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Abstract: The present work deals with the modeling of multi-defected solids under the action of 

large deformation. A micromechanics constitutive model, formulated in terms of the compressible 

anisotropic NeoHookean strain energy density function, is presented to characterize the 

corresponding nonlinear effective elastic behavior. By employing a scalar energy parameter, a 

correspondence relation between the effective hyperelastic model and this energy parameter is 

established. The corresponding effective material coefficients are then evaluated through combined 

use of the “direct difference approach” and the extended “modified compliance contribution tensor” 

method. The proposed material constitutive model can be further used to estimate the effective 

mechanical properties for engineering structures with complicated geometry and mechanics and 

appears to be an efficient computational homogenization tool in practice. 
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1. Introduction  

The mechanical behavior for solids is significantly affected by irreversible evolution of 

multiple distributed defects in the immediate neighborhood of a material point. In the past decades, a 
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variety of homogenization methods have been presented for developing equivalent homogeneous 

material models that effectively represent the mean mechanical constitutive response of the defected 

solids. The appropriateness of a homogenization method indeed relies on the purpose of simulation. 

In order to derive a sufficiently accurate model, it is in general necessary that the local defect 

interactions be properly captured. Also, in order for easy implementation, one of the major factors in 

concern is the computational effort of the respective homogenization procedure. 

The concept of using micromechanics constitutive models has been extensively employed as an 

efficient homogenization method in linear elasticity. A large number of analytical and numerical 

schemes of micromechanical modeling have been presented for problems containing either 

periodically distributed cracks (e.g., Nemat-Nasser et al. [1]), or irregularly distributed cracks (e.g., 

Kachanov [2], Petrova et al. [3], Shen and Li [4], etc.), and inclusions (e.g., Jasiuk [5], Nozaki and 

Taya [6], Tsukrov and Novak [7], etc.). In many of these models, the complex geometry of 

heterogeneous materials is simplified by considering the multi-defected solid as one inhomogeneity 

embedded in a homogeneous infinite matrix medium. By imposing a set of uniform loads on the 

remote boundaries of the matrix, the corresponding effective constitutive model is then derived by 

integrating and averaging the governing kinematic, stress, and energetic quantities over the 

respective material neighborhood. In this sense, the macroscopic effective properties lead to 

equivalent mechanical behavior as that of the material with the defected microstructure. Nevertheless, 

solution to mutual interaction of the defects in most of these models typically costs significant 

computational effort, especially when the number of defects becomes relatively large. A scalar 

energy parameter was presented (Chang and Liu [8]) to efficiently characterize the interactive 

behavior. With this energy parameter, the effective linear elastic moduli can thus be more easily 

obtained by direct use of numerical schemes such as finite element method. 

For problems involving more complicated geometry and mechanics, the multi-scale modeling 

methods are more appropriate for alternatively estimating the effective mechanical properties. A 

variety of multi-scale schemes have been presented for this purpose. One of the most commonly-

used approaches is the computational homogenization technique (e.g., Miehe et al. [9],  

Kouznetsova et al. [10], etc.). This technique has also been extensively exploited in many 

mechanical and engineering aspects including, e.g., masonry works (Mistler et al. [11]), 

thermomechanical applications (Shabana and Noda [12]), material layer models (Matous et al. [13], 

Hirschberger et al. [14]), and dynamic analysis (Pham et al. [15]), etc. The applications for the multi-

scale methods also include the following remarkable works, e.g., Belytschko and Xiao [16],     

Liu et al. [17], Budarapu et al. [18], Budarapu et al. [19], Talebi et al. [20], Yang et al. [21], etc. 

Through the concept of scale transitions, the numerical solutions to the coupled multi-scale boundary 

value problems can be accurately provided. Thereby, large deformations, nonlinearity, plasticity, 

damage, fracture, etc., can be properly taken into account in the modeling process. Nevertheless, the 

nested iterative algorithm in the calculation is computationally intensive and sometimes inconvenient 

to be implemented in practice. 

In this paper, a micromechanics constitutive model is proposed to characterize the effective 

elastic behavior of multi-defected solids subjected to large deformation. The model is formulated in 
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terms of anisotropic hyperelasticity and allows for a straightforward incorporation of material and 

geometrical nonlinearities. By employing an energy parameter that evaluates the released energy due 

to presence of the defects, a correspondence relation between the effective hyperelastic strain energy 

density function and this energy parameter is established in the context of large deformation. With 

combined use of the “direct difference approach” and the extended “modified compliance 

contribution tensor” method, the constitutive model and the associated material coefficients can be 

properly constructed by direct use of solutions from numerical schemes such as finite element 

method. The presented constitutive model can be easily implemented in macroscopic structural 

analysis in practice. 

2. Linear Effective Elastic Moduli 

In this section, two commonly-used homogenization procedures for determining linear effective 

elastic moduli, both based on the concept of micromechanics constitutive modeling, are briefly 

reviewed. Then, a modified method is proposed in the third subsection. All the three procedures are 

formulated in conjunction with a scalar energy parameter. Each of them thus represents a 

correspondence relation between the effective moduli of a multi-defected solid and the energy 

parameter. Finally in the fourth subsection, the numerical approaches for calculation of this energy 

parameter are illustrated. 

2.1. Eshelby’s Equivalent Inclusion Method 

We consider a homogeneous infinite matrix medium, modeled by linear elasticity, containing a 

set of irregularly distributed defects and subjected to uniform remote loads 

 = (

1


, 

2


, 


) 

(Figure 1).  

 

Figure 1. A cutoff area  (i.e., the shaded region) is delimited in a homogeneously-
stressed infinite medium. 
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In order to describe the damage level due to presence of the set of defects, we delimit a cutoff 
area , as shown in the shaded region in Figure 1. The size of  is chosen to be large enough to 
enclose the whole set of defects. Also, the shape of  can be specified either according to the 
statistical distribution of defects or by using any other convenient selections, e.g., the rectangle in 
Figure 1. 

In order to determine the effective elastic moduli of , we take the whole cutoff area as a single 

inclusion and postulate that the effective mechanical properties of  be equivalent to those of this 

inclusion. An energy parameter , which represents the released strain energy due to presence of 
the inclusion in the infinite matrix, is employed here to characterize the homogenized fracture state 

of . Based on the concept of the Eshelby’s equivalent inclusion theory (Eshelby [22]), the 

correspondence relation between the linear effective elastic moduli of and  can then be 
expressed as 



:[(Heff – Ho)

–1
:Ho + S]

–1
:Ho

–1
:


 = –2/A　     (1) 

where Heff is defined as the effective elastic moduli tensor of  (i.e., the inclusion), Ho is the elastic 

stiffness tensor of the matrix material, S is the Eshelby tensor, and A is the area of . Details for 

derivation of the left hand side of Eqn. (1) were presented by, e.g., Nemat-Nasser et al. [1]. Also, 

expressions for S associated with various shapes of inclusion can be found in, e.g., Walpole [23]. 
To find each component of the anisotropic linear effective elastic tensor Heff various 

combinations for the remote loads 

 need to be considered. By evaluating the released strain energy 

 associated with these loading conditions, the effective material moduli can then be determined.  

2.2. Compliance Contribution Tensor Method 

We again consider a homogeneous infinite linearly elastic matrix medium subjected to uniform 

remote loads 

 and take the whole cutoff area  (Figure 1) as a single inclusion. Based on the 

concept of the compliance contribution tensor (CCT) Cinc (e.g., Kachanov et al. [24], Tsukrov and 
Novak [7], etc.), the correspondence relation between the linear effective elastic moduli of the 
inclusion and the released strain energy  can alternatively be written as 



:Cinc:


 /A       (2) 

where 

Cinc ≡ Heff

–1 – Ho

–1
       (3) 

Still, by applying various conditions for the remote loads 

 and evaluating the respective 

released strain energy , the corresponding component of the tensor Heff can be properly 

determined through combined use of Eqns. (2) and (3). 
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2.3. Modified Compliance Contribution Tensor Method 

Analytically, Eqn. (1), the correspondence relation based on Eshelby’s theory, is applicable for 
use in solving Heff under all combinations of inclusion and matrix. On the other hand, it is observed 

that the CCT actually represents the increment of the compliance tensor. This means that the relation 
between Cinc and  shown in Eqn. (2) is only an approximation. Thus, equivalence of both sides of 
this equation holds asymptotically as the value of  becomes infinitesimally small, which indicates 
that the CCT method is feasible only for the conditions when the inclusion and the matrix possess 
very similar material behavior. Here, by combing Eqns. (2) and (3), and partly replacing the remote 

loads  with itf, a modified compliance contribution tensor (MCCT) can be written as 

itf:Heff
–1

:itf – :H0

–1
:  /A　　     (4) 

where itf is the average of the stress tensors along the interface betweden the inclusion and the 

matrix. In practice, itf can be properly extracted from the numerical fields resulting from, say, FE 
analysis. 

In the first term on the LHS of Eqn. (4), the remote load 

 that originally contributes to Heff in 

Eqn. (2) has been replaced by itf. With such modification, the effect resulting from the internal 
strain energy due to presence of the inclusion is more appropriately taken into account. The 
feasibility of MCCT will be illustrated in the following numerical examples.  

2.4. Evaluation of  

For accuracy, it is required that the released strain energy  be computed with a high degree 
of precision. A path-independent contour integral termed the “M-integral” was proposed by Chang 

and Liu [8] for this purpose. For linear elasticity, the M-integral evaluates twice the value of . 
Due to path-independence, the integration contour can be arbitrarily chosen as long as they contain 

the whole set of defects.  

Alternatively,  can be evaluated by using a “direct difference approach” (DDA). In this 
approach, we consider the defected specimen in Figure 1, yet taking the state containing no defect as 

an original configuration. The values of the strain energy associated with both the defected and 

original configurations under the same loading condition are calculated by using finite elements. The 

value of  can then be obtained by directly evaluating the corresponding energy difference 
between these two configurations. 

It was numerically investigated by Chang and Liu [8] that, for linear elasticity,  can be 

properly evaluated by either the M-integral or the DDA as long as the cutoff area  being delimited 
in an extended region that is large enough to be regarded as an infinite matrix medium. Also, it was 

observed that the calculations are rather insensitive to the local near-defect FE discretization so that a 

complicated FE model around the defects is not required. Further, by comparing the computational 

aspects of these two approaches, DDA appears to be more straightforward in practice in that  can 
be easily computed by direct use of any well-developed FE code with almost no need of extra coding 
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cost in the post-processing stage. Such an advantage indicates the superiority of DDA particularly in 

its extended application to problems subjected to large deformation. Therefore, M-integral is not 

used in this work. Instead, is evaluated by using DDA, which appears to be more 
computationally efficient. 

3. Effective Constitutive Model (Large Deformation) 

We again consider a homogeneous infinite elastic matrix medium containing a cutoff area  at 
its undeformed state, as shown in Figure 1. By applying a system of uniform remote loads that lead 

to large deformation, the body then reaches its current deformed state (this state is not shown in 

Figure 1). In the context of large elastic deformation, the highly nonlinear mechanical behavior can 

be properly characterized by using hyperelastic strain energy density function, with all state variables 

reinterpreted with respect to its undeformed state. In this sense, it is more appropriate to employ the 

concept of “effective strain energy density”, rather than the effective elastic moduli, for use as a 

micromechanics model for describing the constitutive behavior of . 
Further, by examining the Eshelby’s and the MCCT methods, it is observed that MCCT be 

more suitable for extension to nonlinear analysis. To construct the correspondence relation between 

the effective strain energy densityand , we have Eqn. (4) extended as 

Weff|itf – W0|= /A       (5) 

where Weff and W0 are the effective strain energy densities of the inclusion  and the matrix, 

respectively. Note that, while W0 is evaluated at the stress level 

, Weff is taken at itf so that the 

contribution from the internal strain energy of the inclusion is taken into account. 
By applying various combinations of remote boundary conditions (either external loads or 

stretches) and evaluating the associated released strain energy  with DDA, the effective strain 
energy density function Weff can then be properly determined. 

4. Anisotropic Hyperelastic Material Model 

For those materials that remain nonlinearly elastic under very large deformation, their 

mechanical behavior can be characterized by using hyperelastic models. The associated strain energy 

density function W can usually be expressed as a scalar function of the three principal invariants of 
the Cauchy-Green strain tensor V2 (i.e., I1, I2 and I3) as 

W = W(I
1
, I

2
, I

3
)        (6) 

In the present study, the hyperelasitc behavior of the infinite matrix medium is modeled with a 

compressible isotropic NeoHookean strain energy density function as 
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W = (
1/3
3

1

I

I
– 3) +

2

1 (I
3

1/2 – 1)2      (7) 

where  and  are material coefficients related to the initial shear and bulk moduli respectively. 

The material of the cutoff area , on the other hand, exhibits highly anisotropic behavior due to 
presence of the defects. The microstructure may also be rearranged due to reorientation of the defects 

under large deformation. To simulate such an anisotropic feature, a compressible anisotropic strain 

energy density function, “Anisotropic NeoHookean” (ANH), is constructed by superposing Eqn. (7) 

with an anisotropic potential  as 

W = (
1/3
3

1

I

I
– 3) +

2

1 (I
3

1/2–1)2 + (I
1
, I

3
; Ip,)     (8) 

Various models of anisotropic potentials have been presented in the literature. A 

micromechanically-based form presented by Gasser, et al. [25] is employed here as 

(I
1
, I

3
; Ip,) =

 2

1

k

k
N

1



{exp[k
2
((

1/3
3

1

I

I
– 3) + (1 − 3)(

1/3
3

,p

I

I  – 1))2] –1}  (9) 

where k
1
 and k

2
 are material coefficients that characterize the anisotropic behavior, N is the number 

of families of preferred directions in the set of defects. The parameter  (0 ≦ ≦ 1/3) describes the 

level of dispersion in the defect directions; when = 0, the defects are perfectly aligned; when    
= 1/3, the defects are randomly distributed and the material becomes isotropic. The variables Ip, 
(=1, …, N) are pseudo-invariants of V

2
 and defined as 

Ip, = dV
2
d(= 1, …, N)      (10) 

where d is a unit vector along the -th preferred direction of the defects at its undeformed state. 

Also, in ANH, + k
1
 and  are related to the initial shear and bulk moduli respectively. 

5. Numerical Examples (Effective Material Models) 

Three set of numerical examples are presented in the following three subsections. The problems 

are analyzed using finite elements. Quadratic elements are used for displacement interpolation in the 

calculation for both small and large deformation problems. No particular singular element is used 

throughout the study. 

5.1. A Single Inclusion 

In Problems 1.1 and 1.2, we consider a plane stress specimen containing one square inclusion 

of size d (Figure 2). Both the specimen matrix and the inclusion are modeled by isotropic elastic 
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materials. The inclusion is relatively small compared with the specimen so that the finite width effect 

is negligible. The single inclusion is taken as the whole cutoff area In such a case, the effective 

mechanical properties of  are analytically equivalent to those of the inclusion so that the accuracy 
of our numerical results can be properly examined. 

 

Figure 2. A single inclusion is taken as the whole cutoff area in a plane stress specimen. 

Problem 1.1 A single inclusion (linear elasticity) 

In this problem, the validity of our proposed approach in linear elasticity is illustrated. Here, we 
have the matrix and the inclusion modeled by Young’s moduli E0 and Einc respectively. Poisson’s 

ratios for both materials are the same and denoted as 0. By applying two far-field stress conditions 

along its exterior boundaries, including uniaxial tension 

 and pure shear 


, the two effective 

moduli Eeff and Geff can then be independently calculated. 

The study in this problem is organized as follows. First, the effect of the local finite element 

modeling in the near-defect area is investigated. Next, the numerical results associated with varying 
size of the specimen are observed. Finally, the effect due to the stiffness ratio E0/Einc is examined. 

In order to accurately evaluate the effective moduli, it is required that the released strain energy 

 be computed with a high degree of precision. To this end, three FE models with very different 
near-defect local meshes are used to conduct a mesh convergence study. Details of the near-defect 

local portions for the three FE meshes are shown in Figure 3, where the multi-point constraint is 

applied to tie the fine and coarse elements in the second mesh so that displacement continuity is 

ensured. The normalized results of , for both loading conditions, from the three meshes are 

tabulated in Table 1. Here,  is evaluated by using both the M-integral and the DDA. Although the 
mesh in the first model is quite coarse, the results from the three models show very good consistency, 

with deviations less than 1%. As observed, this energy parameter  appears to be rather insensitive 
to the local near-defect FE models. 
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(a)       (b) 

 
(c) 

Figure 3. Three local near-defect FE meshes for the specimen in Figure 2. 

Table 1. The results of  from three FE models for Problem 1.1. 

FE model 
Mesh1 

(Figure3(a)) 
Mesh2 

(Figure3(b)) 
Mesh3 

(Figure3(c)) 

E0/(

)2A 

(uniaxial tension) 

M-integral DDA 0.368 0.367 0.368 

0.367 0.368 0.368 

G0/(

)2A 

(pure shear) 

M-integral DDA 0.390 0.391 0.389 

0.389 0.390 0.390 
(E0/Einc = 2, w/d = 60) 

Next, three specimens (with aspect ratio w/d equal to 25, 60, and 240 respectively) are used to 

examine the finite width effect. Here,  is evaluated by using the DDA. The normalized results of 
 for both loading conditions under two material combinations (with E0/Einc equal to 2 and 5), are 

shown in Table 2. The results obtained from the three aspect ratios show very good agreement. This 

indicates that, in our calculation, the extent of the specimen is chosen sufficiently large so that it can 

be regarded as an infinite matrix medium. 
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Table 2. The results of  from different extent of specimen for Problem 1.1. 

w/d 25 60 240 

E0/(

)2A uniaxial tension E0/Einc = 2 0.368 0.367 0.368 

E0/Einc = 5 0.841 0.830 0.832 

G0/(

)2A pure shear E0/Einc = 2 0.390 0.391 0.389 

E0/Einc = 5 0.955 0.950 0.949 

After  being properly evaluated, the effective elastic moduli of the inclusion, Eeff and Geff, 

are then determined by using the three procedures described in Section 2. The numerical results 
associated with the two loading conditions, under various material combinations (with E0/Einc 

ranging from 1 to ∞), are shown in Table 3, where Eeff and Geff are normalized with respect to the 
analytical values Einc and Ginc respectively. We can see that, while both the Eshelby’s and the MCCT 

methods are analytically applicable for all material combinations, they may yield inaccurate results 
when Eo/Einc becomes too large due to inevitable numerical truncation error. This can be illustrated 

in the limiting case when the inclusion corresponds to a void (i.e., E0/Einc → ∞), where the 
numerical results of Eeff and Geff are relatively small yet not vanishing. As to the CCT method, it is 
observed that this approach is valid only when E0/Einc is very small, say, 1.5, as anticipated. 

Table 3. The results of effective moduli under different material combinations(Problem 1.1). 

E0/Einc 1 1.25 1.5 2 3 5 10 ∞(void) 

Eeff/Einc (Eshelby) 1.000 0.999 0.995 0.992 0.987 0.957 0.780 −0.032/0.0
Eeff/Einc (CCT) 1.000 1.018 1.050 1.156 1.383 1.868 3.141 0.045/0.0

Eeff/Einc (MCCT) 1.000 0.997 0.998 1.006 1.011 1.035 1.227 0.005/0.0
Geff/Ginc (Eshelby) 1.000 0.999 0.993 0.988 0.986 0.965 0.665 −0.046/0.0

Geff/Ginc (CCT) 1.000 1.014 1.042 1.124 1.315 1.725 2.770 0.036/0.0
Geff/Ginc (MCCT) 1.000 0.995 0.991 1.014 1.020 1.032 1.180 0.003/0.0

(w/d = 60) 

Problem 1.2 A single inclusion (hyperelasticity) 

The matrix and inclusion are modeled by the NeoHookean strain energy density function, with 
the material coefficients denoted as (0, 0) and (inc, inc) respectively. Here (inc, inc) are taken 

as (0/, 0/). Two sets of far-field loads, i.e., uniaxial and biaxial tensile loads, are considered. 

The magnitude of the applied tension 

 is varying, with the resulting maximum principal stretch 

max along the boundaries of the specimen ranging from 1 to 10. After  being properly evaluated 
by using DDA, the effective coefficients (eff, eff) are obtained by using Eqn. (5) and fitting the 

data within the specified range of deformation. More details about the numerical procedure will be 
illustrated in the next example problem. 
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By considering various material combinations (with  ranging from 1 to ∞), the effective 

coefficients associated with the two loading conditions are shown in Table 4, where eff and eff are 

normalized with respect to inc and inc respectively. It is observed that the extended MCCT method 

yields very accurate solutions when  is smaller than, say, 5. Still, the results appear to deviate from 
the analytical values as the value of  becomes too large. 

Table 4. The results of effective coefficients under different material combinations (Problem 1.2). 

 1 1.25 1.5 2 3 5 10 ∞(void) 

uniaxial eff/inc 1.000 1.002 1.005 1.011 1.019 1.027 1.187 0.002/0.0 
eff/inc 1.000 1.014 1.005 1.021 1.028 1.034 1.141 0.038/0.0 

biaxial eff/inc 1.000 1.002 1.010 1.017 1.026 1.032 1.121 0.001/0.0 
eff/inc 1.000 1.008 1.016 1.021 1.024 1.033 1.174 0.006/0.0 

(w/d = 60) 

5.2. Parallel Cracks 

In Problems 2.1 and 2.2, we consider a plane stress specimen containing a family of N parallel 

one-sized cracks (Figure 4).  

 

Figure 4. A plane stress specimen with the cutoff area containing a family of parallel cracks. 

These cracks, each of length l, are distributed in a doubly periodic manner, where s and a are 
the spacings of neighboring cracks in the parallel (x1-) and perpendicular (x2-) directions respectively. 

The crack distribution results in orthotropic mechanical behavior in the loading plane. The crack 

system is enclosed in a square cutoff area  of size d. The value of d is relatively small compared 
with the size w of the specimen. For such a crack system, a commonly-used measure of crack density 

parameter f in micromechanics is defined as 



1784 

AIMS Materials Science                         Volume 3, Issue 4, 1773-1795. 

f = 
A

l

4

N 2

        (11) 

In the present study, the crack system is taken to consist of 11 × 36 cracks in the cutoff area. 

Also, in the following calculations, the area of  and the spacing d are fixed, while crack length l is 
varying. 

Problem 2.1 Parallel cracks (linear elasticity) 

 

(a) effective Young's modulus 

 

(b) effective shear and bulk moduli 

Figure 5. The normalized effective elastic moduli versus the crack density parameter f 

(Problem 2.1). 

The original uncracked material in  is modeled by Young’s modulus E0 and Poisson’s ratio 

0.25. Three sets of far-field loads (i.e., uniaxial tension, pure shear, and biaxial tension) are 

considered. After  being properly evaluated by using DDA with finite elements, the effective 
moduli are then determined by using MCCT. Note that accurate solutions can be achieved by 

appropriately adjusting the material properties of the matrix. The results of the normalized effective 
Young’s modulus E22,eff/E0, shear modulus G12,eff/G0, and bulk modulus Beff/B0 versus the crack 
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density parameter f are shown in Figure 5(a) and 5(b) respectively. Also included in the figures are 
the solutions of E22,eff and G12,eff from two other approaches (Nemat-Nasser, et al. [1], Shen and   

Li [4]). As can be seen, our results are in good agreement with those from these methods. As an 

aside, although not depicted in detail here, our calculations show that a very fine FE mesh is not 

required in the near-tip area to have accurate results. The feasibility for combined use of DDA and 

MCCT in linear elasticity is thus illustrated. 

Problem 2.2 Parallel cracks (hyperelasticity) 

The original uncracked material in  is modeled by the NeoHookean strain energy density 
function with the material coefficients denoted as (0, 0). Three types of far-field loads (including 
uniaxial (x1- and x2-directions), and biaxial tensile loads) are considered, with the resulting 

maximum stretch maxranging from 1 to 16. The orthotropic effective strain energy density Weff of  

is characterized by the ANH model as 

Weff = eff ( 1/3
3

1

I

I
– 3) +

2

1 eff (I3
1/2 – 1)2 +

eff,2

eff,1

k

k {exp[k
2.eff ( 1/3

3

1,p

I

I
– 1)2] –1}  (12) 

where Ip,1 is determined from Eqn. (10) by specifying d1 in x
1
-direction, and k

2.eff is taken as 0.0001.  

After  being evaluated by using DDA, Weff is determined by using extended MCCT   
(Eqn. (5)). The results of Weff for, say, f = 0.367 under the three loading conditions are scaled with 

respect to o and depicted versus max in Figure 6. By substituting these data into Eqn. (12), the 

material coefficients (eff, eff, k1,eff) can then be solved with a least squares solution scheme. Also 

shown in Figure 6 are the resulting fitted curves for the three loading conditions. Note that, typically 
in hyperelasticity, the material data can be well fit within only a rather small range of deformation, 
usually for max < 3 [26]. In this sense, we can see that our given model yields very good results, 
which are will fit within almost the whole range of deformation for the uniaxial-x2 data, and in the 

range of very large deformation (12 < max < 17) for the uniaxial-x1 and biaxial data. 

 

Figure 6. The results of Weff/0 (evaluated with extended MCCT) versus max, along 

with the fitted curves (f = 0.367) (Problem 2.2). 
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The normalized results of the effective coefficientseff/0, eff/0, and k
1,eff/0 versus the 

crack density parameter f are shown in Figure 7. It can be seen that eff decreases monotonically 
with respect to f. On the other hand, as f increases, the anisotropic coefficient k

1,eff increases and thus 

makes more significant contribution to the initial shear modulus. Further, by comparing the results of 
eff + k

1,eff and eff with those of G12,eff and Beff for the linear case (Figure 5(b)), it is observed that 

they both coincide closely with each other. The physical meaning of + k
1
 and  as the initial shear 

and bulk moduli is thus evident. 

 

Figure 7. The normalized effective coefficients versus the crack density parameter f 

(Problem 2.2). 

5.3. An Elliptical Void 

In Problems 3.1 and 3.2, we consider a plane stress specimen containing a central elliptical void 

(Figure 8).  

 

Figure 8. A plane stress specimen with the cutoff area containing a central elliptical void. 
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This void is enclosed in a square cutoff area  of size d and results in orthotropic mechanical 
behavior in the plane. The size d is relatively small compared with w. Three geometric instances are 
considered. The first two (Cases I and II) are circular holes with area of 5% and 25% of A 

respectively. The third (Case III) is an elliptical void with aspect ratio d1/d2 = 1.8 and area of 35% of 

A.  

Problem 3.1 An elliptical void (linear elasticity) 

The original unvoided material in  is modeled by Young’s modulus E0 and Poisson’s ratio 0.3. 
Four sets of far-field loads are considered, including uniaxial tension in x1- and x2-directions, pure 

shear, and biaxial tension. The effective Young’s moduli (E11,eff and E22,eff), shear modulus G12,eff, 

and bulk modulus Beff are evaluated by combined use of these data. The resulting normalized values 

for the three geometric cases are shown in Table 5. It is observed that, for Cases I and II, the 

effective moduli due to the circular voids turn out to slightly deviate from isotropy. Such feature is 

actually anticipated because the calculations are based on a square cutoff area . As to the 
orthotropic case (Case III), E11,eff appears to be higher than E22,eff and G12,eff, as anticipated. 

Table 5. The effective stiffness due to presence of an elliptical void (Problem 3.1). 

Geometric Cases E11,eff/E0 E22,eff/E0 G12,eff/G0 Beff/B0 

Case I 0.905 0.905 0.861 0.870 

Case II 0.608 0.608 0.516 0.616 

Case III 0.561 0.283 0.287 0.470 

Problem 3.2 An elliptical void (hyperelasticity) 

The original unvoided material in  is modeled by the NeoHookean strain energy density 
function with the material coefficients (0, 0). Three types of far-field loading conditions are 

considered, including uniaxial (x1- and x2-directions) and biaxial tensile loads, with the resulting max 

ranging from 1 to 16. The deformed finite element mesh in Figures 9(a) and 9(b) show the response 
of the specimen for Case III under the action of uniaxial (x1-direction) and biaxial tension, 

respectively, for max = 3, where the undeformed configuration is depicted in heavy lines.    

Figures 10(a) and 10(b) show the distribution of maximum principal Cauchy stress for the two 

scenarios in the near-void local area under the deformed state. 
By taking the ANH strain energy density function (Eqn. (12)) with d1 specified in x

1
-direction, 

the results of the normalized effective coefficientseff/0, eff/0, and k
1,eff/0 for the three 

geometric cases are shown in Table 6. It is observed that, for Cases I and II, the “nearly”-isotropic 
behavior can be characterized by using only the first two effective coefficients eff and eff, which 
appear to be very close to the values of G12,eff and Beff in the linear case (Table 5). Also, by 

comparing the results of eff + k
1,eff and eff for Case III with those of G12,eff and Beff in the linear 

case (Table 5), the physical meaning of + k
1
 and  is again evident. Further, the results of Weff/0 
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versus max, along with the fitted curves for the three loading conditions, are shown in Figure 11. Still, 
we can see that our given model yields very good results, which are well fit within almost the whole 
range of deformation for both the uniaxial-x2 and biaxial data, and in the range of very large 

deformation (10 < max < 15) for the uniaxial-x1 data.  

 

 

Figure 9. The deformed mesh for the specimen in Figure 8 for max = 3. (a) uniaxial (x1-

direction), (b) biaxial. 

Table 6. The effective coefficients due to presence of an elliptical void (Problem 3.2). 

Geometric Cases eff/0 eff /0 k
1,eff/0

Case I 0.863 0.872 ––– 

Case II 0.518 0.621 ––– 

Case III 0.269 0.473 0.016 

(a) 

(b) 



1789 

AIMS Materials Science                         Volume 3, Issue 4, 1773-1795. 

 

 

Figure 10. The distribution of maximum principal Cauchy stress in the near-void area 

for max = 3. (a) uniaxial (x1 -direction) (b) biaxial. 

 

Figure 11. The results of Weff/0 versus max, along with the fitted curves (Case III) 

(Problem 3.2). 

(a) 

(b) 
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6. Numerical Example 

In this section, we consider a plane strain body of height h0 and with infinite extent in x1-

direction. The body consists of the bulk and a thin material layer with height d (Figure 12(a)). Both 

the materials are modeled with hyperelasticity. The initial Young’s moduli for the bulk and the layer 
are E0 and Em respectively, and Poisson’s ratios are both 0.3. Perfect bonding between the materials 

is assumed. In many engineering applications (e.g., adhesive bonding layer, masonry, biomedical 

tissues, etc.), the material layer typically possesses substantially weaker mechanical properties than 

the surrounding bulk. More possibly, its material integrity can further be degraded if the layer 

contains heterogeneities such as microvoids or microcracks. In the present example, the material 

layer with a microstructure composed of a series of periodically-distributed identical elliptical voids 

is considered. A square “representative area element” (RAE) of width d (Figure 12(b)), containing a 

central elliptical void, is thus delimited for modeling the effective properties on the macro level. The 

following study is conducted by considering three instances of microstructures, including no void, a 

circular hole of 25% void ratio, and an elliptical void of 35% area ratio. The body is subjected to 
mixed-mode displacements (u1, u2) along its top and bottom boundaries. Both the local stress 

intensity in this layer and the global reaction at the boundaries are thus significantly governed by the 

geometric and material properties. 

 

 

Figure 12. (a) A body, of infinite extent in the x1- direction, contains a thin weak 

material layer. A representative column is chosen for FE analysis. (b) A square RAE is 

delimited for modeling the microstructure of a material layer containing periodically-

distributed identical elliptical voids.  

(a) 

(b) 
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The FE analysis is performed by choosing a “representative column” of width w0, as shown in 

Figure 12(a), where the infinite extent of the specimen is represented by imposing periodic boundary 
conditions along the two lateral sides. The FE mesh for the geometric instance of d = h0/20 is shown 

in Figure 13(a). The effective ANH material coefficients listed in Table 6 are used for modeling the 
three microstructure instances of the material layer, with Em = E0/10. A shear-dominated pair of 

displacements (u1, u2) = (u1, 0.1u1) are applied incrementally until a final state of deformation due to 

u1 = 0.1h0 is reached. Mesh studies have been performed to ensure convergence of the solutions. The 

deformed FE meshes in Figure 13(b)–13(d) show the responses of the three microstructures at their 

final deformed states, where the local deformation of the material layer depends substantially on its 
stiffness. Figure 14(a) and 14(b) illustrate the results of the reactions R1 and R2 (in x1- and x2-

directions, respectively) at the upper boundary versus the applied displacements. The values are 
normalized with respect to R1,ref, the reaction in x1-direction at u1 = 0.1h0 for the case of no void. 

Also included in the figures are the results from Hirschberger et al. [14], where a multiscale-based 

computational homogenization scheme is used for the solution. It appears that they are very well 

consistent for most instances in their macroscopic responses and the feasibility of our material 

constitutive model is therefore illustrated. 

 

(a)           (b)           (c)          (d) 

Figure 13. (a) The FE mesh for a representative column (d = h0/20). (b)–(d) The 

deformed FE mesh (no void, circular void, and elliptical void). 
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(a) reaction in x1-direction 

 
(b) reaction in x2-direction  

Figure 14. The reactions at the upper boundary versus the applied displacements. 

In order to further investigate the effect of the displacement mode, we define a dimensionless 

parameter “mode mixity” as  

= u1/(u1 + u2)         (13) 

The variations of R1/R1,ref and R2/R1,ref for the two microstructures (i.e., the circular and the 

elliptic voids) are depicted with respect to  in Figure 15. It is observed that, while R1 varies almost 

linearly with respect to , R2 bears a more nonlinear trend as it decreases more significantly as  

decreases. As an aside, the reactions under varying material layer height d are also evaluated. The 
results for the microstructure with circular voids, deformed at (u1, u2) = (0.1, 0.01)h0, are shown in 

Figure 16. We can see that the reactions decrease as d increases, as anticipated. It is further observed 

that such weakening trend of the global stiffness becomes less significant as the layer becomes 

thinner. 

Although the presented numerical examples are all two-dimensional cases, it is straightforward 

to make the model extended to general three-dimensional cases. To this end, by applying 

combinations of remote boundary conditions in the third dimension and evaluating the associated 
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released strain energy , the three-dimensional effective strain energy density function Weff can 

then be properly constructed. 

 

Figure 15. The variations of R1/R1,ref and R2/R1,ref with respect to . 

 

Figure 16. The variations of R1/R1,ref and R2/R1,ref, at (u1, u2) = (0.1, 0.01)h0, with respect to d. 

7. Conclusions 

An anisotropic hyperelastic constitutive model ANH is presented to quantitatively characterize 

the effective mechanical response of multi-defected solids under the action of large deformation. The 

corresponding effective strain energy density function can be properly constructed by combined use 

of the DDA and the extended MCCT methods. With our proposed approach, the associated material 

coefficients can then be easily determined by using a scalar energy parameter , which can be 
directly extracted from regular FE solutions. 

The feasibility of the proposed approach is illustrated by considering a series of numerical 

examples. By comparing with the results from other computational schemes, it is observed that our 

presented approach provides quite good approximations with sufficient accuracy in engineering 

applications and can be easily implemented in the FE model with no extra computational cost. When 
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compared with other multi-scale computational homogenization techniques, the approach thus 

appears to be a very efficient computational device and is straightforward for use in practice. 
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