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Abstract: Organic solar cells, processed from solution at various optimizing device parameters, were 
investigated. The device’s active-layer film-thicknesses were optimized while depositing at different 
spin speeds where 120-nm-thick layer (D2) gives maximum power conversion efficiency of 2.9%, 
annealed at 165 °C. The reason is ascribed as sufficient light absorption, excitons 
dissociation/diffusion and carriers transportation. In the case of Ca/Al, being as a top electrode rather 
than LiF/Al and Al, substantial efficiency enhancement, from 1.70% to 2.78%, was obtained at low 
temperature, 130 °C, providing ease for charge collection and pertaining conductive nature of 
increased resistivity at high temperature.  
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1. Introduction 

Organic solar cell devices, processed from solution at room temperature, have been attracting 
great attention of scientific communities during the past decades owing to their low materials cost, 
mechanically flexible, easy fabrication over large-area substrates. The most common structure of 
such devices consists of donor and acceptor phases. These phases contain the electron donor and hole 
transporting materials, such as poly (3-hexylthiophene) (P3HT), and an electron acceptor and 
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transporting materials, such as (6,6)-phenyl C61 butyric acid methyl ester (PCBM). The acceptor and 
donor materials were blended together to form bulk films [1,2,3] for the devices, called bulk 
heterojunction organic solar cells, and have been widely investigated [4–11]. The bulk-
heterojunction-solar-cell-devices concept led to enhance the short-circuit current of organic solar cell 
and resulting higher-power-conversion (PCE) efficiency up to 10% [12–15].  Active-layer film-
thickness is a critical component of the organic solar cells devices. Tuning the device’s active-layer 
thickness, is a point of worth noting to get optimum optical absorption, increasing charge carriers 
transport, and hence enhancing power conversion efficiency [16,17]. However, the active-layer 
thickness must be comparable to the excitons diffusion/dissociation range to suppress internal as well 
as contact resistances and get efficient device controlling parameters [18]. Different active-layer 
thicknesses have been selected in between electrodes to achieve high-light harvesting rate [4]. 
Kirchartz et al. observed that the variation in short circuit current density (JSC) and fill factor (FF) 
with film thicknesses are due to the mobility and lifetime before recombination or decay, of the 
charge carriers [19]. Few attempts have been made on addressing the improvement of device 
efficiency through materials and metal electrode optimization with different light trapping  
strategies [20,21,22]. Various composition layers have been incorporated in between electrode and 
photoactive materials [23–26]. The insertion of thin layer of LiF or Ca before Al metal electrode 
deposition is to reduce the interfacial resistance and prevent quenching of excitons due to particular 
interaction at the interface [27,28]. It is also crucial to enhance the fill factor (FF)  significantly and 
maintain high-open-circuit voltages (Voc) of the devices with optimum value of temperature [29]. 
Thermal annealing improves absorption coefficient due to film morphology, facilitates the phase 
separation, thereby enhances crystallinity, increases excitons-generation rates and strengthens 
electrical polarizations in the P3HT:PCBM blend [7,8,30]. Thermal treatment of the  P3HT/PCBM-
based organic photovoltaic OPV devices is to recover the order structure of P3HT that is disrupted in 
the presence of PCBM during bulk film fabrication and, more interestingly, also increase the P3HT 
molecule chains π–π overlapping [9,12,13,31,32]. Thermal annealing on the blend films 
(P3HT/PCBM) plays an important role in the OPV device application. It can help to reduce series 
resistance of the device as well as improve the interfacial contacts between the electrodes [16,32]. 
Despite the various advantages over its conventional inorganic counterparts, organic solar cells have 
some limitations like low-charge-carrier mobility and short exciton life time [33,34,35]. Among the 
variety of device’s active-layer-deposition techniques, spin coating, beside some limitations, is quite 
fast, easy and quite common to fabricate solution-processed active-layers thin and homogeneous 
films for optoelectronic devices [33]. A prerequisite for getting the high efficiency is optimizing the 
device-fabricating parameters, such as active layer thickness, post deposition annealing and cathode 
material layer etc. Donor and acceptor layer should have optimum thickness to harvest sufficient 
light and obtain efficient charge-carrier generation. Furthermore, the electrode materials are required 
to have an efficient charge-carrier extraction and low or non-resistive transportation. Hereby, the 
thickness of the donor and acceptor material, thermal annealing and inter-layer, sandwiched between 
top electrode and active layer, are important device parameters.  

In this paper, we focus on optimization of various parameters based on P3HT:PCBM blend 
active layers. To this aim, optimization of the device active-layers thicknesses, top electrodes and the 
effect of post-thermal treatment were investigated. Initially, we deposited device’s bulk layer from 
optimum solution concentration in order to address thickness effect.  Secondly, three set of devices 
with different schemes of top electrode, such as Al, LiF/Al, and Ca/Al, were used. The electrical 
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characterization is carried out to measure the effect of thermal annealing on short-circuit current, 
open circuit voltage, fill factor and power conversion efficiency at different active-layer thicknesses 
and different top electrodes.  

2. Materials and Method 

In this work, the spin coating process was used to prepare the active layers for organic solar 
cells. Commercially available P3HT (Plextronics) and PC61BM (Solaris) were used without further 
purification. Indium-tin-oxide (ITO) substrates, with 15 Ω/cm2 sheet resistance, were used as 
transparent conducting electrode. ITOs were cleaned in successive solutions of acetone, ethanol and 
isopropanol respectively. The substrates were sonicated for 15 minutes in each solvent. The 
transparent hole-conducting-polymer film around 30 nm, poly(3,4-ethylenedioxythiophene):polystyrene 
sulfonate (PEDOT:PSS) (Aldrich) was subsequently spin-coated from water solution on ITO/glass 
substrates at 4000 rpm for 40 seconds. The films were, then, annealed at 110 °C for 30 minutes. 
Device’s active layers were prepared from the 40 mg/ml blend-concentrated solution (P3HT/PCBM) 
(1:1 w/w), dissolved in dichlorobenzene, using various spin-coating speed in the range of 2000 rpm 
to 5000 rpm under N2 atmosphere. Thicknesses of active layers of devices were confirmed, using 
KLA-Tencor Alpha step 500 profilometer, to be 230 nm, 180 nm, 120 nm and 90 nm, and labeled as 
D4, D3, D2 and D1, respectively, for simplicity. Top metal electrodes with a scheme, such as Al, 
LiF/Al and Ca/Al, were evaporated through electron beam. UV-vis spectra of thin film of various 
devices in term of thicknesses were recorded over the spectral range of 300–800 nm using 
spectrometer (Perken Elmer λ 25). A 100-nm thick aluminum electrode was thermally deposited by 
electron-beam-evaporation process at a base pressure of 5 × 10−7 mbar onto the active layer using 
shadow mask to define an active-device area of 10 mm2 to complete the devices. Fabricated organic-
bulk-heterojunction solar cells with Al and thin layer (20 nm) of LiF/Ca Al, evaporated via e-beam 
evaporation, are shown in Figure 1a and 1b, respectively. Current-density-voltage (J-V) 
characteristics of devices were examined under solar simulated AM1.5G irradiation (100 mW·cm−2) 
using a Keithley (2400 source measuring unit a reference Si solar cell). 

   

(a)         (b) 

Figure 1. Fabricated bulk-heterojunction polymeric solar cells with different top 
electrodes: (a) Al and (b) Al/LiF or Al/Ca. 
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3. Results and Discussion 

To improve the light absorption, active material with varying thicknesses has been introduced. 
Optical absorbance spectra were measured which infer clearly the thickness effect on the photon 
absorption, indicated in Figure 2. Absorption of films at visible range of 400–580 nm decreased 
significantly with decreasing thickness. A descending trend in the absorption is clearly viewed while 
going from the thicker, 230 nm (black), to thinner, 90 nm (dark green), film. The observations 
recorded indicate efficient-photon absorption by increasing the number density and hence generating 
charge carriers. Shoulder peaks around 600 nm were observed for all spectra that indicates well-
ordered structure of P3HT molecules [36,37]. 

 

Figure 2. UV-vis absorbance spectra of the P3HT:PCBM blend with different 
thicknesses: 230 nm (black), 180 nm (red), 120 nm (blue) and 90 nm (green). 

Figure 3 shows current-density-voltage characteristics of the organic phtovoltaics (OPVs) with 
optimum annealing temperature of 165 °C. It is observed that there is not much difference in the 
open-circuit voltage of the OPVs while changing the thickness of devices, whereas short-circuit 
current-density gradually increases to the optimum thickness, due to stronger built-in electric field 
which results in shorter pathways for charge carriers to their respective electrodes. Also increase in 
JSC, upon high annealing temperature, shows a thermally excited hopping in these disordered  
systems [38]. The probability of exciton recombination is relatively high in the thicker films. 
Therefore, the device D2 (120-nm thick and fabricated with 4000-rpm spin-coating speed) shows an 
enhanced performance compared to the rest of the three devices. The enhanced device parameters, 
such as short-circuit current density, open-circuit voltage fill factor, and power-conversion efficiency 
were obtained at annealing temperature of 165 °C, as reported in Table 1. Low series resistance of  
9 ohms and high shunt resistance of 1027 ohms, showing good diode behavior with high rectification 
and high fill factor, suggest less recombination effect. 



793 

AIMS Materials Science  Volume 4, Issue 3, 789-799. 

 

 

Figure 3. J-V characteristic curves of the fabricated devices with different thicknesses at 
optimized annealed temperature of 165 °C having Al as top electrode: under (a) 
illumination and (b) dark. 

Table 1.  Summary of OPVs parameters, Jsc, Voc, FF, and PCE, of devices with different 
thicknesses at optimized annealed temperature of 165 °C having Al as top electrode. 

Devices Jsc (mA/cm2) Voc (V) FF (%) PCE (%) 

D4 8.4 0.54 53 2.4 

D3 8.5 0.58 53 2.6 

D2 8.7 0.58 58 2.9 

D1 7.7 0.58 54 2.4 

The thermal annealing effect was observed by plotting device parameters versus annealing 
temperature varying from 100 °C to 170 °C as illustrated in Figure 4. The more is the annealing 
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temperature of devices, the higher is their performance within the range of optimum value of 
annealing temperature. It was also noted that thermal treatment increases the power-conversion 
efficiency, probably due to the improvement in interfacial contacts, within the optimum value of 
active-layer thicknesses, hence reducing the series resistance. 

  

  

Figure 4. Effect of annealing temperature on various OPV parameters of the devices 
with different thicknesses having Al as top electrode: Dependence of (a) JSC, (b) VOC, (c) 
FF and (d) PCE on annealing temperature. 

To address the optimization of top-electrode effect on OPVs, a thin layer of LiF and Ca were 
deposited between Al and organic-active layer in the fabricated bulk heterojunction polymeric solar 
cells as shown in Figure 1b. The insertion of these thin layers significantly enhances the fill factor 
and stabilizes the open-circuit voltage of the OPVs.  

Current-density-voltage characteristics of the OPVs with different metal electrodes at optimized 
annealing temperature of 130 °C are shown in Figure 5. The parameters of the device with thin layer 
of LiF and Ca enhance when compared to a device with just Al thin layer. This may be due to either 
orientation of the LiF/Ca or doping of the device active layer. At this optimum value of annealing 
temperature and 120-nm thickness, devices’ fill factor was enhanced with consistent open-circuit 
voltage as shown in Figure 6. The organic solar cell with Ca based electrode performed extremely 
well at lower annealing temperature and obtained power-conversion efficiency of 2.78%. All the 
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device parameters, such as JSC, VOC and FF, were improved at optimum annealing temperature of 
130 °C.  

The summary of all devices parameters is reported in Table 2. The high performance is due to 
the high fill factor, low series resistance of 9.54 ohms and good diode behavior with high 
rectification. 

 

 

Figure 5. J-V characteristics of the spin coating devices with different metal contacts at 
optimum annealing temperature of 130 °C under (a) Illumination and (b) dark. 

Table 2. Summary of OPVs parameters of devices at three different top electrodes at 
optimum thermal annealing of 130 °C. 

Devices Jsc (mA/cm2) Voc (V) FF (%) PCE (%) 

Al-electrode 9.6 0.40 44 1.71 

LiF/Al-electrode 5.8 0.54 54 1.70 

Ca/Al-electrode 9.1 0.54 56 2.78 
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The thermal annealing effect was observed by plotting devices parameters with respect to 
annealing temperature for the three devices as shown in Figure 6. 

  

  

Figure 6. Effect of thermal annealing on various OPV parameters of the devices with different metal 
contacts: Dependence of (a) JSC, (b) VOC, (c) FF and (d) PCE on annealing temperature at optimum 
thickness of 120 nm. 

The increasing trend in overall devices parameters is observed at certain optimum value of 
annealing temperature. Moreover, increasing the annealing temperature above a certain limit, Al-
based device performs better and is consistent with value reported in literature. Whereas the 
efficiency of both LiF- and Ca-based OPVs decreases with rising annealing temperature, probably 
due to formation of oxides layer at semiconductor-metal interface. Thermal annealing above 130 °C 
causes oxide layer. This metal-oxide layer is electrically insulating, increases series resistance and 
creates a transport barrier, eventually degrading the performance of the device as reported in  
refs [36,37]. Thermal annealing at high temperature increases Voc values of Al device and does not 
seriously affect Voc values of Ca/Al device probably, the former is less reactive/sensitive to oxygen 
than the latter at high temperature. Nevertheless, it is not the only reason of bad performance. The 
performance of these devices could be further improved by optimizing parameters such as the film 
roughness (morphology), film thickness, decreasing oxidation, solvent selection, blending ratio and 
the use of other post-growth treatments [39,40,41]. 

100 120 140 160 180

6

8

10

J(
m

A
/c

m
2 )

Temperature(oC)

 Ca/Al
 Al
 LiF/Al

(a)

100 120 140 160 180
0.1

0.2

0.3

0.4

0.5

0.6

Temperature(oC)

V
o

c
(V

)

 Ca/Al
 Al
 LiF/Al

(b)

100 120 140 160 180

30

40

50

60

 Temperature(oC)

F
F

(%
)

 Ca/Al
 Al
 LiF/Al

(c)

100 120 140 160 180
0

1

2

3

 Temperature (oC)

P
C

E
(%

)

 Ca/Al
 Al
 LiF/Al

(d)



797 

AIMS Materials Science  Volume 4, Issue 3, 789-799. 

4. Conclusions 

We investigated optimum parameters  of organic solar cell devices, such as active-layer 
thickness, annealing temperature, and the role of interlayers before Al deposition. Device D2 with 
120 nm active-layer thickness performed well at 10 minutes thermal annealing of 165 °C, resulting in 
maximum power-conversion efficiency of 2.9%. Organic solar cells with Ca-based Al contact 
performed relatively better at lower annealing temperature, and started degrading when the 
temperature increased above 130 °C, PCE reached to 2.78% unlike in the case of LiF/Al and Al 
where it is just 1.7% and 1.71% respectively. In fact, this is owing to their proper energy-level 
alignment with active materials which facilitates exciton diffusion/dissociation and charge collection 
to their respective electrodes. Therefore, thermal annealing has a significant role on the overall 
performance of the devices. In summary, with optimum parameters the performance of polymeric 
solar cells can be improved but the issue of stability of such devices is yet to be addressed.  
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