
AIMS Materials Science, 3(4): 1796-1810. 

DOI: 10.3934/matersci.2016.4.1796 

Received: 02 October 2016 

Accepted: 05 December 2016 

Published: 12 December 2016 

http://www.aimspress.com/journal/Materials 

 

Research article 

Interacting cracks 3D analysis using boundary integral equation 

method 

Bohdan Stasyuk * 

Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv, Ukraine 

* Correspondence: Email: stasyuk.bohdan.m@gmail.com; Tel: 38-032-2582521. 

Abstract: This paper presents a modification of the method of boundary integral equations suitable 
for the efficient solution of 3D problems on the arbitrarily oriented plane cracks interaction with the 
influence of body surface. The hypersingular boundary integral equations on the crack-surface are 
transformed into new form, where the solution behavior near the crack front is accounted implicitly. 
This modification allows the direct determination of the stress intensity factors (SIF) in the crack 
vicinity after solution of equations by the collocation technique. We also propose the approach based 
on the determination of the effective stress field formed in the vicinity of a fixed crack by 
neighboring cracks interacting with this crack and with boundary surface. Numerical examples 
concern an asymmetric problem for interacting penny-shaped plane cracks in the unlimited and 
limited bodies. The reliability of the results obtained by the method of effective stress field is 
checked by comparing with the exact solution of the problem of interaction of two penny-shaped 
cracks. 
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1. Introduction  

The concentration of stresses in the vicinity of multiple interacting cracks represents one of the 
most common fracture sources in structural elements. A notable example is the stress analysis of 
structural composites containing microcracks. The microcracking process has been used often as a 
mechanism to enhance the fracture toughness of materials. Microcracks can either enhance or shield 
a macrocrack depending on their positions and orientations. Also the knowledge about crack 
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interaction is of fundamental importance in predicting the effective moduli of cracked solids. Hence, 
the subject of interaction effect between multiple cracks in fracture mechanics has attracted the 
attention of many researchers. Due to complexities in analysis of multiple cracks, researchers have 
often studied two-dimensional statement of the problem, when cracks have infinite length in one 
direction (tunnel form) [1,2,3]. The research of three-dimensional crack interactions has been in 
progress for many years, and a variety of methods have been developed to tackle this problem [4]. As 
a powerful analysis tool for linear elasticity problems the boundary integral equation method has 
been widely employed in the study of three-dimensional crack interactions [5]. The main advantages 
of this method are its more direct approach in formulating the problems and reduction the problem 
dimension to the two-dimensional work domain of boundary integrals. A closed form of boundary 
integral equations solutions obtained by analytical methods, is limited only to three-dimensional 
problems with simple configuration [6,7,8]. However, it is difficult to analytically solve the problem 
for the arbitrary array of cracks, and hence different numerical approaches have been developed. 
Among these numerical methods, e.g., the collocation method [6] or the boundary-element   
method [9,10] are outstanding and have demonstrated their flexibility and versatility in many 
crack-related problems. But, computational difficulty in the above numerical methods exists in the 
case of a large number of interacting cracks. Since in these methods of computing the costs are 
mostly spent on solving the systems of linear algebraic equations, to which the system of boundary 
integral equation in the discretization process is reduced. Hence, in a problem with a large number of 
cracks, the number of computing operations increases significantly, since it is generally proportional 
to the square of the number of cracks. In order to overcome the above computational difficulties 
encountered in the analysis of crack interactions, a method of effective stress field is      
developed [11,12]. By decomposing the problem into several sub-problems and treating the traction 
on the surface of crack in each sub-problem as an unknown function, the stress intensity factors for 
problems containing irregularly distributed cracks can be calculated, because each sub-problem is 
reduced to solution of a system of only three integral equations. 

Of particular interest is the consideration of three-dimensional problems of elasticity theory for 
limited bodies of complex shape with internal interacting cracks. Hitherto in the literature dominate 
the solutions of three-dimensional problems for interaction of cracks with simple topological forms 
of boundary surface of structural elements [13,14]. Mostly these are flat or cylindrical surfaces. The 
boundary element method proves to be especially efficient at the same time to satisfy of the 
boundary conditions on the body surface and on surfaces of cracks. In this paper we use the method 
of boundary integral equations to obtain approximate values of the SIF on the cracks contours near 
the boundary of the body of complex shape under static loading. Application of the proposed 
effective stress field method in the multiple interaction cracks problems for the limited body makes it 
possible to take into account the complexity of the boundary geometry. 

Here the boundary integral equation method is modified and applied to analyze 
three-dimensional elastostatic problem for a limited body containing interacting penny-shaped cracks 
near the boundary surface. The problem is reduced to a system of coupled boundary integral 
equations consisting of three displacement integral equations on the boundary surface and 3 N 
traction integral equations on the crack-surface, where N is the number of interacting cracks. This 
modification allows the direct determination of the stress intensity factors on the crack contour. The 
regularization procedures for the boundary integral equations with different order singularities rest 
on the implementation of singularity subtraction technique and the change of variables technique. 
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The discrete analogue of boundary integral equations as a system of linear algebraic equations is 
obtained by means of collocation and boundary element scheme. Numerical calculations are carried 
out for the problem with uniform tensile loading along the prismatic rod axis, two penny-shaped 
cracks are perpendicular to its axis and lying on the plane of middle cross-section of the rod. The 
effects of the cracks location and distance relative to the boundary surface of the rod on the mode-I 
SIF on cracks contour are investigated.  

2. Materials and Method 

2.1. Direct Method Investigation of Interacting Cracks in an Infinite Solid 

Let’s consider a three-dimensional infinite isotropic solid which contains N flat arbitrarily 

oriented cracks (Figure 1). Assume that the thn  crack occupies a region  1,nS n N  and is 

bounded by a smooth contour.  

 

Figure 1. General case of location of interacting cracks in an infinite solid. 

The opposite crack faces are not in contact and are load-free. At the centers of all cracks, we 

choose local coordinate systems 1 2 3k k k kO x x x  such that thk  crack lies in the plane 3 0kx  . The 

matrix material is specified by the shear modulus G  and Poisson’s ratio  . The strain and stress 

state in the cracked material is caused by the remote loading    0 , 1,3ij i j   which is characterized 

by the displacement components 0 0 0
1 2 3, ,u u u  in a certain principal coordinate system 10 20 30O x x x  in 

the continuous solid under the assumption of crack absence. We characterize the relative location of 

cracks in the body by the following parameters (Figure 1): nkd  is the distance between the centers 

of the thn  and thk  defects, jnke  1,3j   are the direction cosines of the vector nkd , and ijnkl , 

 , 0,n k N  are the cosines of the angles between thi  and thj  axes of the thk  and thn  
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coordinate systems, respectively. 
After representation the solutions of the Lamé equilibrium equations in the form of the 

combination of elastic potentials of simple and double layers, satisfaction the boundary conditions 
for all cracks, and taking into account the principle of superposition, we obtain a system of 3N  
boundary integral equations [8] in the form 

     
3 3

3
1 1 1

1
, , , 1,3, , 1, ,

N

ijpkm km pkm ijkm pk k jm mm
i p k Sk

K l l u d S N i j k m N
G  

 
    ξξ x ξ x  (1) 

Here, kmx  and mmx  are the same points of view on the surface mS  in thk  and thm  local 

coordinate systems, respectively; the relation between the coordinates of this point in different local 

coordinate systems will have the form: 
2

1
jkm jkm km qjkm qmm

q

x e d l x


  ; unknown functions  jn nnu x  

   
4

j n nn j n nnu u 


x x


, characterizing thn  crack opening in the direction of axes n jnO x ; 

 
3 3

0
3 0 0

1 1
jm mm ip pm ijm

i p

N x l l
 

   are the stress functions in the plane that coincides with the surface of 

the thn  crack; kernels of integral equations (1) have the form  

        
3

,s ,p , , , , ,p3
1

, 3 1 2 5
4 1ijpkm km km kms ij km jp km i ip km j km i km j km

skm

G
K r n r r r r r r

r 

               ξ x  

      , ,p , ,p , ,3 ( ) 1 2 1 2 1 4 .kmi km j km kmj km i km kmp km i km j jp kmi ip kmj ij kmpn r r n r r n r r n n vn                    (2) 

In the Eq. (2) the notations km kmr  x ξ , , ( )km j kmj j kmr x r    are used, kmn , with the 

components kmjn , is the normal vector to the thm  crack-surface in thk  local coordinate system, 

ij  is Kronecker symbol. 

Each equation of the system (1) contains a hypersingular integral provided that k m . These 
integrals should be regularized. The collocation method of numerical solution is reduced to the 
discretization of crack surfaces and determination of the unknown functions of jumps of 
displacements at the nodes of the region of integration. Finally, the problem is reduced to solution of 

a linear algebraic system of equations [6]. Dimension of this system is 3 N M , where M  is the 

number of collocation nodes. For multiple interaction crack problems, it is necessary to have a 
simplified procedure for determination the stress intensity factors on the contour of a given crack 
with regard for the influence of neighboring cracks. 
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2.2. Effective Stress Field Method for Investigation of Interacting Cracks in an Infinite Solid 

Consider a crack, with occupied region qS . In the vicinity of its contour we determine the 

degree of stress concentration. In the system of boundary integral equations (1), we select three 
equations obtained by satisfying the boundary conditions on this crack surface. We isolate 
hypersingular integrals, whose densities are functions characterizing the jump of displacements of 

the opposite surfaces of the thq  crack on the left side of these equations. Next we transfer all other 

regular integrals, which have a physical meaning of stresses induced on the thq  crack surfaces by 

the crack opening displacements of neighboring cracks to the right-hand side of Eq. (1). If opening of 
neighboring cracks considered are known, we obtain a system of three integral equations for the 
functions of jumps of displacements of the isolated crack whose surfaces are subjected to the action 

of fictitious forces *
jqN : 

       
3

*
3

1

1 1
,iq ij qq qq q jq qq jq qq

i Sq

u K d S N N
G G

  
    ξξ ξ x x x  

   
3 3

3
1 1 1

, , , 1,3, 1,
N

ijpkq kq pkq ijkq pk k
i p k Skk q

K l l u d S i j k N
  



   ξξ x ξ .   (3) 

The kernels of hypersingular integrals can be simplified to the form [12]: (given that 

3qqj jn   ) 

           

   
2 2 1 1

1 1 2 21 2
3 3 33 5

31
, 1 1 1 .

i j i j

ij qq qqi i
ij qq qq ij i j

qq qq

x x
K

 
  

    
 

ξ x
x ξ x ξ

   

     
    

For the approximate solution of the problem, we propose to replace the unknown functions of 
the crack opening on the right side of Eq. (3) by the corresponding functions for isolated cracks 
whose surfaces are subjected to the action of given loads. Therefore, we have the possibility of 
independent determination of the effective stress fields created by each neighboring crack separately. 
And the problem does not become more complicated in the case of increasing the number of 
interacting cracks because we actually find the numerical solutions only of a system of three integral 
equations for the functions of crack opening. For the numerical realization of this procedure, it is 
necessary to have closed solutions for isolated cracks whose surfaces are subjected to the action of a 
given external load. 

2.3. Direct Method for Investigation of Interacting Cracks in a Limited Body 

Let the homogeneous elastic body, which is limited by a smooth surface S, contain inside a 
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system of N interacting cracks (Figure 2). The surface of the body S can be loaded by the known static 

surface forces 0N . The crack surfaces are load-free.  

 

Figure 2. Location of interacting cracks in a limited body and boundary element meshing 
of the body surface. 

The method of potentials defines the stress-strain state of the body under the external load in the 
following form [9]:  

             
3 3 3

0 0 0 0 0 0
1 1 1 1

, , ,
k

N

i ij j ij j sjk k sik jk k
j k s jS S

u U t T u d S T l u d S
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       ξ ξx ξ x ξ ξ x ξ ξ x ξ  

in principal coordinate system; 

         
3 3 3

0 0 0 0 0 0 0 0 0
1 1 1

, ,ijm swp m m sim wjm p swp m m sim wjm p
s w p S

S l l t K l l u dS
  

       yx ξ x ξ x ξ  

   
3 3 3

1 1 1 1

,
k

N

swpkm km sikm wjkm pk k
k s w p S

K l l u d S
   

 ξξ x ξ   in thm  local coordinate system. 

where , 1,3, , 1,i j k m N   jt  and ju  are the components of the force vectors and the displacement 

vectors on the boundary surface of the body;  

       , , , , , ,2

1
, 1 2 3 ;

8 1ijpkm km km i jp km j pi km p ij km i km j km p
km

S r r r r r r
r

        
 

ξ x  
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 0 , ,

1
, (3 4 ) ;

16 (1 )ij ij j iU r r
G r

        
ξ x  

  
3

0 , , , , ,2
1

1
, (1 2 ) 3 (1 2 ) ;

8 (1 )ij ij i j s s i j j i
s

T r r r n r n r n
r 

                ξ x  

 in ξ ,  1,3i   are the components of the vector normal to the body surface at the point Sξ . 

Satisfying the boundary conditions on the boundary surface and on the cracks surfaces we obtain 

a system of  3 1N   boundary integral equations for the crack opening functions and boundary 

forces and displacements on the body surface: 

   
3 3 3 3

3 3 0 0
1 1 1 1 1

,
1

k

N

ijpkm km pkm ijkm pk k j pm ijm
i p k i pS

G
K l l u d S P l l

    

  
  ξξ x ξ


 

       
3 3

0 0 3 0 0 0 0 3 0 0
1 1 1

, , , 1,3, 1,
N

ijp m m p m ij m p ijp m m p m ij m p
i p k S

S l l t K l l u d S j m N
  

     ξξ x ξ x ξ   (4) 

             
3 3 3 3

0 0 0
1 1 1 1 1

, , , , 1,3.
k

N

ij j j ij j sjk k sik jk k
j j k s jS S S

T u u d S U P d S T l u d S j
    

          ξ ξ ξx ξ ξ x x ξ ξ ξ x ξ   (5) 

2.4. Effective Stress Field Method for Investigation of Interacting Cracks in a Limited Body 

For the approximate determination of the thq  crack opening we propose to replace the actual 

stress field acting upon the crack by a certain effective field that can readily be found without solving 
the complicated systems of integral equations (4) and (5). For this we assume that all crack openings 
do not influence the displacements and forces of the boundary surface nodes. To this end, we replace 

the unknown functions jt   and  ju    1,3j   on the right side of Eq. (4) by the corresponding 

functions *
jt   and  *

ju  for a solid body without cracks whose boundary is subjected to the action of 

given loads. All functions of other crack openings we also replaced by the corresponding functions 
for isolated cracks. Therefore, we determine the effective stress fields created by each neighboring 
crack and by boundary load separately and obtain a system of three integral equations: 

       
3 3 3 3 3

3 3 0 0 3
1 1 1 1 1 1

1
, ,

q k

N

ij qq qq iq q j pq ijq ijpkq kq pkq ijkq pk k
i i p i p kS S

k q

K u d S P l l K l l u d S
G     




       ξ ξξ x ξ ξ x ξ


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       
3 3

* *
0 0 3 0 0 0 0 3 0 0

1 1

, , , 1,3.ijp q p q ij q p ijp q p q ij q p
i p S

S l l t K l l u d S j
 

    ξξ x ξ x ξ   (6) 

2.5. Adaptation of BIEs to Numerical Solution 

The system of singular integral equations (4) and (5) is proposed to be solved by the hybrid 
boundary element method and collocation method.  

The BIEs (5) contain the integrals over the body surface S  with kernels ijT  and ijU  in 

weakly singular form, and the integrals over the crack-surfaces kS  and they are regular because the 

source point and the integration point do not coincide with each other. The BIEs (4) for direct 

method and the BIEs (6) for effective stress field method contain hypersingular kernels 3ij qqK  in the 

integral over the crack-surface qS , and the integrals over the fiber interface S  describe the 

influence of the body surface on the crack and they are regular for the same reason as mentioned 
above. Because obtained boundary integral formulation of the problem involves integrals with 
singularities of different orders, subsequent numerical solution of the BIEs requires special 
techniques, which are presented in the following section. 

From the physical content of the crack-opening-displacements (CODs) it follows that these 

functions should vanish at the contour of the crack domain kS . To incorporate this condition into 

BIEs implicitly, the CODs in the case of penny-shaped crack with radius ka  as the complex 

functions are presented as  

   2 2 2
1 2jk k jku a    ξ ξ         (7) 

where jk  are new unknown functions, which are defined over the domain kS  and allotted by the 

differentiability properties due to their sufficient smoothness. 
The representations of CODs in the form (7) simplifies the determination of SIFs in the crack 

vicinity, because they are expressed directly through the solutions of BIEs obtained. In particular, the 

mode-I SIF IK  as the function of polar angle  of the crack front point is given by the formula [6]: 

   I 32 cos , sin
1k k k k

G
K a a a       


     (8) 

At before discretization stage, the regularization procedure concerning the BIEs (1) or (3) or (4) 

or (6) defined on the crack-surface kS  bases on the singularity subtraction technique with the 
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following interpretation of hypersingular integrals due to the kernels  3 , , 1,3; 1,ij kkK i j p k N  : 

2 2 2
3 31 2

3 00 3 10 013
1 2

( ) ( )
( , ) ( ) ( ) ( ) ( ) ( )

k

j jk
ijk j j

S

a
K dS I I I

x x

  
     

  ξ

x x
ξ x ξ x x x x

x ξ
 

2 2 2 2 2 2
3 3 3 1 2

320 11 02 3 332 2
1 1 2 2

( ) ( ) ( )1 1
( ) ( ) ( ) ( , ) ( ) ( )

2 2
k

j j j k
ij k j j

S

a
I I I K

x x x x

       
         

x x x
x x x ξ x ξ x

x ξ

2 2
3 3 3 32

1 1 2 2 1 1 1 1 2 22
1 2 1 1 2

( ) ( ) ( ) ( )1
( ) ( ) ( ) ( )( )

2
j j j jx x x x x
x x x x x

     
             

    

x x x x
 

2
32

2 2 2
2

( )1
( )

2
jx dS
x

 
  

 
ξ

x
         (9) 

where kSx , the regular function 3ij kkK  describes the relation of the distances between the points 

x  and ξ  and their preimages, namely 
3

3ijk ij kkK K x ξ , the last integral in the right part exists in 

the ordinary sense, the integrals  

     
2 2 2

1 2
1 1 2 23 ( , ) ,

k

i jk
ijkij k

S

a
I K x x dS S

  
     

 ξx ξ x x
x ξ

   (10) 

are evaluated analytically by the integration by parts [6].  

 

Figure 3. Scheme of crack-surfaces discretization. 

Applying the presentations (9) with the analytical results of the integrals (10) yields the regular 
version of the BIEs (6). The discretization of BIEs (6) is realized by a similar collocation scheme, 
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where the unified boundary element mesh is formed by a uniform division of the circular domain kS  

(mapping of the crack-surface kS ) in the direction of the polar coordinates r  and   (Figure 3). 

The surface of the body is meshed by the boundary elements. Two-dimensional integrals over 
these surfaces we replace by the sum of integrals on superparametric boundary elements (Figure 2).  

In this analysis, linear approximation within each element is used for the boundary quantities 

ju  and jt , while constant approximation is adopted for the crack-surface functions jk  by using 

the standard Gaussian quadrature’s for the integration. For calculating weakly singular integrals, we 
propose the method of regularized mappings [9]. The main point of this method consists in that the 
quadrangle boundary element by using the form function is transformed to the square. Then this 
square divides diagonally into two triangles. Triangles transform by not one-to-one mapping to the 
squares so that the singular point is transformed to the side of the square. In this case the Jacobian of 
this mapping is equal to zero on this side and singularity is liquidated. Hypersingular integrals, the 
density of which is a function of cracks opening, is regularized numerically [6]. Discrete analogue of 
integral equations (4), (5) or (6) is constructed by replacing the unknown functions and kernels of 
integral equations on their values at the nodes of boundary elements and at the collocation nodes. A 
crack opening function determine the SIF [6]. 

3. Results 

In the numerical examples the uniaxial tensile loading of constant amplitude in the normal 
direction relative to the cracks surfaces is applied at remote places of an infinite solid containing two 
interacting cracks. To verify the validity of the present effective stress field method, we examine 
three configurations with two interacted coplanar penny-shaped cracks of the same radii a , and 
varying distance between their centers d . The vector between centers of cracks is: a) in the crack 
plane; b) at 45 degrees to the crack plane; c) perpendicular to the crack plane. Remote loading acts 
perpendicular to the cracks surfaces. The Poisson’s ratios of the solid are postulated as 0.33  . The 
mode-I SIF was calculated for the considered cases and normalized by the mode-I SIF 

*
I 02K N a   for a single penny-shaped crack of radius a  in an infinite solid under the same 

loading conditions, so that *
I I IK K K . For numerical analysis by collocation scheme 160 nodes 

on each surface of the crack were used (Figure 4). 
Numerical investigation was carried out also for Configuration I of cracks interaction in a 

limited body. Two penny-shaped cracks of the same radius a  are asymmetrically located in a 
square middle cross-section of the rod with respect to its center (Figure 5). The distances between the 

cracks centres were chosen as 2.2d a  and the distance from the boundary surface to the nearest 

crack is 0.1a . More details about locations of cracks are presented in Figure 5. Assume that tensile 

load 0N  is applied to the ends of the rod in the normal direction to its cross-section (perpendicular 
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to the cracks surfaces). In numerical simulations of limited body we use the same material and 
normalization procedure of a SIF, that for an infinite solid. It is assumed also, that the length of the 

rod (30a ) is large enough to influence deformation of it ends to the cracks opening was absent. In 

our analysis for the mesh of the rod boundary surface 770 boundary elements were used. 

   
(a)           (b) 

 

(c) 

Figure 4. The normalized mode-I SIF at the front point A in the case of two interacting 
penny-shaped cracks in an infinite solid versus the distance between their centers (solid 
lines correspond to the solution given by direct method; dashed lines correspond to the 
solution given by effective stress field method).  (a) Configuration I. The surfaces of 
cracks are in the same plane. (b) Configuration II. The surfaces of cracks are in parallel 
planes and vector between the centers of cracks is at 45 degrees to the crack plane. (c) 
Configuration III. The surfaces of cracks are in parallel planes and vector between the 
centers of cracks is perpendicular to the crack plane. 
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Figure 5. Scheme of location of two interacting penny-shaped cracks in the cross-section 
of the limited body. 

4. Discussion 

Due to the violation of problem symmetry mode II and mode III SIF also will not be zero but 
they have insignificant value. We present mode-I SIF on the charts for easy comparison with the case 
of interaction of cracks in an infinite solid. Variation of the mode-I SIF with the distance between the 
cracks centers is plotted in the Figure 4a for Configuration I of location of cracks and in the Figure 
4b and Figure 4c for Configuration II and III, respectively. As it is expected, a neighboring crack in 
the same plane provides an amplification effect for the crack, what is exhibited by increasing of the 
mode-I SIF in comparison with that for a single crack. So the extremal SIF increasing is fixed at the 
crack front point nearest to the neighboring crack. Opposite tendency takes place for interacting 
penny-shaped cracks in  parallel planes of the infinite solid.  The results of the calculation by 
approximate method effective stress field for interacting of two penny-shaped cracks with a radius R 
can considered sufficiently accurate when the distance between the nearest points of interacting 
cracks is not less than: 0.05R for Configuration I; 1.5R for Configuration II; 1.4R for Configuration 
III. In the case where discrepancy between the proposed method and direct method is a significant, 
problem of inaccuracy reducing can be resolved by multiple using of effective stress field method for 
each interacting cracks alternately. 

Numerical results for the limited body describe the SIF-behavior depending on angular 
coordinates of the contour of the first crack (Figure 6) and of the second crack (Figure 7). 
Qualitatively interaction of penny-shaped cracks in an infinite solid and in a limited body differ by 
more complicated distribution of the SIF along the crack front in the second case due to the 
appearance of additional extremums and changing their positions. So, the crack is located near the 
boundary surface and near the other cracks is characterized by two maximal values of the SIF. 
Maximal ones are observed at the front point nearest to the boundary of the body and to the 
neighboring crack. Location of the point with the absolute maximum of the SIF depends on the 
distance between the interacting objects and boundary surface of the body. Boundary surface of 
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complex shape leads to occurrence of two non-equivalent minimums of the function of SIF along the 
crack front. The absolute minimum is at the front point equidistant from the boundary surface and 
from the neighboring crack. 

 

Figure 6. The normalized mode-I SIF along the front of the crack, with occupied region 

1S  in the case of two interacting penny-shaped cracks in a rod (solid lines correspond to 

the solution given by direct method; dashed lines correspond to the solution given by 
effective stress field method). 

 

Figure 7. The normalized mode-I SIF along the front of the crack, with occupied region 

2S  in the case of two interacting penny-shaped cracks in a rod (solid lines correspond to 

the solution given by direct method; dashed lines correspond to the solution given by 
effective stress field method. 
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Figure 8. Refining of effective stress field method. 

5. Conclusion 

The improved BIEM-based numerical approach has been presented in this paper to analyze the 
SIFs in the vicinity of two interacted penny-shaped cracks embedded in an elastic infinite solid and 
in a limited elastic body having rounded edges. Numerical results are presented and discussed for 
uniform remote loading along normal direction to the cracks surfaces, when defects are on the same 
plane and on the coplanar planes. The influence of the boundary surface and neighboring defects on 
the crack are estimated for the dependences of mode-I SIF versus the crack-crack distance and 
angular coordinate of the contour of crack. 

Comparison between the results obtained by direct method and effective stress field method for 
solution of the problem on interaction of two penny-shaped cracks shows perfect agreement in the 
case of location of cracks in the same plane. In the case of interaction of two cracks in coplanar 
planes, we cannot use the method of effective stress field for small distances between their centers. 
In the case of occurrence of “not deep” cracks in the body (no more than 3 diameter of a crack from 
the boundary surface), influence of the body surface on the stress state at the crack front cannot be 
neglected. Approaching the crack to the surface of the body or to other crack in the same plane 
increases the SIF over all crack front. In the local sense the boundary surface influence leads to the 
complication of variation of the SIF along the crack front. It is expressed in increasing the number of 
the points with minimums and maximums of the SIF, position of which at the crack front depends on 
the crack-crack location and distance to the surface. Inaccuracy of the effective stress field method in 
the case closely located cracks is reduced three times already in the second iteration in the scheme 
which is shown in Figure 8. 

Although our attention in the numerical analysis is focused on the mode-I SIF, the proposed 
boundary integral formulation and solution procedure give the possibility for the determination of 
mixed-mode SIFs also for the arbitrary problem geometry and loading conditions. Proposed method 
can be easily generalized on the cases with multiple cracks having complicated shapes. 
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