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Abstract: Interface engineering is still an open question to be solved in the emerging field of metal 

halide perovskite solar cells. Although impressive advances have been already made in controlling 

the composition and the quality of the active layer, stability issues of complete devices are limiting 

yet the forefront of a future next generation of printable photovoltaics. At this point, the choice of 

proper charge selective layers is essential to yield perovskite solar cells with an optimal compromise 

between efficiency and stability. Even though diverse n-type materials displaying outstanding 

properties have been recently proposed, the record performances are yet limited to the use of p-type 

small molecule compounds with low hole mobility in their pristine form. In here, conjugated 

polymers widely used in the field of polymer solar cells are integrated in perovskite devices to 

behave as the hole selective layers. Apart from offering suitable hole mobility and energy matching 

with the valence band of the perovskite material to enable efficient charge extraction, their behaviour 

as potential functional barrier to protect the underlying perovskite film in standard n-i-p architectures 

is also discussed. Future work focused on developing novel alternatives based on more stable and 

efficient conjugated polymers might pave the way for the large scale production of perovskite solar 

cells.  
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1. Introduction 

In a short period of time metal halide perovskite (MHP) materials, with the general formula 

ABX3, have revealed outstanding optoelectronic properties that make them uniquely suited for 

photovoltaic applications [1–4]. Along with their rapid development from liquid junction to solid 

state cells [5,6,7], the power conversion efficiency (PCE) was promoted from the initial 3.8% to 

recent values over 22% [8], thus standing close to nowadays inorganic thin film technologies [9]. A 

better control on the perovskite film morphology and composition through a large variety of solution 

processed techniques, together with an optimization of the device structure and interfaces, have 

allowed to a large extend such meteoric rise in efficiency [10–19]. However, there are still open 

questions regarding the role of the different interfaces present in the cell on the related charge 

processes that need to be further clarified. 

MHP solar cells in planar configuration are strongly demanded at the forefront of a future next 

generation of printable photovoltaics [20]. In such case, the perovskite layer is sandwiched in 

between two charge transporting interlayers resulting in n-i-p or p-i-n like architectures [15]. 

Although they resemble in a way the configurations adopted by polymer solar cells (PSCs), the 

intrinsic characteristics of the perovskite layer are the ones governing the most the charge carrier 

lifetime and diffusion lengths [21–24]. On the other hand, electron and hole selective layers (ESLs 

and HSLs, respectively) are expected to fulfil the requirements to facilitate charge transport and to 

assist charge collection towards the respective electrodes, thus being essential in determining the 

final device performance [14,15]. Despite the mesoscopic TiO2 n-i-p architectures have yielded the 

highest efficiencies reported so far [8,25,26], different metal oxide ESLs deposited as thin films have 

been proposed to simplify the device fabrication process. Among them, SnO2 has recently 

demonstrated to be a promising choice due to its high electron mobility, wide band gap and long 

stability under UV illumination [27,28]. Also, ensembles based on a double ESL have been 

suggested to allow a more suitable energy band alignment with the conduction band of the perovskite 

material [29,30]. Similarly, although a great effort has been done on searching efficient HSL 

alternatives, small molecule type compounds, typically 2,2’,7,7’-tetrakis(N,N-di-p-

methoxyphenylamine)-9,9’-spirobifluorene (spiro-OMeTAD), have dominated the superior overall 

performances until now. However, their intrinsically low conductivity and the associated instability 

issues derived from the use of chemical dopants, which are added to increase the conductivity in 

presence of O2, may compromise somehow the reproducibility and long term stability of the  

devices [31–36]. Besides, when the n-i-p architecture is considered, the HSL is sought to protect the 

quite sensitive absorber layer against the external humidity conditions by acting as a functional 

barrier [37,38,39]. Indeed, a variety of approaches has been also explored with the aim of hindering 

the moisture ingress through the top HSL [40–43]. 

Herein we evaluate and analyse the behaviour of different conjugated polymers when employed 

as the HSLs in planar perovskite solar cells designed with a typical n-i-p architecture. Such 

semiconducting polymers have been widely used in a variety of soft electronics, including PSCs, due 

to both their good film forming ability when processed through solution techniques and their unique 

and tuneable optical and electrical properties [44–47]. In spite of the high charge mobility they can 

exhibit in their pristine form, the parasitic absorption displayed over the visible range has restricted 

to a large extent their use in the context of perovskite solar cells [15]. However, several studies have 

already demonstrated that the morphology and crystallinity of such polymeric compounds can play a 
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crucial role on the efficacy of charge extraction and recombination and, therefore, on the final 

performance of the device [48–53]. In addition to an efficient charge generation and collection, 

raised open circuit voltage (Voc) values are also desired. Those will be mainly determined by the 

energy differences between the Fermi levels of the ESL and the HSL. For this reason, apart from 

revealing suitable hole mobility and chemical compatibility with the perovskite layer, another 

prerequisite to be accomplished by the HSL is that of a proper energy band alignment with the active 

layer. On the basis of such requirement, poly-3-hexylthiophene (P3HT) and poly([2,6’-4,8-di(5-

ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene] {3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-

b]thiophenediyl}) (PTB7-Th) are chosen herein as the hole transporting materials for planar 

perovskite solar cells. Those have demonstrated to give rise to optimal device performance when 

employed in bulk heterojunction PSCs [54,55]. Moreover, although P3HT has been explored in other 

research works within the field of perovskite solar cells, chemical dopants or more sophisticated 

approaches to tune its electrical properties have usually been employed to reach the best efficiency 

values [56,57,58]. In the present study, we pay attention to establish a possible correlation between 

the corresponding photovoltaic features and the dissimilar HSL properties for optimized devices 

yielding overall performances over 14%. Also, general aspects regarding the cell stability and the 

barrier protection provided by the different polymeric compounds will be discussed. To the best of 

our knowledge, no previous studies on the stability of the multilayer stacks or the complete devices 

have been carried out before when incorporating such kind of conducting polymers, free of additives, 

and under ambient conditions.  

2. Materials and Methods 

All commercially available chemicals were employed without any further purification. A 40 nm 

transparent film made of TiO2 was first deposited by spin coating on top of the previously cleaned 

conductive fluorine tin oxide (FTO) substrates (8 Ω·cm
−2

, Pilkington®). To do so, a 0.25 M solution 

of titanium (IV) isopropoxide (TTIP 97%, Sigma Aldrich) in anhydrous ethanol (99.5%, Sharlau) 

was prepared by slowly adding the titanate precursor onto the alcoholic solvent while stirring. A final 

concentration of 0.02 M in hydrochloric acid (HCl 37%, Sigma Aldrich) was adjusted to avoid the 

precipitation of slurries during the preparation of the solution. A rotation speed of 3000 rpm was held 

during 40 seconds to give rise to the required thickness, the substrates being afterwards thermally 

annealed at 150 °C during 20 minutes and, subsequently, at 500 °C for 30 minutes. After cooling 

down, they were transferred to a N2 glovebox for next fabrication steps. Similarly to the recipe 

reported by Lee at al. [7], the MHP precursor was prepared by dissolving methylammonium iodide 

(CH3NH3I 99.5%, 1-Material) and lead(II) chloride (PbCl2 98%, Sigma-Aldrich) in 

dimethylformamide (DMF 99.8%, Sigma-Aldrich) with a 3:1 molar ratio and a 32 wt% 

concentration. The perovskite solution was spin-coated on top of the ESL at 1500 rpm and the 

resulting films were annealed for 2 hours at 90 °C and 20 minutes at 125 °C. For the HSL precursors, 

P3HT (4002-E, Rieke) and PTB7:Th (1-Material) solutions with a concentration of 15 mg/ml and  

10 mg/ml, respectively, were prepared in anhydrous chlorobenzene (CB 99.8%, Sigma Aldrich) and 

kept under stirring overnight at 60 °C before using. They were also deposited by spin coating the 

respective solutions at a rotation speed of 2000 rpm during 45 seconds. Finally, an 80 nm thick gold 

top contact layer was evaporated in a high vacuum chamber (Lesker). The deposition rate was 

adjusted to 0.6 Å/s and a metal mask was place to define an active area of 0.096 cm
2
. 
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The optical transmission of the different samples was measured over the wavelength range of 

interest using a UV-vis-NIR spectrometer (Lambda 950, PerkinElmer). Both the surface morphology 

and the cross section of the samples were evaluated by field emission scanning electron microscopy 

(FEG-SEM, FEI Inspect F50-EBL). The X-ray diffraction (XRD) patterns were recorded with a 

Bruker D8 Advance diffractometer (Bruker, Cu-Kα source). Film thickness values were checked 

employing a surface profilometer (KLA-Tencor Alpha-Step IQ Surface Profiler). The photovoltaic 

performance of the fabricated solar cells was determined using an AM 1.5G solar simulator (Sun 

3000, Abet Technologies). The illumination intensity corresponding to 100 mW·cm
−2

 was adjusted 

with a monocrystalline silicon reference cell (Hamamatsu) calibrated at the Fraunhofer Institute for 

Solar Energy Systems. The current density-voltage characteristics (JV) curves were then recorded by 

scanning voltages from negative to positive (forward) and from positive to negative (reverse) using a 

Keithley 2400 SourceMeter. EQE analysis was performed using a quantum efficiency measurement 

system (QEX10, PV Measurements). In this case, the devices were illuminated using a 

monochromatic light coming from a Xenon lamp. The spectral response of the calibrated silicon cell 

was used as a reference. All set of devices were tested under ambient conditions and without 

encapsulation. 

3. Results and Discussion 

The simplified molecular structures corresponding to the P3HT and PTB7:Th polymers to be 

used as HSLs can be found in Figure 1a. A scheme of the planar n-i-p device configuration proposed 

and the energy level diagram of the studied materials are also illustrated in Figures 1b–c.  

 

Figure 1. (a) Molecular structure of P3HT and PTB7:Th. (b)–(c) Scheme of the device 

configuration and energy level diagram of the studied materials, respectively. 

As clearly seen, the MHP is sandwiched in between a thin and compact layer of TiO2 and the 

HSL. FTO substrates and gold layers are used as the respective bottom and top contacts. The same 
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colour code for both the scheme and the diagram was used to identify each one of the layers 

composing the device. The energy levels for the different materials were extracted from the literature. 

From them, a proper alignment between the conduction bands of the ESL (TiO2) and the perovskite 

is observed. Similarly, the highest occupied molecular orbitals (HOMO) energies suitably matched 

that of the perovskite valence band.  

An optical characterization of both the perovskite and the HSL constituents was performed prior 

to the evaluation of the device performance. Figure 2a displays the absorbance measured for 

perovskite and polymeric films when deposited onto common glass substrates following the general 

procedure described in the Materials and methods section. While the MHP exhibits an absorption 

that is extended over the whole visible range, ranging from 350 to 760 nm, the conjugated polymers 

present narrower absorption bands centred at 530 nm and 700 nm for the P3HT and PTB7:Th, 

respectively. In principle, parasitic losses may be affecting the most in the case of PTB7:Th since its 

corresponding absorption takes place at a wavelength range in which the one resulting from the 

perovskite starts to decrease. However, by conventional optical spectroscopy, it is difficult to 

evaluate separately the contribution of useful and parasitic absorption in the polymeric compound 

since photoexcitation can generate charge carriers in both the perovskite and the HSLs. As shown in 

Figure 2b, the steady state photoluminescence measured when the perovskite film was excited with a 

532 nm continuous wave laser coincides with the onset of absorption detected in the transmittance 

spectrum.  

 

Figure 2. (a) Absorbance measured for perovskite (black dashed line), P3HT (red solid 

line) and PTB7:Th (blue solid line) films deposited onto glass substrates. (b) 

Transmittance spectrum (black line) and normalized photoluminescence (red circles) 

measured for the perovskite layer. (c)–(d) SEM images acquired from the perovskite 

layer top view and the cross section of a complete cell including P3HT as the HSL, 

respectively. 
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Figures 2c–d show SEM images taken from the top view of a perovskite layer and from the 

cross section of a complete cell in which P3HT was employed as the HSL. A long range 

interconnected and multi-faceted crystallites were observed from the top view image. Also, in spite 

of the special care taken during the crystallization process, large void spaces were formed into the 

films as a consequence of the removal of excess material during the thermal annealing step, as 

suggested elsewhere [11]. On the other hand, the continuous perovskite layer can be clearly 

appreciated from the cross section image, the thicknesses of the different layers being about 40 nm, 

350 nm, 75 nm and 80 nm for the ESL, MHP, HSL and Au, respectively. Those were also double 

checked by using a surface profilometer.  

The photovoltaic parameters extracted from the corresponding JV curves of complete devices 

integrating P3HT and PTB7:Th are compared in Figures 3a–d.  

 

Figure 3. Comparison of histograms of photovoltaic parameters obtained for the 

perovskite solar cells based on P3HT (red) and PTB7:Th (blue). 

Histogram plots are used to check the frequency distribution of each single variable dataset: the 

short circuit photocurrent density (Jsc), the open circuit photovoltage (Voc), the fill factor (FF) and 

the overall efficiency. For the analysis, a total of 24 samples were considered and the voltage scans 

were carried out from open circuit to short circuit conditions. As displayed in these graphs, higher 

Jsc and Voc were obtained for the case of devices based on P3HT as the HSL. Given that the FF 

values were similar in both cases, although with a narrower distribution for P3HT devices, the best 

device performances were still attained for perovskite solar cells integrating P3HT polymer. An 

average efficiency of about 12% was observed for P3HT based solar cells, which means an 

improvement of above 20% with respect to the average values achieved for the PTB7:Th ones. These 
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preliminary results suggest that, to sufficiently translate the deeper HOMO levels of conjugated 

polymers into higher Voc values, strategies for further improving and designing solution-processed 

interfacial materials should be taken into consideration.  

Since the loss of photogenerated charge carriers can be associated to different recombination 

processes taking place within the device, a deeper insight into the possible factors or mechanisms 

determining the resulting photovoltaic characteristics is required. To probe the kinetics of charge 

carrier recombination, the JV curves were measured while the complete devices were illuminated 

over a range of light intensities going from 10 to 100 mW/cm
2
. Representative perovskite solar cells 

displaying photovoltaic parameters over the average range were selected to carry out this study. In 

Figures 4a–b, the Jsc and Voc data are plotted on a log-log and linear-log scale, respectively. The 

Jsc-light intensity curves show a similar dependence for both the P3HT and PTB7:Th based devices. 

In this case, the curves were fitted according to the relation Jsc ∝ Ф
α
, where Ф corresponds to the 

light intensity and α to the exponent of the dependence. The factor α was calculated to be close to 1 

in both cases, which implies that photocurrent is determined by the generation rate of electron–hole 

pairs due to photon absorption. The deviation from α = 1 is typically attributed to bimolecular 

recombination or unbalanced charge transport of electrons and holes [59]. On the other hand, the 

light intensity dependence of Voc reveals the dominant recombination mechanism in the device as no 

external current is extracted under such conditions and all of the photogenerated charge carriers 

recombine. Slopes of kT/q and 2kT/q will indicate dominant bimolecular and trap-assisted 

recombination, respectively [60,61]. In here, a similar behaviour is also attained for both kinds of 

devices, a slope of ~2.3 kT/q being calculated. That means that trap assisted recombination is still the 

main recombination mechanism in perovskite solar cells. However, due to significant changes in the 

charge collection probability, which seems also to be dependent on the light intensity at a given 

applied voltage, bimolecular recombination cannot be completely disregarded. Although 

recombination channels can be present at the grain boundaries of the perovskite and at the interfaces, 

the latter has been conferred as the dominant loss mechanism [62,63,64]. Nonetheless, perovskite 

morphologies prepared under certain preparation methods might be more sensitive to the sign of 

traps, thus playing a crucial role on the final device performance and affecting the hysteretic 

behaviour of the cell.   

 

Figure 4. Light intensity dependence of (a) Jsc and (b) Voc for the perovskite solar cells 

integrating P3HT (red symbols) and PTB7:Th (blue symbols) as the HSLs. Solid lines 

represent the linear fittings in each case. 
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In order to investigate the hysteresis of the fabricated devices, the JV characteristics curves 

were sweeping from both forward and reverse directions. The results corresponding to the best 

performing cells are presented in Figure 5 and summarized in Table 1. All experimental data were 

collected without applying any preconditioning voltage to the cells. A slight hysteretic behaviour can 

be deduced from the graph, which affected mainly to the FF value of the devices while the Jsc and 

Voc were kept almost unaltered. This behaviour is more frequently shown in planar perovskite solar 

cells as a consequence of either the reduced contact area between the perovskite layer and the 

respective charge selective layers or the ineffective charge extraction of the latter. Although some 

studies have tried to correlate the density of traps and mobile ionic defects with the hysteretic 

behaviour [64], it is quite challenging yet the extrapolation to the large variety of perovskite 

morphologies, compositions and device configurations reported up to date.  

 

Figure 5. IV characteristics curves of the record efficiency cells measured for P3HT (red) 

and PTB7:Th (blue). Solid and dashed lines correspond to the reverse and forward scans, 

respectively. 

Table 1. Summary of the photovoltaic parameters extracted from the IV curves presented 

in Figure 5 and measured for perovskite solar cells using P3HT and PTB7:Th under 

standard one sun illumination condition (100 mW/cm
2
). 

Device configuration Jsc (mA/cm
2
) Voc (mV) FF (%) PCE (%) 

FTO/TiO2/MHP/P3HT/Au 
from OC to SC 20.9 968 71.4 14.4 

FTO/TiO2/MHP/P3HT/Au 
from SC to OC 20.8 929 68.2 13.2 

FTO/TiO2/MHP/PTB7:Th/Au 
from OC to SC 17.9 906 73.1 11.8 

FTO/TiO2/MHP/PTB7:Th/Au 
from SC to OC 17.5 906 63 10 
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As it can be clearly observed in Table 1, the perovskite solar cell based on P3HT displays PCE 

values of 14.4% and 13.2% when scanned in forward and reverse directions, respectively. In a 

similar way, that incorporating PTB7:Th as the HSL exhibits PCE values of 11.8% and 10% in the 

forward and reverse scans. As commented before, almost no changes in the Jsc and Voc were 

observed, while the reduction in the FF value was around 4.5% and 14% for the case of perovskite 

solar cells incorporating P3HT and PTB7:Th. It means that around 92% and 85% of the efficiency 

values measured under reverse scan were maintained for the forward sweep in both kinds of devices.  

Finally, in order to address the stability issue of perovskite solar cells, a preliminary study of the 

barrier properties offered by the two conjugated polymers was carried out by means of optical 

measurements. Although no evidence of degradation after prolonged time exposures was noticed 

during the photovoltaic characterization of the complete devices (Figure S1 in the Supplementary 

section), such test could be employed as a quick tool to evaluate the stability of individual and 

stacked layers under stressed conditions (light, temperature and H2O). To do so, the samples were 

kept under continuous illumination at 1 sun while the corresponding optical properties were check at 

certain time intervals (every 1 hour in this experiment). Since the final goal was to identify any 

degradation signal over the visible spectral range, those were constructed onto common glass 

substrates following the proposed n-i-p architecture and without depositing the top metallic layer. A 

schematic drawing of the samples under 1 sun illumination is depicted in Figure 6a, and the results 

extracted from this analysis are presented in Figures 6b–f.  

 

Figure 6. (a) Schematic drawing of samples under illumination. (b)–(f) Evolution of the 

optical response versus the illumination time for purely polymeric films and the n-i-p 

architectures. 
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No UV filters were employed during the illumination of samples and the humidity in the 

laboratory was around 40%. Those are key parameters that can determine the kinetics of 

deterioration in polymeric and perovskite materials. Figures 6b–c show the clear degradation of the 

different polymeric compounds under simulated sunlight illumination conditions. Whereas P3HT 

still preserved its optical features after 10 hours of continuous illumination, PTB7:Th became almost 

transparent over the visible, with no apparent absorbance after this time. However, when the 

perovskite layer was considered, the sample covered by PTB7:Th surprisingly kept (Figure 6f) the 

same response after the 10 hour illumination time. It might be explained due to the synergy of both 

the perovskite and the PTB7:Th films, the former blocking the UV radiation to reach the polymeric 

material and the latter behaving as an effective barrier protection to avoid the ingress of moisture. On 

the other hand, the most significant change detected in the bare and P3HT coated perovskite films 

was located at the spectral range comprised between 350 nm and 600 nm, as shown in Figures 6d–e. 

4. Conclusions 

The results presented in this work show the potential that different conjugated polymers can 

have when performing as HSLs in perovskite solar cells. P3HT and PTB7:Th based devices were 

herein evaluated to establish a possible correlation between the photovoltaic performance and the 

respective optical and electrical properties conferred by the polymeric material. Although parasitic 

losses seem to be affecting the most in the case of perovskite solar cells integrating PTB7:Th as the 

HSL, recombination kinetics extracted from the light intensity dependence of Voc reveal the same 

behaviour in both types of devices, with a trap assisted recombination being the main loss 

mechanism. Even though, performances of around 14% and 12% in reverse voltage scans, or 13% 

and 10% in forward scans, were reached for pristine P3HT and PTB7:Th based solar cells, 

respectively. Since chemical additive free polymers are desired for long term stability cells, this 

study opens the door for a conscious and rational optimization of the electrical and optical properties 

of polymeric compounds to yield perovskite solar cells with an optimal compromise between 

efficiency and stability. 
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