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Abstract: The electronic structure of pentacene decorated with dipole groups (d-pentacene) and
adsorbed onto a graphene substrate has been studied within the density functional theory. Three
reference configurations have been considered, namely the ideal molecule without distortions, the
actual molecule including intramolecular distortions and the molecule adsorbed onto graphene.
Calculations show a noticeable charge redistribution within the d-pentacene + graphene system due to
molecular distortion, as well as the formation of weak π-bonds between the molecule and the substrate.
Additionally, the effect of the chemical modification of the terminal saturation with –H by –OH and
=O is checked to explore the possibility of “levels engineering”. The imaginary part of the dielectric
function of d-pentacene in the ideal and distorted conformations and the molecule adsorbed at graphene
were calculated within the random phase approximation. Results show that, even though molecular
distortions change apreciably the absorption spectrum of isolated d-pentacene, the adsorbed molecule
exhibits an optical spectrum which mimics quite much that of single graphene.
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1. Introduction

Graphene is one of the frontier materials for flexible electronics, including photovoltaics. It has
been used inside composite solar cells, either as the electrode when doped with N or B [1] or as the
optically active part [2], as well as the hole transporting layer and even barrier for H2O in order to
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improve the resistivity against moisture [3]. As a substrate for the organic layers, graphene brings
molecules into order [4], and therefore sets rules for the molecular pattern [5].

When molecules with the dipole groups are adsorbed at graphene, they induce the electric field
which shifts the electronic density of the graphene layer according to the Stark effect. In the result,
the dipole moment of about 2.1 Debye is induced in the graphene layer and its work function changes
by about 1.5 eV [6] due to Wigner and Bardeen mechanism [7]. The dipole groups of molecules tend
to align in the ferroelectric order in 1D π-stacks or 2D layers. Moreover, such ferroelectric organic
layers possess other properties which are desired for applications in the solar devices. One of them
is a cascade alignment of the energy levels of subsequent molecular layers, both in the valence-band
and conduction-band manifold [6]. These cascade states simultaneously play a role of the donors or
acceptors, depending on a direction from which the carriers arrive. Importantly, the π-stacks of these
molecules transport electrons and holes through different parts in space, the mesogenic aromatic rings
and the terminal dipole groups, respectively [8]. Thus, such separation of the carrier paths allows
to decrease the charge recombination, which is the main problem restricting the power conversion
efficiency.

In this theoretical work, we study the effect of a graphene substrate on the absorption spectra of
pentacene decorated with the –CH2CN and –COOH dipole groups. The optical properties of undoped
pentacene were studied with ab initio methods by other authors in relation to the charge transfer
between the molecule and a TiO2 substrate [9]. It has been reported that this molecule has a
HOMO–LUMO gap within the range of solar radiation and that the dipole groups do not change
much this gap [10]. On the other hand, experimental and theoretical studies about 2D organic
networks at highly oriented pyrolytic graphite (HOPG) surface, which is very similar to graphene,
reported the possibility to achieve tunable band gaps by a modification of the number of the aromatic
rings [11]. For these reasons, the chosen molecule is a very good candidate to build organic layers for
efficient photovoltaic cells with a graphene transparent electrode.

2. Materials and Methods

We considered the pentacene molecule decorated with four COOH and six CH2CN dipole groups,
with the rest of bonds saturated with hydrogen; in what follows, we will refer to this molecule as
d-pentacene. It will be shown below that the optical spectrum of the molecule depends on both its
own geometry and its electrostatic interactions with the graphene layer. To study these effects, we
considered three arrangements: 1) plane molecule, with an “ideal” geometry optimized in vacuum
(Pi), 2) the molecule calculated in vacuum but with the ”relaxed” geometry, assumed to be the same as
that of the molecule placed on top of the graphene layer (Pr), and 3) the molecule with the geometry
optimized on top of the graphene layer (PrG).

Density functional theory (DFT) calculations have been performed using the plane-wave
pseudopotential code Quantum ESPRESSO [12]. The Perdew-Burke-Ernzerhof parametrization for
the exchange-correlation functional has been used [13]. Norm-conserving pseudopotentials with a
plane-wave energy cutoff of 60 Ry have been used for all atomic species. The uniform 2 × 2 × 1
Monkhorst-Pack k-mesh [14] sufficed to sample the first Brillouin zone for the almost-square
supercells, of planar side of around 20 Å; a comparison between this mesh and 6 × 6 × 1 k-mesh for
the projected DOS is reported in Figure S1 in the supporting information. A vacuum of 30 Å
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separated the periodic slabs. The geometry optimization was achieved by allowing the graphene +

molecule system to relax following the Broyden-Fletcher-Goldfarb-Shanno algorithm [15] until the
forces on each atom decreased below 1 × 10−3 eV/Å.

The dielectric matrix has been calculated, in the linear response regime and within the random
phase approximation (RPA), using the Yambo code [16]. In all cases, local field effects up to 14 eV
were considered for the response function. Calculations of the dielectric matrix involved 1000 valence
+ conduction bands. A damping energy parameter of 0.1 eV was used to mimic experimental peak
widths. Polarization of light was assumed to be polarized along the [110] direction, parallel to the
graphene layer.

3. Results and Discussion

3.1. Geometric Characteristics

Figure 1a shows views of the isolated d-pentacene molecule (top) and that adsorbed at graphene
(bottom); Figure 1b shows a top view of the adsorbed molecule. We thought primarily about the nature
of the molecule adsorption, that is, whether it was chemisorption or any kind of physisorption. In
principle, one would expect chemisorption to take place, provided that the molecule is close enough to
the graphene layer. Thus, we placed initially a plane d-pentacene molecule close to graphene, with the
C(ring)–C(graphene) and O(molecule)–C(graphene) distances being 2.0 Å and 1.48 Å, respectively.
Besides, we located the hydrogen atoms of the –COOH groups far away from the graphene layer, to
ease the O(pentacene)–C(graphene) bonding in case that it happened. After relaxation, we found the
molecule to be repeled and distorted by graphene, with the distances between the central and outermost
C atoms of d-pentacene and the graphene layer being 2.98 Å and 3.76 Å, respectively.

  

isolated molecule

molecule at graphene

(a) (b)

Figure 1. a) The atomic structure of an isolated d-pentacene molecule (top) and the
molecule adsorbed on graphene (bottom). b) Top view of the latter. Carbon atoms
appear in yellow, nitrogen and oxygen ones appear in grey and red, respectively, and
hydrogen in cyan.

In addition, the hydrogen atoms from the –COOH groups swapped their positions, and got bound
to the oxygen atoms closer to graphene. This way, the dipole moment of the –COOH aligned with that
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of the CH2CN group, in agreement with a previous work where the ferroelectric structure of a similar
molecule, with just one C-ring and the same dipoles, was lower in energy than any other configuration
of dipoles [6]. The optimization process is schematized in Figure 2, which displays details of the initial
–COOH configuration as well as five transient stages of the atomic structure. It is interesting to inquiry
about why hydrogen atoms swap their positions. In our opinion, this could be caused by the need
of the system to align the different dipoles of the molecule. Indeed, the –CH2CN groups have dipole
moments, which induce an electric field in the molecule; the hydrogen atoms then swap to screen such a
field. Incidentally, the fact that graphene is slightly negative would help it to attract hydrogens as well.
We checked that the geometry optimized with the method containing the self-interaction correction,
namely the pSIC approach [17, 18], also swaps the hydrogens to place them at lower oxygens of the
COOH group.

Figure 2. The initial (S1) and five transient atomic structures (S2–S6) during the
optimization of the geometry of the molecule adsorbed at graphene. The color code
is the same as for Figure 1.

In conclusion, our results indicate that d-pentacene is physisorped on graphene, and that adsorption
is accompanied by a distortion of the molecule, which adopt a “cone”-like configuration with the –
COOH groups further from graphene than the rest of the molecule.

3.2. Electronic Structure of Decorated Pentacene

Adsorption of d-pentacene onto graphene is accompanied by charge transfer from the molecule to
the substrate. Figures 3a and 3b display the differential electronic density maps within the plane of
graphene and the d-pentacene central part, respectively. The charge density is the electronic density
multiplied by -e. These maps show difference between the actual electronic density of the system
and that of the isolated substrate or molecule. The substrate is negatively charged, which agrees with
previous studies for a similar but smaller molecule (with the same dipole groups) placed between two
graphene sheets [6]; in that case, the bottom layer was shown to play a role of the cathode. Besides,
the charge distribution within the substrate is quite delocalized. The change of the charge distribution
induced in d-pentacene is positive in the central part and negative around the dipole groups and adjacent
carbons. This map supports the scenario of separated paths for electrons and holes transport when the
molecule is between the graphene electrodes, as has been previously discussed for the smaller molecule
[8].
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(a) (b)

Figure 3. The electronic density differential maps for graphene modified by the
molecule (a) and molecule modified by graphene (b). The scale (right panel) is the
same in both cases.

The above results suggest that the physical behavior of d-pentacene adsorbed at graphene is
affected by two effects: the geometry of the molecule, which changes upon adsorption, and the
electrostatic interactions between the molecule and the substrate. Both effects are obviously related,
since the geometrical changes are caused in turn by the electrostatic interactions. However, it is
convenient to consider them separately to identify how they affect the electronic structure and the
optical properties of the entire system. Therefore, we considered the three models described in the
Materials and Methods section: Pi (isolated d-pentacene with its “ideal” plane geometry), PrG
(d-pentacene adsorbed on graphene, with its “relaxed” geometry), and Pr (isolated d-pentacene with
the same geometry as for PrG). Thus, comparison between Pi and Pr provides information about an
effect of the geometry, and that between Pr and PrG accounts for the effect of weak π-bonds with the
graphene substrate.

Figure 4 shows the densities of states (DOS) for these three configurations; the origin of energies
was taken as the corresponding Fermi energy for each case. Figure 4a plots the DOS for the Pi and Pr
configurations. This figure gives an evidence that the geometry optimization of the molecule changes
the distribution of the deep energy levels, but not those close to the HOMO–LUMO gap; in particular,
the HOMO remains unchanged (note that the red line overlaps with the blue one in Figure 4a). As
for the LUMO, it is shifted upwards by about 0.2 eV, likely due to dipolar interactions within the
molecule. In particular, the HOMO–LUMO gaps are εHO−LU = 0.81 eV and εHO−LU = 1.02 eV for Pi
and Pr, respectively. Figure 4a also shows that the geometry optimization does not yield any charge
transfer, since the Fermi energy remains unchanged relative to the HOMO. Figure 4b, on its part,
compares the DOS for Pr and PrG cases. The electrostatic interactions with the substrate now shift
upwards the Fermi energy, as one would expect given the donor character of the molecule that we have
already mentioned. The remaining DOS is almost rigidly shifted downwards, what causes the system
to become metallic. These plots demonstrate then that the changes in the molecular levels are mainly
associated to the geometrical distortions. In essence, the effect of the substrate is the (roughly) rigid
shift downwards of the entire DOS accompanying the charge transfer.
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Figure 4. Comparative densities of states: Pi and Pr configurations (a) and Pr and PrG
ones (b).

-4 -2 0 2 4 6

Energy - E
F
 [eV]

0

1

2

3

4

D
en

si
ty

 o
f 

S
ta

te
s 

[1
/e

V
]

Pi

Pr

PrG

N

(a)

-6 -4 -2 0 2 4 6

Energy - E
F
 [eV]

0

1

2

3

D
en

si
ty

 o
f 

S
ta

te
s 

[1
/e

V
]

Pi

Pr

PrG

C (-CN)

(b)

-6 -4 -2 0 2 4 6

Energy - E
F
 [eV]

0

0.3

0.6

D
en

si
ty

 o
f 

S
ta

te
s 

[1
/e

V
]

Pi

Pr

PrG

C (-CH
2
)

(c)

-6 -4 -2 0 2 4

Energy - E
F
 [eV]

0

0.3

0.6

0.9

D
en

si
ty

 o
f 

S
ta

te
s 

[1
/e

V
]

Pi

Pr

PrG

C (-COOH)

(d)

Figure 5. Projected DOS at N (a) and C of –CN (b), –CH2 (c), –COOH groups (d) for
Pi, Pr and PrG.
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Deeper insights into the electronic structure of the system are provided by the projection of the
DOS onto selected atomic states. Figure 5 shows the projected DOS (pDOS) onto nitrogen (from the
–CH2CN group) and three distinct carbon (from the cyano, methylene and carboxyl groups) atoms for
the Pi, Pr and PrG cases. Geometry relaxation does not affect much the projection of the unoccupied
levels onto CH2CN states (Figures 5a to 5c), whereas it causes occupied states to shift upwards by about
0.5 eV. On the contrary, the change in geometry affects greatly the projection onto the carbon atom
from the carboxyl group. We observe in Figure 5d that the projections onto unoccupied levels become
wider after the molecule gets distorted whilst the projection with lower energy shifts downwards. As
for the projections onto occupied levels, they shift upwards almost rigidly by effect of the geometry
optimization. On the other hand, the electrostatic interactions with the graphene layer cause essentially
a rigid shift downwards of the projections in all cases.

Figures 6a and 6b show the projection of the DOS onto non-equivalent oxygen atoms of the –COOH
groups for the Pi, Pr and PrG configurations. One of these oxygens (labeled as Oup) is doubly bonded
to the carbon atom, whereas the other (Odw) is singly bounded to carbon and to a hydrogen atom
as well. This is the reason why they show different chemical behavior. As for the previous figures,
the main effect seems to come from the geometrical distortion of the molecule. Indeed, Figure 6a
reveals a widening and shift downwards of the unoccupied levels, which is more pronounced for Oup,
in Pr compared to Pi. On the contrary, and also as before, physisorption causes just a roughly shift
downwards of the levels, with no apparent changes in their structure, as shown in Figure 6b. This
is an indirect evidence that π−bonds are indeed established between the molecule and the graphene
substrate.
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Figure 6. PDOS onto oxygen states. Comparative between Pi and Pr (a) and Pr and
PrG (b) configurations.

3.3. Modified Chemical Structure

From the previous results, the question arises as to how to modify the electronic structure of the
d-pentacene + graphene system to increase the optical efficiency through some “levels engineering”.
A quick response would be to change the dipole groups; one could then try different possibilities and
check which one yields a suitable HOMO–LUMO gap. We have explored here a different approach:
we have investigated an effect of changing the C–H single bonds within the d-pentacene molecule by
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either C–OH or C=O bonds. In the first case, even though one still have a single bond, the oxygen
atom is likely to enrich the electrostatic interactions (within the molecule and between the molecule
and the graphene sheet) because of its higher number of electrons. In the second case one has a
double bond which “fixes” the single-double bonds pattern of each aromatic ring, thus avoiding the
Kekule-structures duality. In this case, the electrons can no longer be considered as delocalized within
these rings, what incidentally decreases the aromaticity. Figure 7 shows schematics of the original
d-pentacene as well as its two modifications; in what follows, we will label them as molecules A, B
and C, respectively.

Figure 7. Atomic structure of the original d-pentacene (left) and its modifications:
replacement of H with –OH (middle) and =O (right). The color code is the same as
for Figure 1.

The proximity of the graphene layer to the modified molecules depend on their particular chemical
conformation. For molecule B, the proximity of graphene causes additional perpendicular π−bonds to
appear, and therefore a weakening of the double π−bonds in the planar mesogenic part of the molecule.
For molecule C, we find weaker π−bonds in the mesogenic part, caused now by the double (instead of
single) planar saturation bonds.

Figures 8a and 8b display the DOS of d-pentacene, in its “ideal” undistorted structure, at various
distances from graphene and a comparison of the electronic structures of molecules A, B, C located at
4.5 Å from graphene, respectively. Interestingly, a peak at the Fermi level appears when the original
d-pentacene is very close to graphene (Figure 8a) and when the molecule is modified with =O double
bonds (Figure 8b). Both effects, i.e., the formation of the perpendicular π-bonds and additional planar
π-bonds, cause the aforementioned weakening of the bonds in the mesogenic part. Consequently, as
we expected, the chemical modifications of the terminal parts can be used for engineering of the optical
spectra.

Figure 9 shows the DOS projected onto selected parts of the A, B and C molecules, as well as the
molecule A in various distances from graphene. According to our intuitive guess, the non-zero DOS
values at εF arise from the C atoms of the central rings. A small contribution to the DOS at εF from
the –COOH group, as well as contribution of the additional oxygens for molecule C, appears when the
molecule and graphene are about 2.5 Å away. For the most distant molecular part, namely the cyano
group, the charge redistribution due to the perpendicular π-bonds with graphene does not affect the
pDOS. This is in contrast to the terminal chemical modifications, which shift the peaks and change
their width for both the occupied and unoccupied N-states.
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Figure 8. DOS of d-pentacene at graphene in various distances (a), and DOS of three
modifications of d-pentacene (see Figure 7) (b).

Figure 9. The density of states projected at N, O, and C of the dipoles and the central
rings for the molecule A in various distances from graphene (left panels) and the
same projections for the molecules A, B, C at graphene in the distance 4.6 Å (right
panels). The contributions of the O-states from the terminal moieties –OH and =O of
the molecules B and C, respectively, are also displayed.
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3.4. Optical Properties

The optical properties of isolated d-pentacene in its “ideal” and “relaxed” geometries (that is, Pi and
Pr, respectively), as well as those of the molecule adsorbed at graphene (PrG), were studied within the
linear response theory under the RPA. Figure 10 (upper panel) shows the imaginary part of the RPA
or “interacting” dielectric function ε(ω). This imaginary part is proportional to the optical absorption
coefficient. For comparison purposes, we computed the non-interacting, that is, corresponding to a
system of independent particles dielectric function ε0(ω) as well; this is shown in Figure 10 (bottom
panel).

Im
 ε

 

PrG
Pr
Pi

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Energy [eV]

Im
 ε

0

PrG
Pr
Pi

Figure 10. The interacting (ε) and noninteracting (ε0) dielectric functions for Pi, Pr and
PrG.

The first (lowest energy) peaks of the noninteracting dielectric function of isolated molecules
correlate with the corresponding HOMO–LUMO gaps, 0.8 eV for Pi and 1.0 eV for Pr. The pDOS in
this energetic region suggests that the optical transitions occur between the pentacene-chain localized
states. These peaks have very low intensities, what is probably related to the dipole-symmetry-based
transition rules. The group of intense peaks in the noninteracting dielectric function, roughly between
2.0 and 4.0 eV, could correspond to excitations from valence band states localized at dipole-groups to
conduction band states correlated to d-pentacene rings, as well as from valence band states centered at
the d-pentacene core to conduction band states centered at dipoles. In the PDOS, most of Pi
high-density states are further from the Fermi energy than the corresponding states for Pr, although
some low-density states are closer to εF . These features correlate with the noninteracting dielectric
functions of the appropriate cases.

Compared to its noninteracting counterpart, and in very general sense, the peaks of the interacting
dielectric function are generally wider than those of ε0. For the Pi configuration, the peak exhibited by
ε0 at 2.3 eV remains unchanged in ε; however, peaks at higher energy shift to the blue light. More
interesting is the situation for Pr. In this case, it is the peak at around 4.0 eV which remains roughly
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unchanged, whereas the intense peak of ε0 at 2.5 eV is splitted into three peaks within the 2.8–3.4 eV
range. We remark two additional characteristics. The first is that the peaks for the HOMO–LUMO
transitions, which are little intense, but apparent in the noninteracting case, do not appear in the
interacting spectrum, which indicates that the direct transitions mediated by the screened potential are
forbidden (we recall that we are accepting the RPA). The second characteristic is that, contrarily to
the non-interacting case, molecular distortions cause a shift to the blue light, by about 0.5 eV, in the
interacting case.

The spectrum of d-pentacene at graphene (PrG) does not vary much between the noninteracting
and interacting cases, as shown in Figure 10, and it does not show prominent features which could
be assigned to the electrostatic interactions between the molecule and the substrate either. Moreover,
the graphene-based transitions are so rich that it is difficult to find the molecular and the molecule-to-
graphene transitions. This is demonstrated in Figure 11, where the imaginary part of the interacting
dielectric function of the PrG configuration is compared to that of the graphene layer (without any
adsorbed molecule). This plot shows that the spectrum of PrG practically mimics that of pure graphene.
This is an effect of the large number of atoms in graphene substrate, and therefore the electronic states,
which are optically active. However, Figure 11 shows a slight supression of the lowest transitions
within the substrate. Thus, the optical transitions between d-pentacene and graphene seem to cause a
slight shift to the right for the low-energy part of the PrG spectrum, as well as the intensification of this
spectrum in the region below the HOMO–LUMO gap of the molecule.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Energy [eV]

Im
 ε

PrG

G

Figure 11. Comparison between the interacting dielectric function of PrG and that of
graphene calculated in the same cell as PrG.

In any case, the analysis of the optical response is consistent with our previous discussion in the
sense that the most remarkable physical change in the system arises from the molecular distortions,
and not from interactions with the graphene substrate. Of course, the analysis of optical properties in
the system is far to be conclusive, since the energy levels have been calculated within “standard” DFT,
ignoring many-body corrections. In particular, the possibility of excitonic resonances is not taken into
account in RPA. However, this study could open a research field not only about the role of
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intermolecular interactions in this type of system, but also about possible “levels engineering”
strategies.

4. Conclusions

The spectroscopic properties of a photovoltaic molecule, namely pentacene decorated with four
COOH and six CH2CN dipole groups and adsorbed at a graphene substrate have been studied by ab
initio methods: DFT and RPA for the dielectric function.

Our results show that chemisorption does not occur; instead, physisorption accompanied by a
“cone”-like distortion of the molecule takes place. A charge transfer from d-pentacene to graphene is
correlated with charge redistribution within the molecule, where the central part yields electrons to
the dipole terminal groups. In general terms, the effect of the molecular distortion shifts the electronic
spectrum upwards, while the weak π-bonding with the substrate manifests itself in the opposite way.

The chemical modification of the saturation from –H terminal to the electron-rich –OH and =O
terminals changes the single-double bond pattern in the central part of d-pentacene, leading to smaller
HOMO–LUMO gaps. The same effect is observed for the π-bonds between the molecule and graphene
at small distances. This observation can be used in the “engineering” of the optical spectra. It is
remarkable that these molecules have their lowest appreciable transitions at relatively high energy,
what makes them not optimal for efficient photovoltaics.

Trends in the features of the dielectric function correspond to those drawn from the projected density
of states. In particular, one sees that important changes appear in the optical absorption spectrum after
the molecule gets distorted. However, adsorption of the molecule does not result in significant changes
in the optical absorption spectrum with respect to that for single graphene. Further discussion of the
optical behaviour would require more sophisticated theoretical schemes which would include particle-
hole interactions.

Acknowledgments

Calculations have been performed in the Cyfronet Computer Centre using the Prometheus computer,
which is a part of the PL-Grid Infrastructure. This work has been supported by The National Science
Centre of Poland (the Projects: 2013/11/B/ST3/04041 and DEC-2012/07/B/ST3/03412) and by the
Junta of Extremadura through Grant GR15105.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

1. Rashid bin Mohd Yusoff A, Dai L, Cheng HM, et al. (2015) Graphene based energy devices.
Nanoscale 7: 6881–6882.

2. Ozyilmaz B, Saha S, Toh CT, et al. (2013) Photovoltaic cell with graphene-ferroelectric electrode.
United States Patent Application US 14/385, 680.

AIMS Materials Science Volume 4, Issue 1, 89-101.



101

3. Loh KP, Tong SW, Wu J (2016) Graphene and graphene-like molecules: prospects in solar cells.
J Am Chem Soc 138: 1095–1102.

4. Reinert F (2013) Graphene gets molecules into order. Nat Phys 9: 321–322.

5. Colson J W, Woll AR, Mukherjee A, et al. (2011) Oriented 2D covalent organic framework thin
films on single-layer graphene. Science 332: 228–231.

6. Wierzbowska M, Wawrzyniak-Adamczewska M (2016) Cascade Donor-Acceptor Organic
Ferroelectric Layers, between Graphene Sheets, for Solar Cell Applications. RSC Adv 6: 49988–
49994.

7. Wigner E, Bardeen J (1935) Theory of the Work Functions of Monovalent Metals. Phys Rev 48:
84.

8. Wawrzyniak-Adamczewska M, Wierzbowska M (2016) Separate-Path electron and hole transport
across π-stacked ferroelectrics for photovoltaic applications. J Phys Chem C 120: 7748–7756.
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