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Abstract: A mathematical model for calculating the interplanar interaction energy of diamond-like 

structure ceramics at free surface of stock material in pseudopotential method has been developed. 

We have considered uniaxial [111] deformation of materials and obtained the ―inverse Hall–Petch’s 

law‖ for strength. It is shown that nanoceramics has higher strength than the nanoparticles included 

in its composition. 
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1. Introduction 

Theoretical limit of hardening of the material can be achieved by elimination of all defects and 

achieving perfect single crystal structure, or, on the contrary, by increasing the density of defects. 

However, the defects exert both strengthening and softening influence. One can get a sample 

with no impurity atoms, but to get material without dislocations is not possible.  

Dislocations appear during the formation and growth of crystals and are characterized by a 

―critical‖ density, when the crystal strength has a minimum value. At a very small specific quantity 

of defects metal strength should be high. Such material has not been received yet, except for 

whiskers. Therefore, high-strength materials can be obtained on the basis of ―nanowhiskers‖ or 

nanoparticles (nanomaterials). 

Covalent compounds based on light elements have a complex of useful performance properties 

and provide a basis for creation of ceramic materials of various purpose. The paper studies 

javascript:ViewArticleAuthorDetail('aimsmates','201608290000008',0,0,'Dora%20%20Zakarian','','');
javascript:ViewArticleAuthorDetail('aimsmates','201608290000008',0,0,'Valeriy%20%20Kartuzov','','');
javascript:ViewArticleAuthorDetail('aimsmates','201608290000008',0,0,'Aik%20%20Khachatrian','','');


1697 

AIMS Materials Science   Volume 3, Issue 4, 1696-1703. 

nanoceramic materials with cubic structure—a diamond, SiC, BN, AlN. 

As is known, nanomaterials differ from traditional ones in that their forming or constituent 

structural units (nano-elements) have nanometer level size at least in one direction. Nanomaterials, 

being ―massive‖ materials (bulk materials), behave like traditional materials. However, the level of 

their properties will be determined by constituent nanoelements’ properties. Thus, it is reasonable to 

mark out their distinctive characteristics. 

An important type of three-dimensional nanostructured material is a compact or consolidated 

polycrystalline with nanometer-sized grains, its entire volume is filled with nanograins, grains have 

no free surface, and there are only grain boundaries—interfaces. Interfaces formation and 

―disappearance‖ of nanoparticles (nanograins) surface—this is what differ fundamentally three-

dimensional compact nanomaterials from nanocrystalline powders of different agglomeration ranges, 

composed of the same-sized particles as compact nanostructured material. 

2. The Theory, Models and Research Methods 

The objective of this study—building (based on a priori pseudopotential method, with taking 

into account the role of interface between nano-elements) of analytical model which willproperly 

describes the mechanical properties of nanoceramics. 

For this purpose, we need some intermediate models describing mechanical properties of the 

object in going from multidimensional material to a nanoparticle.  

2.1. Theoretical Strength at Uniaxial Deformation of Multidimensional Materials 

An anisotropic single crystal under loadings deforms easier in certain crystallographic  

directions [1,2]. For the investigated materials with cubic structure such directions are space 

diagonals of elementary cell. Atomic planes, perpendicular to diagonals, are close-packed. Therefore, 

it is reasonable to describe diamond-like materials’ structure in hexagonal axes, having chosen a 

spatial cube diagonal [111] for a coordinate axis OZ . Then the planes {111}, being octahedron 

planes, will have indexes 001 (i.e., basic planes). 

In this case, the structure of a diamond and diamond-like materials will be described by three-

layer alternation of planes (001) like CCBBAA  where planes CBA ,,  will consist of atoms of 

one grade ( SiAlBC ,,, ), and planes CBA  ,,  will consist of atoms of another one ( NC , ). 

The distance between two close packed atomic planes A  and A  will be equal to c/4, and between 

A  and B  will be equal to c/12 ( 30ac  , 0a : cubic lattice parameter). The elementary cell of 

diamond-like materials in hexagonal axes consists of 6 atoms which are in planes CCBBAA  . 

In the work based on pseudopotential method (through paired interatomic potentials) interlayer 

interaction energy has been calculated, with the help of which we have calculated theoretical strength 

of diamond-like materials in uniaxial deformation along the direction [111]. 

On the other hand, the theory of pseudo-potential can be formulated in terms of pair potential 

only when ions are redistributed at constant average density of material. According to calculation 

data, the change of average atom volume for investigated materials turned out to be small 
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 ), which made it possible to neglect a change of average material density and 

calculate theoretical strength of these materials on the basis of interatomic potentials. 

We have calculated energy of interaction between close-packed atomic planes. Close-packed 

atomic planes are spaced apart at a distance h (c/4
 
or c/12) and are shifted relative to each other at 

zero or vector ρ. According to results of calculation the interaction energy (Φ0(c/4, 0)) of atomic 

planes of A, A' and A', B types (interaction energy: Φ(c/12, ρ)) differ ten times [3]. 

With known values of interaction energy of atomic layers strain tensor is determined by ratio [1].  
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where ze  is unit strain. 

Theoretical strength inside the layers (interaction energy: Φ(c/12, ρ)) is five times higher than 

strength between layers (interaction energy Φ0(c/4, 0)). In brittle materials having cubic structure and 

being subjected to uniaxial tension in the direction of [111], microcracks appear first of all between 

atomic planes {111}, being at distance c/4
 
.  

The general view of functional dependence of strain on interplane distance is the same for 

investigated diamond-like materials. The curve stress-strain has a characteristic peak with a sharp 

decline at compression which is connected with possible phase transition. At high loadings the phase 

transition of diamond-like materials in metal condition [4] is possible. 

The calculated values of theoretical strength for corresponding tension strain and compression strain 

are shown in Table 1. 

Table 1. The values of theoretical strength ( 1
max

, 2 max
) and corresponding strain 

(−e
*
111, e

**
111) under compression and tension. 

Crystal 
Compression Tension 

1
max

(GPa) −e
*

111 2 max
(GPa) e

**
111 

C 204.40 0.0975 139.07 0.1456 

BN 175.40 0.0978 119.24 0.1458 

SiC 147.56 0.0984 103.12 0.1459 

AlN 88.26 0.0998 59.05 0.1460 

As Table 1 shows, at uniaxial tension or compression, the deformation corresponding to 

ultimate strength of diamond-like materials, for given class of materials has almost the same value 

(about 0.1 at compression and 0.146 at tension).  

Thus, when describing the crystal structures of diamond-like materials in hexagonal axes basic 

close-packed atomic planes (perpendicular to diagonal), are separated by a distance c/4 and c/12 (c: 

crystal lattice parameter, which coincides with the spatial diagonal of a cubic lattice). Atomic planes 

separated by a distance c/12 are more strongly bound than planes spaced at a distance of c/4. As a 

result, at uniaxial deformation, the material breaks down into bi-layers representing strongly bound 

atomic planes. 
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2.2. Nanoparticles having Diamond-like Structure 

The supposition that the external surfaces of the nanoparticles have energy –Ф0/2 (the surface of 

a nanoparticle has positive energy) is fundamental in the calculation of mechanical characteristics of 

nanoparticles in the form of a nanoplate or a nanotimber.  

Interplanar interaction energy within a crystal always has a negative sign, the surface energy is 

negative toward infinitely remote point, but as compared with the energy inside the crystal—positive. 

In exceptional cases, for some materials the surface energy as compared to the internal energy can 

have a negative sign, which is explained by strong interaction of the surface with the surrounding 

particles of the medium. For simplicity we assume that a nanoparticle is in vacuum. The surface of 

the nanoparticle is its weak point. Outer surface influence on the ions and electrons inner state has 

been evaluated with the help of averaging of neighboring layers’ energy. 

The interaction energy of atomic planes in i-layer of infinite nanoplate with taking into account 

the influence of 2 free surfaces having the energy −Φ1/2 and −Φ2/2  (energy Φi has a negative sign, 

Ф1 = Ф2 = Ф0) is written as [5] 
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j
     (2) 

where j is the number of layers in the nanoparticle. 

The last term in Eq. (1) provides the law of conservation of the total energy of the system with a 

limited number of atomic planes. Equation (2) can be used to calculate the interlayer interaction 

energy both for bulk samples and nanoplates. In case of infinite nano timber (basal plane of a 

nanoparticle has sizes Na and Ma, and the number of them is uncountable, N, M—whole numbers), 

we consider the energy of the side surfaces, a—parameter of the basal plane of the crystal lattice of 

diamond-like nanoparticles in the hexagonal axes. 

According to the statement of the problem we calculate the mechanical properties under 

uniaxial loading, using the energy of interaction between structural units perpendicular to the loading 

axis. The side surfaces are parallel to the axis of deformation, that is, they are perpendicular to the 

other space diagonal ([111]). Therefore, the interaction energy between the sides atoms located on 

the adjacent planes is desired surface energy Φ0/2. Then, the energy of interaction between atomic 

layers can be represented as 

)/()(
21201

NNNN
BS

          (3) 

where N1 is the number of atoms on the planes inside the nanotimber, N2 is the number of edge 

atoms of these planes, ΦB is the energy of interaction between the edge atoms in neighboring layers. 

To determine the average value of the nanoplate energy we summarize Eq. (2) for all layers and 

divide into a number of layers j. As a result, we obtain [6] for nanoplates with infinite base plane. 

)
1

1(0
j

          (4) 

The number of layers j = 3d/c, where d is the nanoplate thickness. For an infinite nanotimber 

from Eq. (3) we obtain 
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where N (N = N1 + N2) can be determined from the value of the base plane area; 
222 3 NadS  , 

here a is the base plane parameter. 

For a limited nanotimber or nanoplate the average energy of interaction between atomic layers, 

respectively, will be 
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        (6) 

In view of formula (1) the average strength of a nanoplate with thickness d is 

)1( 1

0

 dK
pp

          (7) 

where 0  is theoretical strength of bulk diamond-like crystal in the direction of [111]. Since nano 

dimension is expressed only in one direction, coefficient КP = c/3 depends only on parameter с. 

In case of an infinite nano timber we have 

)1( 1

0

 dK SS  ,         (8) 

where 4 36aKS   depends on the lattice parameters on the base plane, where the size limit is 

registered (nano dimension). 

In case of a nanoparticle 

)1( 1

0



  dK ,        (9) 

4 363/ acK   

Formulas (7–9) essentially express Hall–Petch’s law, not for polycrystalline material but for 

ideal crystals in going from unlimited volume to a nanoplate, whisker (nanotimber) or nanoparticle. 

As a result, from first principles, we have obtained the inverse Hall Patch’s law, where dependence 

on the size of a nanoplate, whisker or nanoparticles is presented in the form of d
−1

 instead of d
−1/2

. 

Hall–Petch coefficients Kp, Ks and KΩ depend on the lattice parameters. 

2.3. Constructing Nanomaterials of Nanoparticles 

Suppose the nanomaterial consists of nanoparticles in the form of bounded nano timbers having 

a diamond-like structure. Let us choose a representative nano timber in the material. Suppose its base 

atomic planes are perpendicular to the axis of strain. It is thought that the side surfaces of the 

representative nano timber are perpendicular to the base planes and the interface boundaries of 

nanoparticles are quasicoherent. 

Having selected the representative nano timber we proceed to taking account of the surrounding 

nano timbers’ influence. Given the representative nano timber geometric shape we assume that on 

latteral sides it must be surrounded by neighboring nano timbers, basal planes of which form the 
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angles )4,3,2,1( ii with similar planes of the selected nano timber. And in the chosen direction 

of deformation the representative nano timber (on the top and on the bottom) is in contact with nano 

timbers whose basal planes form angles )2,1( ii with representative nano timber planes. 

The nano timber surface, parallel to the basal planes, with account of neighboring nano timbers 

has the energy equal to 

2,1;2/))cos(
22

( 00 





 i
i

        (10) 

When joining with the side nano timbers the energy of interaction between boundary lines of 

atoms belonging to representative nano timber will be written as 
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If in formulas (4–6) substitute
 

0
 
 from expressions (10) and (11) then we obtain an average 

energy of interaction between close-packed atomic planes of bounded nano timber in the material. 

Given certain values of layers interaction energy we determine the strength by means of relation (1). 

As a result, for the nanoparticle of infinite nano timber type in nanomaterial, strength will be 

(taking into account the side neighbors only) 
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For nanoplate having unlimited basal plane we have (there are nanoplates closing the top and 

the bottom)  
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Here, 0  is theoretical strength of perfect crystals. 

The average value of the bounded nano timber strength will be 
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Substituting values j and N we obtain 
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If we average the cosine of angles which change in the range 
090;0  il  , then we get 

the Hall–Petch coefficient for nanoceramics 

8/35,5 4* cak 


         (17) 

Relation (15) presents inverse Hall–Petch law for nanoceramics with regard to nanoparticles’ 

interface. The calculated values of parameters (a, c) of FCP lattice for BN are: а = 0.2565 and с = 

0.6424 nm. 

Maximum strength of crystals, nanoparticles and nanoceramics has been calculated by means of 

formulas (9, 15, 17). For nanoparticles and nanoceramics we have shown the dependence of the 

ultimate strength on the size of nanoparticles for BN (Figure 1).  
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Figure 1. The dependence of the ultimate strength on the size of nanoparticles (BN):  

a) nano plate, b) nanoceramic. 

As the nanoparticles’ size increases the strength also increases, tending to ideal crystal strength. 

Nanoparticle strength is always less than the strength of nanoceramics which consists of 

nanoparticles of the same size. Coefficient kΩ = 2.231 for nanoparticles and k
*

Ω = 1.937 for 

nanoparticles with regard to interactions with surrounding ones. There is a minimum size of 

nanoparticles, below which the physical sense of strength is lost. This size is determined by crystal 

lattice parameters of the material. In case of BN, this limit is 2 nm for a nanoparticle and 2.24 m for 

nanoceramics. 

3. Conclusions 

1. The direct Hall–Petch’s law is not applicable to nanoparticles. The inverse Hall–Petch’s law 

determines the maximum strength of the materials having ideal structure with regard to linear size of 

the particle. Reducing the size of a real crystal (with defects) we can obtain almost ideal structure. 
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For these nanocrystals only inverse Hall–Petch’s law will operate, which considers nanocrystals’ 

outside face as their only defect. 

2. In inverse Hall–Petch’s law, obtained from quantum mechanical calculations, dependence 

of nanocrystal strength on its size is represented as d
−1

 instead of d
−1/2

. 

3. Nanoceramics are characterized by higher maximum strength than its constituent 

nanoparticles. 
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