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Abstract: This paper aims to describe the effect of tool geometry on cutting characteristics of a   
1.0 mm thickness acrylic worksheet subjected to a punch/die shearing. A set of side-wedge punch 
and side-wedge die which had the edge angle of 30°, 60 and/or 90° was prepared and used for 
cutting off the worksheet. A load cell and a CCD camera were installed in the cutting system to 
investigate the cutting load resistance and the side-view deformation of the worksheet. From 
experimental results, it was revealed that a cracking pattern at a sheared zone was remarkably 
affected by the edge angle of cutting tool. A cracking direction was almost coincident to the edge 
angle when considering the punch/die edge angle of 30, while any matching of them was not 
observed in case of the punch/die edge angle of 60°, 90°. By using the 30° side-wedge tool, a 
flat-smooth sheared surface was generated. When combing the punch edge angle of 90° and the die 
edge angle of 60°, the cracking profile was characterized by the both edge angles for each part (die 
and punch). Carrying out an elasto-plastic finite element method analysis of cutter indentation with a 
few of symmetric and asymmetric punch/die edges, the stress distribution and deformation flow at 
the sheared zone were discussed with the initiation of surface cracks. 
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1. Introduction  

An acrylic sheet is a kind of resin which shows several advantages such as excellent 
transparency to the visible light, high shattered resistance, good resistance to many chemicals and so 
on. Due to these advantages, the acrylic sheet is proposed to be an ideal material for making 
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advertising boards, control panels, etc [1]. Moreover, this resin becomes an important raw material 
for dental applications [2,3].  

To cut a raw acrylic sheet into net and/or near net shape products, a punch/die shearing is one of 
attractive cutting methods. Many researchers have paid a lot of attention on the shearing of ductile 
metallic sheet materials. Klocke et al., numerically analyzed the effect of mechanical conditions of 
the shearing process on the breaking pattern of a 42CrMo4 steel sheet subjected to a punch/die tool. 
They revealed that a too large punch/die clearance caused the formation of an excessive incline 
sheared edge of the worksheet [4]. Chen et al., investigated the tearing failure on a sheared edge of a 
SS400 structural steel sheet subjected to the punch/die shearing. Such failure was found to be 
strongly affected by the tensile stress in the sheared zone and the friction between the cutting tool 
and the worksheet interfaces [5]. Thipprakmas studied the application of a V-ring indenter for the 
shear cutting of a JIS-S45C cold-rolled steel sheet. The use of this indenter resulted in the increase of 
the compressive stress in a sheared zone and the suppression of the material flow during cutting. 
These conditions contributed to suppress the formation of unexpected cracks. As the result, a smooth 
sheared edge of the worksheet was generated [6].  

From the above literature survey, sheared edge features of ductile metallic sheets cut by the 
punch/die shearing process appear to be remarkably influenced and varied by a state of stresses at the 
sheared zone and mechanical conditions of the shearing process. 

In the case of fragile resin sheet shearing, there are almost not any research works aiming to 
investigate the change of cracking/deformation pattern when a state of stress at the sheared zone is 
varied by varying shearing tool geometry. Therefore, in this work, a couple of side-wedge punch/die 
tools were prepared and employed to experimentally cut off a fragile acrylic worksheet. Moreover, a 
two-dimensional FEM analysis of the side-wedge punch/die shearing was conducted. 

2. Materials and Method 

2.1. Material, Tool Condition and Method 

In the experiment, a fragile resin, acrylic worksheet (AC) which had a thickness tS = 1.0 mm 
was chosen as the worksheet. The in-plane mechanical properties of the AC worksheet were 
evaluated by the uni-axial tensile test.  

 

Figure 1. Stress-strain curve of acrylic worksheet (Test standard: JIS-K7127). 
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Table 1. In-plane mechanical properties of acrylic worksheet. 

tS = 1.0 mm, strain rate = 0.002 s1 
Young’s modulus 

E/MPa 
Yield strength

Y/MPa 
Breaking strength 

B/MPa 
Breaking strain 

B 
2216 41 75 0.07 

Figure 1 and Table 1 show the true stress–true strain curve and the fundamental mechanical 
properties of the AC worksheet. Shearing specimens were cut from a raw acrylic sheet to have a 
width (wS) and a length (lS) of 20 and 70 mm, respectively. Protective films attached on the surfaces 
of the AC specimens were removed, and then the specimens were sufficiently washed water and 
naturally dried. After that, they were kept in a room with a temperature of 296 ± 1 K and a humidity 
of 50 ± 1 %RH for approximately 24 hours before the shearing test.  

To cut off the worksheet, a straight shearing tool with a central punch and right and left dies 
shown in Figure 2 was used. In this experiment, two-line cutting was considered as a symmetric 
structure. The punch was pushed downward to indent to the worksheet by a servo press machine. The 
wedge tools were made of a JIS-SKD11 cold work tool steel which had a hardness of 58~60 HRC. A 
load cell was used to measure the cutting load resistance F. To investigate the side-view deformation 
of the worksheet, a CCD camera was installed. The cutting/feed velocity V was fixed as 0.05 mms1. 
The clearance ratio c/tS was basically chosen as 0.025 in the cases of symmetric wedge profile of 
punch/die, as shown in Figure 2(b). The shearing test of the worksheet was carried out in the 
temperature and humidity controlled room. The shearing test was carried out 10 times for each 
condition. 

 

(a) General layout of die set (rectangle)   (b) A half-left schematic and wedge profiles 

Figure 2. Schematics of punch/die set-up and specimen configuration. 

As the experimental condition of tool geometry, the side-wedge angles of the punch (P) and die 
(D) were chosen as 30 and/or 60 in this work. The square punch/die tool of P = D = 90 was 
referred from the previous report [7] and compared here. The tip thickness of these tools (wT) was  
14 m in average (13.30~14.25 m). The cutting load resistance, the side-view deformation behavior 

Die holder

Counter 
punch

Clearance  c

Worksheet

Punch holder

Stripper

SpringPunch

Applied force FFeed velocity V

d

Clearance
Adjuster (Die)

Cylinders for sliding 

Punch

Die
Counter 
punch

Stripper

AC c

P

D

Sym. 
lineLoad cell

Servo 
cylinder

Indentation 
direction

wT14 
m

tS
wT



1731 

AIMS Materials Science  Volume 3, Issue 4, 1728-1747. 

and the final sheared edge of the worksheet were compared and discussed with our previous shearing 
results of an acrylic worksheet subjected to a square punch/die tool (P = D = 90) [7]. The square 
angle of punch/die condition was named here as Case 1: P = D = 90°, while other side-wedge 
angles were named as Case 2: P = D = 60° and Case 3: P = D = 30° for the sake of convenience.  

Furthermore, an asymmetric wedge combination (Case 4: P = 90° and D = 60°) was 
investigated in order to observe the effect of asymmetric wedge indentation on a cracking pattern. 
Here, the clearance c/tS was 0.03 in the case of asymmetric condition. 

2.2. Cutting Load Resistance and Side-View Deformation of Worksheet 

Figure 3(a) illustrates the relationship between the cutting line force f (f = F/2wS) and the 
normalized indentation depth of punch d/tS for the angles P and D. The f-d/tS curve of the square 
punch/die (Case 1: P = D = 90°, referred from [7]) was also plotted in Figure 3(a). The depth d/tS 
was defined to be zero when the punch touched the upper surface of the worksheet. From Figure 3(a), 
the following features of f were revealed: (i) the gradient of f(f/(d/tS)) in the shallow indentation 
depth 0 < d/tS  0.1 increased when increasing the side-wedge angles. (ii) The first peak point of 
f(fP1) increased with the side-wedge angles, as show in Figure 3(b). This relationship was linearly 
approximated by Eq. (1). (iii) After passing through fP1, wavy residual force was observed in Cases 2, 
1 of P = D = 60°, 90. But, this wavy residual response did not occur in Case 3 of P = D = 30. 
(iv) The breaking position of the worksheet (dBreak/tS) in Cases 3, 1 of P = D = 30°, 90 was 
detected at d/tS  0.45~0.5, while the separation of the worksheet was delayed up to d/tS  0.79 in 
Case 2 of P = D = 60. 

 

Figure 3. Cutting line force and its first peak for P and D (c/tS = 0.025, V = 0.05 mms1). 

fP1 = 0.6P,D 19.76          (1) 

Figure 4 shows the side-view deformation photographs of the worksheet for the side-wedge 
angles P and D at some representative indentation depths. When the square punch and die (Case 1: 
P and D = 90) were considered, at d/tS  0.25, two primary cracks were apparently observed on 
the upper and lower surfaces of the worksheet. The upper crack tended to be initiated close to the 
cutting tool corner, while the lower crack occurred on the lower free surface where is a little far from 
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the cutting tool corner. These two primary cracks were propagated and appear to be similar patterns 
when d/tS  0.35 as seen in Figure 5(c). At the final shearing stage, the propagation of the primary 
cracks stopped, and then the worksheet was completely cut off by the propagation of the secondary 
crack, as illustrated in Figure 5(c) at d/tS  0.52. 

For both cases of the side-wedge tools (Case 3, 2: P = D = 30, 60), as shown in Figure 4(a) 
and (b) at d/tS  0.4, the initiation of the primary cracks were always detected in the vicinity of the 
tool tips. After the primary crack occurrences at the early stage, the crack pattern was quite different 
when varying the angles of the side-wedge tools. In Case 2 of P =D = 60, the crack pattern was 
fairly similar to that of the square punch/die tool case. Namely, the secondary cracks were largely 
propagated into the inner and outer portions of the worksheet. But, when using the smallest-angle 
wedge tool (Case 3: P = D = 30), the primary crack initiated at the tip of the die and propagated 
parallel to the indentation direction of the wedge punch. This propagation seems to contribute the 
generation of a straight sheared edge, as seen in Figure 4(a) at d/tS  0.94. From Figure 4, the 
small-angle side-wedge tool (Case 3: P = D = 30) seems to be superior for generating the straight 
sheared edge of the fragile acrylic worksheet. 

 

Figure 4. Side-view photographs of worksheet for P and D (c/tS = 0.025, V = 0.05 mms1). 
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the first surface crack occurrence (initiation) seems to strongly affect a subsequent cracking pattern 
and a final feature of the sheared edge. Thus, in order to furthermore discuss about the first surface 
crack with respect to the side-wedge angles of the punch and die, an intermediate cutting experiment 
of the worksheet was carried out. Here, all the side-wedge and square punch/die tools were 
considered. The punch was indented to the worksheet with the indentation depth d/tS  0.01, 0.02, 
0.03, 0.05 and 0.1. When the indentation reached the specified depth, the punch was quickly 
withdrawn. Then, the scored specimens were observed by an optical microscope for investigating the 
first surface cracks initiated on the upper and lower surfaces of the worksheet.  

 

Figure 5. Optical micrographs of the scored AC sheet for P and D (c/tS = 0.025). 
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Figure 5 illustrates representative optical micrographs for the upper and lower surfaces of the 
scored worksheets using the three cases P = D = 30, 60 and 90.  

From Figure 5, it was found that the first surface crack initiation on the worksheet surfaces 
occurred at the shallow indentation depth d/tS  0.02 in Case 3 of P = D = 30, while this initiation 
was slightly postponed up to d/tS  0.03 and 0.04 in Cases 2, 1 of P = D = 60, 90, respectively. 

In addition, from this first surface crack investigation, in Case 1 of the square punch/die tool  
(P = D = 90), many fine surface cracks shown in Figure 6 were detected on the upper and lower 
surfaces of worksheet which contacted with the lower surface of the punch and the upper surface of 
the die during the intermediate indentation. From Figure 5(c) and Figure 6, the cracking zones on the 
upper and lower contact surfaces of the worksheet were detected at approximately 50 m far from 
the tool indentation lines or the cutting tool corners. In section 3.3, the initiation of the surface cracks 
is furthermore discussed. 

When the 30 and 60 angle tools were applied to the specimens, there were not any fine surface 
cracks except for the ones that were generated by the deep indentation of the punch and die tips.  

 

Figure 6. Fine surface cracks initiated on the worksheet surfaces in case of square 
punch/die tool (d/tS  0.1, c/tS = 0.025). 
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Figure 7. Macroscopic photographs of final sheared edges of worksheet for P and D 
(c/tS = 0.025, V = 0.05 mms1). 
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Putting 1 = 250 N∙mm1 and 2 = 166.7 N∙mm1 in Eq. (2), the calculation of  outcomes  
200.0 N∙mm−1. Therefore, it is found that the gradient of cutting resistance is fairly estimated using 
the combination model [8].  

 

Figure 8. Cutting line force for P = 90° and D = 60° (c/tS = 0.03, V = 0.05 mms). 

After passing through the peak point fP1, a wavy residual force was observed in this case. This 
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Cases 1, 2 and 3. 
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close to the corner of square punch, while the pre-primary crack occurred on the upper contact 
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crack. Considering the initiation of those cracks, the peak point fP1 at d/tS  0.3 seems to be caused 
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resistance without any large growth of upper primary crack. The breaking point of d/tS ൎ	0.6 seems 
to be caused by the growth of upper primary crack. In the next stage for d/tS ൎ 0.6–0.9, the 
secondary cracks on the rod-like dust were processed by the cutters.  

Figure 10 shows the side-view microscope photograph of the completely sheared worksheet. 
Seeing the occurrence of pre-primary crack, it was revealed that the asymmetric wedges indentation 
made the outside body rotate strongly. Here, since the indentation depth of lower edge (D = 60°) 
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although the asymmetric wedge profile makes the unbalance indentation depth between the upper 
and lower cutter. If the occurrence of pre-primary crack can be restricted using appropriate fixture, 
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the sheared profile is almost similar to Case 2. Therefore, a fixing condition of worksheet is 
important for making smart edge profile.  

 

Figure 9. Side-view photographs of worksheet for P = 90° and D = 60° (c/tS = 0.03,   
V = 0.05 mms1). 

 

Figure 10. Microscope photographs of final sheared zone of worksheet for P = 90° and 
D = 60° (c/tS = 0.03, V = 0.05 mms1). 
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software ver. 2012.1.0 was used. Figure 11 shows the schematic of the two-dimensional FEM model 
for the side-wedge punch/die shearing. A pair of two-line cutting was considered as a half symmetric 
model. The worksheet was assumed to be deformable body. Fine elements which had a side length  
lF = 12.5 m was used for modeling the worksheet at the sheared zones, while the other far zones of 
the worksheet were modeled using the larger elements which had a side length of about 300 m. The 
material properties of the worksheet were assumed to be isotropic elasto-plastic with work-hardening. 
The constitutive equation of the worksheet proposed by Mitsomwang and Nagasawa [7] was used in 
this FEM analysis. The glue contact function of the MARC [9] was used to connect the fine mesh 
zones with the large mesh zones. The punch, dies, counter punch and strippers were assumed to be 
rigid bodies. During indentation of the punch, the vertical displacement of the strippers and the 
counter punch were controlled by their attached backing springs. The spring stiffness kS = 5 Nm1 
and kC = 4.5 Nm1 were assumed. These stiffness values were experimentally evaluated from the 
load-displacement curves of the springs.   

 

Figure 11. Schematic of two-dimensional FEM model for the shearing tool indentation. 

When the cutting tool indented into the deformable worksheet, few elements around the cutting 
tool corners tended to be severely crushed. This caused an unstable calculation and its stop. To avoid 
this problem, a re-meshing function was considered on the fine mesh zone using the advancing front 
quad method [10,11]. The re-meshing was performed when the following criteria were satisfied:     
(i) when distortion of elements exceeded a certain level, an inner angle of elements was greater than 
175 or less than 15, and (ii) a penetration of the side-wedge into the deformed body was larger than 
10 m. The side length of re-meshing elements was controlled to be approximately 20 m.  

The coulomb tan1 friction model with a relative slipping velocity threshold of 0.01 was 
considered. The friction coefficients at all the contact interfaces, P, D, S and S, were assumed to 
be 0.25. This value was referred from the friction coefficients used in a prior simulation work of the 
AC shearing [7].  
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punch and die just touched the worksheet surface. Since there were not any apparent cracks in this 
early stage, no damage model was considered. The angles P and D were chosen as 30, 60 and 90, 
while the clearance was fixed as c/tS = 0.025. 
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Regarding the asymmetric combination of Case 4, P = 90°, D = 60°, the similar cutting model 
was carried out, using the upper stripper which has the spring stiffness kS = 5 Nm1. The clearance 
was chosen as c/tS = 0.03 and the indentation of punch was considered up to d/tS = 0.3~0.5. Here, 
since the tip angles P of punch and the tip angle D of die were different with each other, the punch 
indentation depth dP is not equal to the die indentation depth dD in general, while the total indentation 
depth is evaluated as the sum of them: d = dP + dD. The square punch/die model of Case 1 [7] was 
renewed as Case 1’ using c/tS = 0.03 and the upper stripper and the central counter punch. 

3.2. Verification of Assumed Parameters 

For the square punch/die shearing FEM simulation, assumed FEM parameters were already 
confirmed in a previous work [7]. However, for this side-wedge punch/die shearing problem, a 
couple of modified conditions were required for successful running, e.g., an incremental balance 
between the side length of divided elements and the contact length of a sharp wedge as a rigid body; 
the re-meshing criteria for avoiding any insufficient convergence state of cross contact between a 
sharp rigid edge and a deformable body. In order to verify the applicability of the modified 
conditions, a new developed FEM model was numerically simulated and its cutting line force was 
compared with the experiment. 

Figure 12 shows the simulated and experimental cutting load response f-d/tS for P and D = 30, 
60, 90°. For all the tool angles, the simulated cutting line forces showed a good agreement with the 
experiment until the first local maximum point (e.g., d/tS  0.2 for the square punch/die). Therefore, 
it was confirmed that the modified FEM conditions were applicable for simulating the side-wedge 
punch/die shearing in the shallow indentation state.  

 

Figure 12. Simulated and experimental cutting line force f for P and D (c/tS = 0.025). 

When the indentation depth exceeded the first local maximum point (e.g., d/tS > 0.2 for the 
squared punch/die, and/or d/tS > 0.5 for Case 3, the smallest angles P = D = 30°), the simulated 
load response f-d/tS tended to be deviated from the experiment. In Case 2 of P = D = 60°, the 
simulated load response almost matched to the experiment for a wide range (0 < d/tS < 0.7). The 
mismatch in Cases 3 and 1 of 30, 90° suggests that an appropriate damage model is necessary for 
estimating the deformation behavior when any apparent cracks are generated. 
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3.3. Stress Distribution at Sheared Zone 

To discuss about the first crack initiation, a vector diagram of stress components in the sheared 
zone at the first crack initiation for each case of the tool angle was plotted, as illustrated in Figure 13. 
The vectors with circle-end and diamond-end represent the maximum and minimum principal 
stresses P1 and P2, respectively. The red line indicates the norm of tensile stress while the blue line 
represents the norm of compressive stress.  

 

Figure 13. Vector diagram of max. (P1) and min. (P2) principal stresses at first crack initiation. 

At the position of the first surface crack initiation in the cases of the side-wedge punch/die tools 
(for P and D = 30, 60), the max. (P1) and min. (P2) principal stresses near the tool tips were 
estimated as  61.9~67.3 MPa and 127.7~148.9 MPa. Hence, the two principal stresses 
generated the maximum shear stress as Max.  (P1  P2)/2  32.9~40.8 MPa ( 0.5B). Figure 13(a) 
and (b) indicated that the initiation of the first surface crack was mainly caused by the high 
compressive pressure at the contact surface between the cutting tool tips and the worksheet surfaces, 
in the two cases of side-wedge punch/die tools (for P and D = 30, 60). 

In the case of the square punch/die tool, as shown in Figure 13(c), the stress components at the 
first surface crack initiation appeared to be fairly different from that of the side-wedge punch/die 
case. Namely, at the punch and die corners, the maximum principal stress P1 was detected as the 
tensile state (positive). Here, since the principal stresses P1, P2 at the cutting tool corners were 
3.5~4.4 MPa and 127.6~128.5 MPa, respectively, the maximum shear stress was calculated as  
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Max.  62.1~65.6 MPa ( 0.85B). Due to the positive (tensile) state of P1, the initiation of surface 
crack appeared to be enlarged across to the direction of P1, namely in parallel to the direction of P2 
(minimum compressive). In the cases of side-wedge angles of 30, 60°, since the both components of 
P1, P2 were compressive state, as shown in Figure 13(a) and (b), any initiation of small cracks 
appeared to be suppressed at the early stage d/tS = 0.02~0.03.  

So far, from the stress vector diagrams shown in Figure 13, it was indicated that the stress 
distribution at the first surface crack initiation in the sheared worksheet was fairly different when 
varying the cutting tool angle.  

 

Figure 14. Contour band diagram of P1 at first crack initiation for wedge angles. 

Figure 14 shows the contour band diagram of the maximum principal stress P1 near the cutting 
tool tips at the first surface crack initiation, while Figure 15 shows the contour band diagram of 
minimum principal stress P2. From Figure 14 and Figure 15, the high compressive maximum   
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(P1 > 50 MPa) and minimum (P2 > 200 MPa) principal stresses which were represented by the 
dark-gray band was detected in the vicinity of the tool tips in the cases of the side-wedge punch/die 
shearing. But, in the case of the square punch/die shearing, such high compressive stresses was also 
generated at the tool contacted zone which were slightly far from the punch and die corners, as 
shown in Figure 14(c) and Figure 15(c).  

 

Figure 15. Contour band diagram of P2 for tool angles at first crack initiation position. 

Next, in order to investigate the correlation between the high compressive stress zone and the 
initiation of the fine surface cracks, the magnitude of P1, P2 and Max. along the path p-p and d-d 
lines, as shown in Figure 15(c), was plotted. Figure 16 shows the relationship between the principal 
stresses P1, P2 and the arc lengths lA(Punch), lA(Die), while Figure 17 illustrates the maximum shear 
stress Max. with respect to the arc lengths lA(Punch), lA(Die). From these figures, it was found that the 
peaks of P1, P2, Max. which were simulated at lA(Punch), lA(Die)  46.3 m were fairly similar to the 
fine surface cracking zone observed in the experiment. This indicated that the compressive stresses 
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(P1 and P2) and/or the maximum shear stress were primary factors of the fine surface crack 
initiation, as shown in Figure 5(c) at d/tS  0.04 and Figure 6. 

 

Figure 16. Maximum P1 and minimum P2 stresses on AC-tool contacted interfaces. 

 

Figure 17. Maximum shear stress on AC-tool contacted interfaces. 

3.4. Comparison of Asymmetric with Square Symmetric 

Figure 18(a) and (b) show the deformation of worksheet when the total indentation depth was 
d/tS = 0.2, and Figure 18(c) and (d) show that of d/tS = 0.5 in two cases: Case 1’ and Case 4, 
respectively. The punch indentation dP was almost equal to the die indentation dD in Case 1’ for   
d/tS = 0.2, 0.5, while the ratio of indentation depth was almost dD/dP ൎ	3.8, 2.8 in Case 4 when   
d/tS = 0.2, 0.5, respectively. The right side (punch side) of worksheet of Case 1’ and Case 4 were bent 
with almost same order when d/tS = 0.2. However, the latter Case 4 was remarkably bent compared 
to the former Case 1’ when d/tS = 0.5. This inclination tendency seems to cause the pre-primary crack 
in Case 4. When the right side of worksheet is a product part and the left side is a waste part, this 
inclination of attitude is preferable for cutting off, because the right is not so much rotated.  

Figure 19 shows the simulated cutting line force for Case 1’ and Case 4. The loading response 
of Case 1’ was almost same as that of Case 1 described in Figure 12, while the loading response of 
Case 4 was close to that of Case 2. This seems to be caused by asymmetric indentation of dD/dP > 1. 
Seeing the experimental result of Figure 8 and Figure 9, the ratio of indentation was dD/dP ൎ 1 when 
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d/tS < 0.3. Seeing the condition of d/tS	ൎ	0.3, the experimental drop of force seems to be caused by 
the pre-primary cracking, while the simulated force response was smoothly peaked owing that none 
cracks. In order to discuss a range of deep indentation d/tS > 0.3, to predict the primary crack is 
required.  

   

(a)          (b) 

   

(c)         (d) 

Figure 18. Deformation state of worksheet at d/tS = 0.2 and 0.5. (a) Case 1’:P = D = 
90°, c/tS = 0.03, d/tS = 0.2; (b) Case 4: P = 90°, D = 60°, c/tS = 0.03, d/tS = 0.2;      
(c) Case 1’:P = D = 90°, c/tS = 0.03, d/tS = 0.5; (d) Case 4: P = 90°, D = 60°,     
c/tS = 0.03, d/tS = 0.5. 

 

Figure 19. Simulated cutting line force in Case 1’ and Case 4 (c/tS = 0.03). 
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Figure 20 shows the magnitude of 1st and 2nd principal stresses P1, P2 as contour band 
diagrams for c/tS = 0.03 at d/tS = 0.2, 0.5. From this figure, the followings were revealed: (1) A 
quite-high tensile state was detected nearby the 60° wedge die, while there was not such a high 
tensile state beneath the 90° square punch in Case 4. This appears to cause the eccentric indentation 
ratio dD/dP ൎ	3.8. (2) There is a high tensile state behind of the blade back side (on the right side) of 
60° wedge in Case 4. This tensile distribution seems to be related to the occurrence of primary crack 
in the experimental result shown in Figure 9 (d/tS = 0.414). (3) The pre-primary crack was 
experimentally detected on the upper surface of worksheet as seen in Figure 9. This seems to be 
contributed by the restriction of rotation by the upper stripper and lower wedge surface when    
d/tS > 0.3. Seeing the contour band of P1 in Case 4 of Figure 20(b) when d/tS = 0.5, a certain level of 
tensile stress on the upper surface of worksheet was detected. It shows a determinate features in the 
contour band diagram.  

 
(a) d/tS = 0.2 

 

(b) d/tS = 0.5 

Figure 20. Contour band diagrams of 1st/2nd principal stress P1, P2 in sheared zone. 
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4. Conclusions 

In this work, a 1.0 mm thickness fragile acrylic worksheet was subjected to a couple of 
side-wedge punch/die shearing tool. The cutting velocity and the punch/die clearance were fixed as  
V = 0.05 mms1 and c/tS = 0.025. Under these mechanical conditions, the experimental and 
numerical investigation results were revealed as follows: 
(i) The punch/die angles significantly affected the cutting load resistance, the cracking pattern and 

the final sheared profile of the acrylic worksheet.  
(ii) A straight sheared edge and a smooth sheared surface were successfully generated when applying 

the 30 angle wedge punch/die tool. 
(iii) The initiation of the first surface crack in the side-wedge punch/die tool shearing was revealed to 

be mainly caused by a high compressive state of stresses at the tool tip-worksheet interfaces, 
while a slight tensile stress was detected when increasing the cutting tool angles to 90. 

(iv) In the case of the square (rectangle) punch/die shearing, the high compressive stresses and/or the 
maximum shear stress at the cutting tool-worksheet contacted interface seemed to cause the 
initiation of the fine surface cracks.  

Furthermore, in order to reveal the effect of asymmetric combination of wedge angles, the 
square (rectangle) punch and the side-wedge die of angle 60° were examined for cutting the 
worksheet. Through this experiment, it was found that the initial gradient of cutting resistance was 
estimated using an inverse rule of mixture, and the unbalance of indentation depth of the upper/lower 
cutters tended to cause an additional shear rotation when considering the upper stripper. An FEM 
simulation of asymmetric combination was examined up to 50% indentation depth. Through this 
simulation, the upper surface tensile on the left side well corresponded to the occurrence position of 
pre-primary crack, and the eccentric indentation of square punch and wedge die was revealed. 
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