystal with hexagonal crystal lattice,  

(ii) the dislocation line that is directed along the  0211  crystallographic direction is parallel 

to the free surface, which coincides with a (0001) basal plane, 

(iii) in terms of dislocation near-surface position (or extension of the dislocation elastic field), 

the crystal is considered as a semi-infinite medium.  

The main aim of this study is presented at the end of Section 1. It should be clarified that, 

among the materials of interest in this study, the GaN may crystallize both in the zinc blende and 

wurtzite crystal structure with cubic and hexagonal crystal lattice, respectively [29], so for GaN the 

present study relates to the latter type of the crystal lattice.  

3. Stress Components of a Near-surface Screw Dislocation 

According to Section 2, Figure 1 schematically shows a basal-plane perfect screw dislocation 

(solid circle) in a semi-infinite single crystal, with dislocation line situated at a distance h from the 

free (0001) surface. The dislocation line that coincides with  0211  direction is perpendicular to 

the plane of figure. We introduce a right-handed Cartesian coordinate system xyz with the z axis 

directed along the dislocation line and y axis oriented normal to the free surface (this means that the z 

and y axes are parallel to  0211  and [0001] crystallographic directions, respectively). The 

Burgers vector of this dislocation,  02113/a , is directed along the z axis (a is the lattice constant 

in the basal plane). The magnitude of the Burgers vector sb  is equal to above specified lattice 

constant, abs   [1]. It is assumed that the dislocation is also right-handed. In elastically anisotropic 

infinite medium with hexagonal crystal lattice, the non-zero stress components of the elastic field 

induced by above specified basal screw dislocation are given as [11,12]:   

                        
22

(inf)

2 yx

ybK ss
zx









 ,                            (1) 
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where 

                        2/1
441211 ])(5.0[ cccK s  ,                           (3) 

                           
44

1211 )(5.0

c

cc 
 .                               (4) 

In Eqs. (1)–(4), sb  is the magnitude of the Burgers vector, sK  is the dislocation energy factor, 

and ijc  are the elastic stiffness constants of the crystal. Note that both stress components given by 

Eqs. (1) and (2) are of shear type. According to a known approach [1], in order to take into account 

the influence of the free surface on above stress components, it is necessary to introduce an image 

screw dislocation, with the opposite Burgers vector, at the same distance h from the free surface (in 

Figure 1, the image dislocation is shown by an empty circle). In the defined coordinate system xyz 

(see Figure 1), the dislocation lines of the real and image dislocations are situated at positions 

)0,0(  yx  and )2,0( hyx  , respectively. By a replacement )2( hyy   in Eqs. (1) and (2) 

and changing the signs of both stress components into opposite ones, we obtain the stress 

components of the image dislocation in infinite medium:   

                          
22

)(

)2(

)2(

2 hyx

hybK ssim
zx











 ,                       (5) 
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



 .                      (6) 

Finally, the shear stress components of a real screw dislocation at a distance h from the free 

surface, zx  and zy , are determined as a superposition of the corresponding stress components 

given by Eqs. (1), (2), (5), and (6): 
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where parameters sK  and   given by Eqs. (3) and (4) take into account the elasticity anisotropy 

of the crystal. From Eq. (8), it follows that the necessary boundary condition 0)(  hyzy  at the 

free surface is fulfilled.  

Owing to replacements GKs   and 1  [11,12], Eqs. (7) and (8) reduce to known 

expressions for dislocation stress components in the case of an elastically isotropic medium [1]:  
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where G  is the isotropic shear modulus.  

Eqs. (1), (2), and (5)−(10) are applicable in the spatial region out of the dislocation core. In the 

first approximation, the radius of the dislocation core is estimated to be sb  [1]. 

 

Figure 1. Positions of a near-surface basal screw dislocation (solid circle) and image 

dislocation (empty circle) with respect to the free surface of a semi-infinite crystal. The 

real and image dislocations are situated at positions )0,0(  yx  and )2,0( hyx  , 

respectively. Both the free surface and the dislocation slip plane are (0001) basal planes. 

4. Quantification of the Effect of Elastic Anisotropy on Dislocation Stress Field 

In order to quantify solely the effect of elastic anisotropy on dislocation stress field, we consider 

the dislocation stress distribution in an infinite medium, since in this case the stress distribution is not 

influenced by a free surface. We numerically compare for zx  component the spatial stress 

distribution with account of elastic anisotropy [Eq. (1) in combination with Eqs. (3) and (4)] with 

that in the approximation of elastic isotropy. In the approximation of elastic isotropy, the zx  stress 

component is achieved from Eq. (1) owing to above specified replacements GKs   and 1 :  

                              
222 yx

ybG s
zx





  .                            (11) 

In Eq. (11), as in Eqs. (9) and (10), G  is the isotropic shear modulus. The above comparative 

analysis is conducted for two materials, GaN and TiB2, that exhibit mutually different degrees of 

elastic anisotropy (see Section 8). For a basal screw dislocation in an infinitely large GaN crystal, 

Figure 2a shows the plots for dependences )(xzx  according to Eqs. (1) and (11) in the case of 
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application of anisotropic and isotropic elasticity theory, respectively. The above )(xzx  

dependences are presented for (x,y) points that lie on the lines ,3.0,15.0 xyxy   and xy   in the 

range of 1002  xbs Å [note that the above lines cross the dislocation position )0,0(  yx ]. 

Analogously with the case of GaN, Figure 2b shows for an infinitely large TiB2 crystal the plots of 

dependences )(xzx  in the range of 1002  xbs Å according to Eqs. (1) and (11) along the radial 

directions ,,3.0 xyxy  and xy 5 . In the plots presented in Figure 2, for the sake of convenience 

the sign minus in Eqs. (1) and (11) was omitted and the following parametric data have been used: 

for GaN and TiB2, 19.3 abs Å [29] and 03.3 abs Å [30], respectively, and the data for 

stiffness constants ijc  [31,32] and shear modulus G  from Table 1 and Table 2, respectively. It 

should be detailed that the isotropic shear modulus G  in Eq. (11) we defined as the 

Voigt-Reuss-Hill shear modulus, VRHG , that is achieved from expression [33] 

                            
2

VR
VRH

GG
GG


 ,                            (12) 

where RG  and VG  are the isotropic lower and upper limits of the shear modulus resultant from 

the Reuss and Voigt averaging schemes, respectively. Along with the data for modulus G , Table 2 

also lists the calculated data for moduli RG  and VG  that are achieved with the use of ijc  

stiffness constants presented in Table 1. For the sake of brevity, we omit here the details of these 

calculations that may be found particularly in study [34]. The data for the dislocation energy factor 

sK  and parameter  , calculated according to Eqs. (3) and (4) with the use of ijc  values from 

Table 1, are presented in Table 2 as well. 

  

Figure 2. (a) Dependences )(xzx  for a basal screw dislocation in an infinitely large 

GaN crystal along the radial directions ,3.0,15.0 xyxy   and xy  . (b) Dependences 

)(xzx  for a basal screw dislocation in an infinitely large TiB2 crystal along the radial 

directions ,,3.0 xyxy   and xy 5 . In (a) and (b), solid lines are the plots within 

anisotropic elasticity theory according to Eq. (1), dashed lines are the plots in the 

approximation of isotropic elasticity theory according to Eq. (11). 
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Table 1. Elastic stiffness constants in GPa units. 

Material c11 c12 c44 c13 c33 Ref. 

GaN 390 145 105 106 398 [31] 

TiB2 660 48 260 93 432 [32] 

Table 2. Energy factor sK  (Eq. (3)), isotropic shear moduli RG , VG , and G  (Eq. 

(12)), shear anisotropy parameter A (Eq. (17)), and parameter   (Eq. (4)).  

Material sK  (GPa) RG  (GPa) VG  (GPa) G  (GPa) A  (%)   

GaN 113 119 121 120 0.83 1.17 

TiB2 282 258 266 262 1.53 1.18 

5. Effect of the “Free Surface–Dislocation” Distance on Dislocation Stress Field 

5.1. Effect on zx  Stress Component 

The plots presented in Figure 2 show that, in the whole, the account of the elastic anisotropy 

both for GaN and TiB2 crystals results in a non-negligible contribution into the dislocation stress 

distribution quantified in the approximation of isotropic elasticity. The above contribution is 

appreciable along the lines xy 15.0  and xy 3.0  for GaN (Figure 2a) and is considerable along 

the lines xy 3.0  and xy   for TiB2 (Figure 2b). Therefore, it is more realistic to analyze/quantify 

the effect of the “free surface–dislocation” distance on dislocation stress field within the scope of the 

anisotropic elasticity theory. 

For the case of a basal screw dislocation situated at a distance h from the free surface of a GaN 

crystal (Figure 1), Figures 3a–d show the contours of equal stress (i.e., maps of the stress spatial 

distribution) for dislocation zx  stress component at different values of h = , 150, 80, and 40 Å. 

These contours are plotted according to Eq. (7) combined with Eqs. (3) and (4). Note that, in the 

limit case of h =  corresponding to Figure 3a (the dislocation is situated in infinite crystal), Eq. (7) 

transforms to Eq. (1). In order to trace the degree of influence of the distance h on above stress maps, 

it was sufficient, in all plots in Figures 3a–d, to be restricted with zx  values/contours −1, −1.5, and 

−4 GPa in the spatial range of 0y  and with zx  values/contours 1, 1.5, and 4 GPa in the spatial 

range of 0y . Similarly to the previous case, for the case of location of a basal screw dislocation in 

a semi-infinite crystal of TiB2, Figures 3e–h show the zx  stress maps for the same stress values (as 

in the case with GaN crystal) at different locations of the dislocation from the free surface h = , 500, 

200, and 100 Å. At h = , the stress map is plotted according to Eq. (1) and, at h = 500, 200, and  

100 Å, the stress maps are plotted according to Eq. (7). In all stress maps presented in Figure 3, the 

solid circle centered at position )0,0(  yx  schematically shows the region occupied by the 

dislocation core. In the plotting of these stress maps, we used the values of the Burgers vector 

specified in Section 4 and the data for ijc  stiffness constants listed in Table 1.  
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5.2. Effect on zy  Stress Component 

For the case of a dislocation situated at a distance h from the free surface of a GaN crystal, 

Figures 4a–c show the contours of equal stress for dislocation zy  stress component at different 

values of h = , 20, and 10 Å. These contours are plotted according to Eq. (8) combined with Eqs. (3) 

and (4). Note that, in the limit case of h =  corresponding to Figure 4a (dislocation is situated in 

infinite crystal), Eq. (8) transforms to Eq. (2). In order to trace the degree of influence of the distance 

h on above stress maps, it was sufficient, in all plots in Figures 4a–c, to be restricted with zy  

values/contours 1.5, 3, and 7 GPa in the spatial range of 0x  and with zy  values/contours −1.5, 

−3, and −7 GPa in the spatial range of 0x . Similarly to the previous case, for the case of location 

of a basal screw dislocation in a TiB2 crystal, Figures 4d–f show the zy  stress maps for the same 

stress values (as in the case with GaN crystal) at different locations of the dislocation from the free 

surface h = , 40, and 20 Å. At h = , the stress map is plotted according to Eq. (2) and, at h = 40 

and 20 Å, the stress maps are plotted according to Eq. (8). In all stress maps presented in Figure 4, 

the solid circle centered at position )0,0(  yx  schematically shows the region occupied by the 

dislocation core. In the plotting of these stress maps, we used the values of the Burgers vector 

specified in Section 4 and the data for ijc  stiffness constants listed in Table 1.  

6. Interaction of Dislocation with Free Surface 

In the case under consideration (Figure 1), the interaction force of a real dislocation with the 

free surface is quantified via the interaction force exerted by the image dislocation on the real 

dislocation [1]. In our case, the absolute value of this force (per unit length of the dislocation line) is 

determined with use of Eq. (5) as follows: 

                        
h

bK
yxbF ssim

zxs
1

4
)0,0(

2
)(


  ,                    (13) 

where )0,0()(  yxim
zx  is the stress produced by image dislocation at position occupied by the 

real dislocation, )0,0(  yx  (see Figure 1). Not that, according to Eq. (6), at position of the real 

dislocation )0,0(  yx  the 
)(im

zy  stress component of the image dislocation is zero and, hence, 

no force component is produced by this stress component on real dislocation. As the force between 

unlike screw dislocations (i.e., between the real and image dislocations) is attractive, this means that 

the force F (Eq. (13)) is directed along the positive direction of the y axis (see Figure 1). From the 

physical standpoint, this is equivalent to a statement that the free surface attracts the near-surface 

dislocation. Figure 5 shows the plots for dependence )(hF  according to Eq. (13) for the cases when 

a near-surface screw dislocation is situated in semi-infinite crystals of GaN and TiB2.  
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Figure 3. In GaN crystal, contours of equal stress for zx  stress component at different 

values of h =  (a), 150 Å (b), 80 Å (c), and 40 Å (d). In TiB2 crystal, contours of equal 

stress for zx  stress component at different values of h =  (e), 500 Å (f), 200 Å (g), 

and 100 Å (h). In (a)–(h), the contours zx  = −1, −1.5, and −4 GPa are in the range of 

0y  and the contours zx  = 1, 1.5, and 4 GPa are in the range of 0y . 
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Figure 4. In GaN crystal, contours of equal stress for zy  stress component at different 

values of h =  (a), 20 Å (b), and 10 Å (c). In TiB2 crystal, contours of equal stress for 

zy  stress component at different values of h =  (d), 40 Å  (e), and 20 Å (f). In (a)–(f), the 

contours zx  = 1.5, 3, and 7 GPa are in the spatial range of 0x  and the contours  

zx  = −1.5, −3, and −7 GPa are in the spatial range of .0x  
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Figure 5. The dependence )(hF  according to Eq. (13) for the cases when a near-surface 

screw dislocation is situated in semi-infinite crystals of GaN and TiB2. 

7. Interaction of Two Neighboring Basal Screw Dislocations 

In terms of dislocation slip in the (0001) basal plane, it is of particular interest interaction of two 

near-surface screw dislocations with parallel dislocations lines situated in the same basal plane. 

Figure 6a schematically shows these two dislocations and it is assumed that they have the same 

Burgers vector. In this case, the interaction force F exerted parallel to basal plane on each of these 

dislocations is repelling. This force may be determined with the use of Eq. (8) as the force exerted by 

the dislocation at position )0,0(  yx on the unit length of dislocation with position 

)0,(  ydx (see Figure 6a): 
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where d is the distance between dislocation lines. Figures 6b and 6c show the plots of the 

dependence F(d) given by Eq. (14) at different values of parameter h for location of dislocations in 

TiB2 and GaN crystals, respectively. It is helpful to represent Eq. (14) in the following equivalent 

form: 

                                 f
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where 
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The parameter fS  expressed through Eq. (16) is dependent on “free surface–dislocation” 

distance h and quantifies the effect/influence of free surface on interaction force. The following 
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obvious motivation allows to define the parameter fS  as the force-suppressing factor. According to 

Eq. (16), at a limited fixed interdislocation distance d, parameter fS  varies in the range 

10  fS  with the lower and upper limits 0 and 1 that are achieved at limiting cases h  

(dislocations are positioned in an infinitely large crystal) and 0h  (position of dislocations tends 

to free surface), respectively. Accordingly, at above limits h  (i.e., at 0fS ) and 0h  

(i.e., at 1fS ), Eq. (15) results in upper and lower limits for the interaction force 

)2/(2 dbKF ss   (no force suppression in infinitely large crystal) and 0F  (force is 

gradually suppressed with approach of dislocations to free surface), respectively. The above 

discussed trends associated with the suppression of the dislocation interaction force by a free surface 

are well reflected by the plots presented in Figures 6b and 6c. The degree of influence of parameter 

  on parameters fS  and F  [Eqs. (15) and (16)] is discussed in the next Section 8.  

 

Figure 6. (a) Positions of two near-surface basal screw dislocations (solid circles) with 

respect to the free surface of a semi-infinite crystal. The dependences of the dislocation 

interaction force F on the distance d between dislocation lines (Eq. (14)) at different 

positions of dislocations from the free surface h = , 40, and 20 Å for crystals of TiB2 (b) 

and GaN (c).  

8. Discussion 

For analysis of the influence of elastic anisotropy on distribution of the dislocation stress field, 
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it is helpful for materials considered in this study to quantify the so-called elastic anisotropy 

parameter. There should be distinguished two types of elastic anisotropy for a material: compressive 

and shear anisotropy. The compressive anisotropy is associated with compressive deformation and 

quantifies the difference in the compressibility of the material in different crystallographic directions. 

The shear anisotropy is defined in analogous way but in terms of the shear deformation. Since this 

study deals with the screw type dislocation (both non-zero stress components of the dislocation stress 

field are of shear type), there is a sense to quantify for materials of interest, GaN and TiB2, only the 

shear anisotropy parameter. The shear anisotropy parameter (expressed in per cent units) quantifies 

the degree of elastic anisotropy possessed by a crystal and is defined by the expression [25]  

                             %100
RV

RV

GG

GG
A




 ,                           (17) 

where RG  and VG  are the isotropic shear moduli defined in Eq. (12). For GaN and TiB2, the 

values of parameter A calculated according to Eq. (17) are presented in Table 2 and show that the 

degree of elastic anisotropy of a TiB2 single crystal, %53.1A , is about twice higher than that of a 

GaN single crystal, %83.0A . It is worth noting that in the case of an elastically isotropic material 

VR GG  , and Eq. (17) results in %0A  (i.e., no anisotropy in the elastic properties of the 

material at least in terms of the shear modulus). In the case of GaN, the numerical analysis of the 

plots presented in Figure 2a shows that, in comparison to the approximation of isotropic elasticity 

(Eq. (11)), the account of the elastic anisotropy (Eq. (1)) results in increase of the dislocation 

),( yxzx  stress component over ),( yx  points of the dislocation stress field in average by %13 . 

In the case of TiB2 (Figure 2b), this increase in the zx  stress component is in average on the level 

of %22 . The stronger effect of the elasticity anisotropy on dislocation-induced stress distribution 

in TiB2 may be attributed to larger elastic anisotropy parameter of this compound, %53.1A , in 

comparison to that of the GaN, %83.0A .  

As it follows from mathematical features of the stress distributions given by Eqs. (1) and (2) for 

a dislocation situated in an infinitely large crystal, both zx  and zy  stress contours should be 

symmetric in the shape with respect to both x and y coordinate axes (see Figures 3a and 4a for GaN 

and Figures 3e and 4d for TiB2). At a finite distance h of a dislocation from the free surface, these 

contours preserve the spatial symmetry only with respect to the y axis (see Figures 3b–d and Figures 

4b and 4c for GaN and Figures 3f–h and Figures 4e and 4f for TiB2). Figures 3b–d (for the case of 

GaN) and Figures 3f–h (for the case of TiB2) show that with approach of the dislocation position to 

the free surface (i.e., with decrease of the distance h) the zx  stress distribution in the dislocation 

elastic field drastically changes in the following way: 

1) in the spatial range of hy 0 , all contours expand in size; the lower stress contours split 

one after one into two separate parts with termination at the free surface [particularly, Figure 3d 

shows that at h = 40 Å the lowest (−1 GPa) and intermediate (−1.5 GPa) stress contours are split with 

termination at the free surface],  

2) at the same time, in the spatial range of 0y , all stress contours shrink towards the 

dislocation line/core position with no splitting.  

Figures 4b and 4c (for the case of GaN) and Figures 4e and 4f (for the case of TiB2) show that 

with approach of the dislocation position to a free surface (i.e., with decrease of the distance h) all 

zy  stress contours shrink towards the dislocation core position with no splitting. In comparison to 
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the case with a GaN crystal, in the case of a TiB2 crystal both zx  and zy  stress contours are 

extended over wider spatial regions (see the stress maps in Figures 3 and 4) as a result of a 

comparatively larger value in the energy factor sK  in Eqs. (7) and (8) (see the data for sK  in 

Table 2).  

The plots according to Eq. (13) (Figure 5) show that with approach of the dislocation to the free 

surface the image force (i.e., the force of interaction of dislocation with the free surface) 

monotonically increases. As it follows from Eq. (13), this force is larger in the case of a TiB2 crystal 

compared to the case of a GaN crystal owing to a comparatively larger energy factor sK  in the 

former case.  

The plots according to Eq. (14) (Figures 6b and 6c) show that with approach of a pair of 

dislocations to the free surface ( 0h ) the interaction force of dislocations, F, strongly decreases at 

all distances between dislocations, d. According to Eqs. (8) and (14), the above trend results from the 

following limit in the dependence )(hzy  (Eq. (8)): 0zy  when 0h . The plots presented 

in Figures 6b and 6c are interesting from the physical standpoint: at near-surface positions of 

dislocations, the force of interaction between dislocations experiences the “screening” effect of the 

free surface, i.e., the free surface partially suppresses this force. This force-suppressing effect is 

quantified by parameter fS  [see Eqs. (14)–(16)] discussed in Section 7. According to Eq. (16), the 

force-suppressing parameter fS , except the geometrical parameters d and h, depends also on 

parameter  . It should be noted that the parameter   given by Eq. (4) is connected to the 

well-known Zener’s shear anisotropy parameter, ZA , via the relationship [25,27] 

                                 
b

p
Z

G

G
A  1 ,                               (18) 

where, )(5.0 1211 ccG p  , 44cGb  . 

In Eq. (18) (or equivalently in Eq. (4)), pG  and bG  are understood as the prism plane and 

basal plane shear moduli, respectively. From Eq. (18), it follows that parameter   is also valid for 

quantification of the shear anisotropy. However, it should be clarified that parameter ZA  (or 

parameter  ) is sufficient only for characterization of the degree of shear anisotropy in cubic crystal 

lattice. For characterization of the overall shear anisotropy in hexagonal crystal lattice, it is 

recommended [25] to use the parameter A (Eq. (17)), which takes into account the 

difference/anisotropy in the shear modulus on all possible crystallographic planes. Meanwhile, for 

hexagonal crystal lattice, the parameter   characterizes the shear anisotropy only in terms of the 

shear moduli pG  and bG  defined in Eq. (18). In terms of the shear anisotropy parameter  , (i) 

for an elastically isotropic material bp GG   and Eq. (18) results in 1  and (ii) for an 

elastically anisotropic material with bp GG   or bp GG  , Eq. (18) results in 1  or 1 , 

respectively. According to data in Table 2, the values of parameter   for GaN and TiB2 are very 

close: 17.1  and 1.18, respectively. This means that, for these materials, the force-suppressing 

parameter fS  (Eq. (16)) is influenced by   practically in the same degree. However, it is of 

interest to include into analysis of the dependence )(fS  given by Eq. (16) also materials with the 

considerably higher shear anisotropy parameter   than those of the GaN and TiB2. Four such a type 
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materials with hexagonal crystal lattice, Ti, Zn, Cd, and graphite, are listed in Table 3 along with 

their stiffness constants and parameter   calculated by Eq. (18). Note that, in terms of the 

anisotropy parameter  , the graphite by of about two orders of magnitude is more anisotropic than 

both the GaN and TiB2 with 2.1 . For quantitative analysis, Figure 7 presents the plot of the 

dependence )(fS  (Eq. (16)) for a particular case when hd   (this plot does not considerably 

change for hd   or hd   provided that the distances d and h are comparable). In this plot, the 

solid dots on the curve )(fS  relate to GaN, TiB2, and materials listed in Table 3. Parameter   

increases for these materials in the order Ti < GaN < TiB2 < Zn < Cd < Graphite (see Tables 2 and 3) 

and this results in decrease of the force-suppressing parameter fS  in the reverse order Ti > GaN > 

TiB2 > Zn > Cd > Graphite (Figure 7). The plot in Figure 7 shows that parameter fS  varies in a 

broad range, from 003.0  (for graphite) up to 0.25 (for Ti), and thereby demonstrates the 

importance of the account of elasticity anisotropy in the quantitative analysis of the interdislocation 

interaction forces. As an important conclusion, it should be noted that, in the case of graphite, 

parameter fS  is very small ( 003.0 ) and, according to Eq. (15), this results in a negligibly small 

effect of the free surface on the force of interaction between near-surface screw dislocations, F. This 

effect is somewhat enhanced (i.e., parameter fS  somewhat increases) under condition hd   

(see Eq. (16)). However, at large interdislocation distances d, the force F by itself drastically 

decreases (see Eq. (15)). From the physical standpoint, in graphite a very small effect of the (0001) 

free surface on the force of interaction between near-surface basal screw dislocations results from a 

weak bonding between crystallographic (0001) basal planes. Some important peculiarities of the 

dislocation-induced stress distribution in above considered highly anisotropic materials, Ti, Zn, Cd, 

and graphite, will be analyzed in our next study. 

It is important to mention that, in the plots of stress maps of a near-surface screw dislocation, a 

very good agreement was achieved in the isotropic approximation between the results obtained 

particularly from Eq. (10) and corresponding atomistic simulation [18]. It would be also important 

the validation of analytical stress expressions for a near-surface screw dislocation in elastically 

anisotropic materials (Eqs. (7) and (8)) by atomistic simulation models.  

The results obtained in this study are also applicable to the case when a screw dislocation is 

situated in the “thin film–substrate” system at a (0001) basal interface between the film and substrate 

provided that the elastic constants of the film and substrate are the same or sufficiently close to each 

other. 

Table 3. Elastic stiffness constants in GPa units and shear anisotropy parameter  . 

Material c11 c12 c44   

Ti 162.4
a
 92.0

a
 46.7

a
 0.75 

Zn 163.7
a
 36.4

a
 38.8

a
 1.64 

Cd 113.8
a
 39.2

a
 20.0

a
 1.87 

Graphite 1060
b
 180

b
 5

b
 88 

a
 Ref. [35], 

b
 Ref. [36]. 
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Figure 7. Dependence of the force-suppressing factor fS  on the shear anisotropy 

parameter   according to Eq. (16) at hd  . The solid dots on the curve )(fS  relate 

to GaN, TiB2, and materials listed in Table 3. 

9. Conclusion 

Both the zx  and zy  dislocation stress components (Eqs. (7) and (8)) strongly depend on 

the position of dislocation with respect to a free surface.  

For a dislocation positioned in an infinitely large crystal, both the zx  and zy  stress 

contours (Figures 3a and 3e and Figures 4a and 4d) are symmetric in shape with respect to both x and 

y coordinate axes. With approach of the dislocation position to the free surface, the above stress 

contours drastically change in shape (Figures 3b–d, 3f–h and Figures 4b, 4c, 4e, 4f) preserving the 

spatial symmetry only with respect to the y axis. In comparison to the case of a crystal with a smaller 

value of the dislocation energy factor (GaN), in a crystal with a larger value of this parameter (TiB2) 

the stress contours are extended over wider spatial regions (Figures 3 and 4) and the interaction of a 

near-surface dislocation with the free surface (resultant from the zx  stress component) is stronger 

(Figure 5). For GaN and TiB2, the dislocation stress distribution maps are highly influenced by the 

free surface effect at “free surface–dislocation” distances roughly smaller than ≈15 and ≈50 nm, 

respectively. 

In terms of the shear anisotropy parameter A (Eq. (17)), the comparatively stronger effect of the 

elastic anisotropy on dislocation-induced stress distribution in TiB2 is attributed to the higher degree 

of elastic anisotropy of this compound ( %53.1A ) in comparison to that of the GaN ( %83.0A ).  

With approach of a pair of near-surface basal screw dislocations to (0001) free surface, their 

interaction force resultant from the zy  stress component strongly decreases at all interdislocation 

distances (Figure 6). With increase of the shear anisotropy parameter   (Eq. (18)), the influence of 

free surface effect on above force decreases [Eqs. (15) and (16) and Figure 7]. For GaN and TiB2 

crystals, parameter   is practically the same )2.1(  and this results in about the same 

force-suppressing factor for these materials, 175.0fS  (Eq. (16) and Figure 7). Particularly for 

graphite, with a very large anisotropy parameter )88( , the force-suppressing factor, at 
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comparable distances d and h (Figure 6a), is negligibly small, 003.0fS  (Figure 7).  

Conflict of Interest 

All authors declare no conflict of interest in this paper. 

References 

1. Hirth JP, Lothe J (1982) Theory of Dislocations, New York: John Wiley & Sons. 

2. Morkoc H (2008) Handbook of Nitride Semiconductors and Devices, Berlin: Wiley-VCH.  

3. Telling RH, Heggie MI (2003) Stacking fault and dislocation glide on basal plane of graphite. 

Phil Mag Lett 83: 411–421.  

4. Jagannadham K, Marcinkowski MJ (1978) Comparison of the image and surface dislocation 

models. Phys Status Solidi A 50: 293–302. 

5. Cheng X, Shen Y, Zhang L, et al. (2012) Surface effect on the screw dislocation mobility over the 

Peierls barrier. Phil Mag Lett 92: 270–277.  

6. Gars B, Markenscoff X (2012) The Peierls stress for coupled dislocation partials near a free 

surface. Philos Mag 92: 1390–1421.  

7. Lee CL, Li S (2007) A half-space Peierls–Nabarro model and the mobility of screw dislocations 

in a thin film. Acta Mater 55: 2149–2157. 

8. Liu L, Meng Z, Xu G, et al. (2017) Surface effects on the properties of screw dislocation in 

nanofilms. Adv Mater Sci Eng 2017.  

9. Eshelby JD, Read WT, Shockley W (1953) Anisotropic elasticity with applications to dislocations 

theory. Acta Metall 1: 251–259.  

10. Spence GB (1962) Theory of extended dislocations in symmetry directions in anisotropic infinite 

crystals and thin plates. J Appl Phys 33: 729–733. 

11. Chou YT (1962) Interaction of parallel dislocations in a hexagonal crystal. J Appl Phys 33: 

2747–2751. 

12. Chou YT (1963) Characteristics of dislocation stress fields due to elastic anisotropy. J Appl Phys 

34: 429–433. 

13. Holec D (2008) Multi-Scale Modeling of III-Nitrides: from Dislocations to the Electronic 

Structure [PhD thesis]. University of Cambridge.  

14. Chu HJ, Pan E, Wang J, et al. (2011) Three-dimensional elastic displacements induced by a 

dislocation of polygonal shape in anisotropic elastic crystals. Int J Solids Struct 48: 1164–1170. 

15. Chu HJ, Wang J, Beyerlein IJ, et al. (2013) Dislocation models of interfacial shearing induced by 

an approaching glide dislocation. Int J Plasticity 41: 1–13.  

16. Barnett DM, Lothe J (1974) An image force theorem for dislocations in anisotropic bicrystals. J 

Phys F Metal Phys 4: 1618–1635. 

17. Wang J, Hoagland RG, Hirth JP, et al. (2008) Atomistic modeling of the interaction of glide 

dislocations with “weak” interfaces. Acta Mater 56: 5685–5693. 

18. Wang L, Liu Z, Zhuang Z (2016) Developing micro-scale crystal plasticity model based on phase 

field theory for modeling dislocations in heteroepitaxial structures. Int J Plasticity 81: 267–283. 

19. Chou YT (1966) On dislocation–boundary interaction in an anisotropic aggregate. Phys Status 

Solidi B 15: 123–127. 



1219 

AIMS Materials Science  Volume 4, Issue 6, 1202-1219. 

20. Chu H, Pan E (2014) Elastic fields due to dislocation arrays in anisotropic biomaterials. Int J 

Solids Struct 51: 1954–1961.  

21. Shahsavari R, Chen L (2015) Screw dislocations in complex, low symmetry oxides: Core 

structures, energetics, and impact on crystal growth. ACS Appl Mater Interfaces 7: 2223–2234. 

22. Ruterana P, Albrecht M, Neugebauer J (2003) Nitride Semiconductors: Handbook on Materials 

and Devices, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. 

23. Munro RG (2000) Material properties of titanium diboride. J Res Natl Inst Stan 105: 709–720. 

24. Cheng TS, Davies A, Summerfield A, et al. (2016) High temperature MBE of graphene on 

sapphire and hexagonal boron nitride flakes on sapphire. J Vac Sci Technol B 34: 02L101.  

25. Chung DH, Buessem WR (1968) The Elastic Anisotropy of Crystals, In: Vahldiek FW, Mersol 

SA, Anisotropy in Single-Crystal Refractory Compounds, New York: Plenum, 217–245. 

26. Lethbridge ZAD, Walton RI, Marmier ASH, et al. (2010) Elastic anisotropy and extreme 

Poisson’s ratios in single crystals. Acta Mater 58: 6444–6451. 

27. Kube CM (2016) Elastic anisotropy of crystals. AIP Adv 6: 095209.  

28. Specht P, Harutyunyan VS, Ho J, et al. (2004) Anisotropy of the elastic properties of wurtzite InN 

epitaxial films. Defect Diff Forum 226–228: 79–90. 

29. Vurgaftman I, Meyer JR (2003) Band parameters for nitrogen-containing semiconductors. J Appl 

Phys 94: 3675–3696. 

30. Wang HY, Xue FY, Zhao NH, et al. (2011) First-principles calculation of elastic properties of 

TiB2 and ZrB2. Adv Mater Res 150–151: 40–43. 

31. Polian A, Grimsditch M, Grzegory I (1996) Elastic constants of gallium nitride. J Appl Phys 79: 

3343–3344. 

32. Spoor PS, Maynard JD, Pan MJ, et al. (1997) Elastic constants and crystal anisotropy of titanium 

diboride. Appl Phys Lett 70: 1959–1961. 

33. Peselnick L, Meister R (1965) Variational method of determining effective moduli of polycrystals: 

(A) hexagonal symmetry, (B) trigonal symmetry. J Appl Phys 36: 2879–2884. 

34. Watt JP, Peselnick L (1980) Clarification of the Hashin-Shtrikman bounds on the effective elastic 

moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries. J Appl Phys 51: 

1525–1531. 

35. Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: 

a Handbook, Cambridge, Massachusetts: The MIT Press.  

36. Cousins CSG, Heggie MI (2003) Elasticity of carbon allotropes. III. Hexagonal graphite: Review 

of data, previous calculations, and a fit to a modified anharmonic Keating model. Phys Rev B 67: 

024109. 

© 2017 Valeri S. Harutyunyan, et al., licensee AIMS Press. This is an 

open access article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

http://creativecommons.org/licenses/by/4.0

