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Abstract: In this work, the dynamic interaction between multiple cracks whose surfaces are sym-
metrically impact-loaded in infinite domains is investigated. Toward this end, the symmetric-Galerkin
boundary element method (SGBEM) for 2-D elastodynamics in the Laplace-space frequency (Laplace-
SGBEM) was employed to compute the dynamic stress intensity factors (DSIFs) for the cracks during
their interaction under dynamic loading conditions. Three examples of multi-crack dynamic interac-
tion were considered. The Laplace-SGBEM results show that the DSIFs will reach their maximum
value after the cracks are loaded. It is followed by a damped-like oscillation of the DSIFs about their
corresponding static value. In addition, as the cracks approach each other, the dynamic stress field in
the vicinity of their crack tips interacts which results in an increase or decrease of the maximum DSIFs.

Keywords: symmetric-Galerkin boundary element method; Laplace domain; dynamic stress intensity
factors; multi-crack dynamic interaction

1. Introduction

The problem of multi-crack interaction is of important interest as the interaction often results in
an increase of the stress intensity factors (SIFs) which reduce the fracture strength of the structure.
Although the interaction between multiple cracks under stactic loading conditions has attracted a large
amount of attention from numerous research groups, e.g., [1–5], there has been just a limited number of
work devoted to the problem of multi-crack interaction under dynamic loading conditions, e.g., [6–11].
At issue is the lack of studies using versatile numerical methods, such as finite element method (FEM)
and boundary element method (BEM), for investigating multi-crack dynamic interactions while these
numerical methods are known for effectively dealing with a variety of practical crack problems (see,
e.g., [12, 13]). The objective of this work is to show that the dynamic interaction between multi-
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ple cracks in infinite domains can be accurately and effectively analyzed using a versatile numerical
method called the symmetric-Galerkin boundary element method (SGBEM). This work studied cracks
whose surfaces are symmetrically impact-loaded with a Heaviside pressure such as those on the inner
surface of a large pressure vessel under sudden pressurization. The interaction between the cracks was
assessed by investigating the dynamic SIFs (DSIFs) as the cracks approach each other.

The BEM is a powerful alternative to the well-established FEM. The key feature of the BEM is that
only the boundary of the domain is discretized. For problems of wave scattering from a finite body in an
infinite domain, such as those considered in this work, this means that artificial truncation of the domain
is not required. For fracture analysis the important implications are that the singular stress field ahead
of the crack is not approximated, and that remeshing a propagating crack is straightforward. A variant
of the BEM employing a Galerkin approximation, SGBEM (e.g., [14]), possesses several important
advantages for fracture applications: (a) the method employs displacement boundary integral equation
(BIE) on the boundary part where displacement is prescribed and traction BIE on the boundary part
where traction is known. As the name implies, this results in a symmetric coefficient matrix, and this
remains true for fracture problems providing that the unknowns on the crack faces are the jumps in
displacement; (b) the presence of both displacement and traction BIE enables fracture problems to
be solved without artificial sub-domains which were employed in early BEM analyses (see [15] for
example); and (c) unlike collocation methods, there is no smoothness requirement on the displacement
(e.g., [16]) in order to evaluate the hypersingular integral; thus, standard continuous elements can be
employed. The Galerkin approach can therefore easily exploit the highly effective modified quarter-
point (MQP) quadratic element [17] to accurately capture the crack tip behavior. As a result, the MQP
element was employed to compute the DSIFs in the present work.

Dynamic analysis can be formulated either in the time domain (e.g., [18]) or frequency domain
(e.g., [19]). In the frequency domain, analyses can be performed in the Fourier or Laplace spaces. If
time solutions are needed following a frequency-domain analysis, frequency-time conversion can be
done using fast Fourier transform (FFT, e.g., [20]) or Laplace transform (e.g., [19]) depending on the
type of space used in the frequency-domain analysis. The dynamic interaction analysis in this work
was conducted using the SGBEM in the Laplace domain (Laplace-SGBEM) in conjunction with the
MQP element as this technique has shown to be accurate and effective in computing the DSIFs [19].

2. Symmetric Boundary Integral Formulations for Elastodynamics in the Laplace Domain

prescribed traction

prescribed displacement n

nP

+
−

Γ

+ Γc
−

Γc

Figure 1. A 2-D body containing a crack.
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First, consider the body in Figure 1 without the crack. In the Laplace domain, the BIE for a source
point P interior to a domain is given by

Ū(P, s) ≡ ūk(P, s) −
∫

Γ

[
Ūk j(P,Q, s) t̄ j(Q, s) − T̄k j(P,Q, s) ū j(Q, s)

]
dQ = 0 (1)

where Q is a filed point, s is a Laplace parameter, ū j and t̄ j denote the transformed displacement and
traction vectors, respectively, and Γ is the boundary of the 2-D domain under consideration.

For P off the boundary, the kernel tensors Ūk j and T̄k j are not singular and it is permissible to
differentiate Eq. (1) with respect to P, yielding the transformed displacement gradient equation. It can
be shown that the limits of the integrals in these equations as P approaches the boundary exist. From
now on, for P ∈ Γ, the BIEs are understood in this limiting sense. Substitution of the transformed
displacement gradients into Hooke’s law and then Cauchy’s relation results in the following equation
for surface traction:

T̄ (P, s) ≡ t̄k(P, s) − n`(P)
∫

Γ

[
D̄k j`(P,Q, s) t̄ j(Q, s) − S̄ k j`(P,Q, s) ū j(Q, s)

]
dQ = 0 (2)

In Eq. (2), n` is the outward normal vector to the boundary Γ. Expressions for the elastodynamic
kernel tensors Ūk j, T̄k j, D̄k j` and S̄ k j` in Eqs. (1) and (2) can be found in, e.g., [21].

The traction equation (2) is essential for treating crack geometries, and in the symmetric-Galerkin
approach it is this equation that is employed on the crack surface.

The Galerkin boundary integral formulation is obtained by taking the shape functions ψm employed
in approximating the boundary tractions and displacements as weighting functions for Eqs. (1) and (2).
For SGBEM, the displacement BIE (1) is employed on the boundary part Γu where displacements are
specified, while the traction BIE (2) is used on the boundary part Γt where tractions are prescribed,∫

Γu

ψm(P) Ū(P, s) dP = 0 (3)∫
Γt

ψm(P) T̄ (P, s) dP = 0 (4)

As mentioned above, this arrangement results in a symmetric coefficient matrix. These formulas
remain the same for fracture analysis, with the proviso that the unknowns on the crack are now the
transformed displacement jump ∆ūk, and thus only one crack face is required to be discretized. In
this work, a numerical implementation of Eqs. (3) and (4) is carried out with the standard quadratic
element. Employing the parameter space ξ ∈ [0, 1], and defining ξ1 = 0, ξ2 = 1/2 and ξ3 = 1, the
quadratic shape functions are defined by ψ`(ξm) = δ`m and hence

ψ1(t) = (1 − ξ)(1 − 2ξ) (5)
ψ2(t) = 4ξ(1 − ξ) (6)
ψ3(t) = ξ(2ξ − 1) (7)

One of the advantages of the frequency-domain analysis is that Eqs. (1) and (2) have a similar form
as those in elastostatics. Details on the treatment of singular integrals in Eqs. (3) and (4) can be found
in, for example, Ref. [19].
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Microcracks in structures, such as those considered in this work, are preferred to be modeled as
cracks in infinite/unbounded domains. Unlike some other numerical methods, the SGBEM can easily
handle this type of problems without the need of using large artificial boundaries. The reader is referred
to, for example, Ref. [22], for more details on SGBEM analysis of cracks in unbounded domains.

3. Fracture Analysis by the SGBEM for Laplace-Space Elastodynamics

Frequency domain analysis of cracks, such as the analysis of the DSIFs and dynamic T -stress, using
the SGBEM in the Laplace space was introduced in [19]. In this section, the formulations for this type
of analysis are briefly reviewed.

3.1. Formulations

If a crack of boundary Γc is added to the domain of boundary Γ = Γu∪Γt considered in the previous
section, the new total boundary becomes

∗

Γ= Γ ∪ Γc (see Figure 1). The crack is composed of two
symmetrically loaded surfaces Γ+

c and Γ−c which are initially coincident. Let
∗

Γt= Γt + Γ+
c . In this case,

the displacement and traction BIEs are written as

∗

U(P, s) = Ū(P, s) +

∫
Γ+

c

T̄k j(P,Q, s) ∆ū j(Q, s) dQ = 0 (8)

∗

T (P, s) = T̄ (P, s) + n+
` (P)

∫
Γ+

c

S̄ k j`(P,Q, s) ∆ū j(Q, s) dQ = 0 (9)

where n+
` is the outward normal vector to Γ+

c , and as the transformed displacement jump vector ∆ū j

across the crack surfaces is used as the unknown on the crack, only one crack surface, e.g., Γ+
c , needs

to be discretized. It is well known that the traction BIE (9) is essential for treating crack geometries.
The use of ∆ū j as the unknown on the crack as mentioned above is needed for obtaining a symmetric

coefficient matrix. The symmetric-Galerkin formulation is given by∫
Γu

ψm(P)
∗

U(P, s) dP = 0 (10)∫
∗

Γt

ψm(P)
∗

T (P, s) dP = 0 (11)

3.2. Dynamic Stress Intensity Factors

For stationary cracks in elastic materials (as those considered in this work), the DSIFs under plane
strain situations, and thereby their transforms can be determined from the asymptotic expansion for the
displacement field in the vicinity of a crack tip as follows:

K̄I(s) =
µ

4(1 − ν)
lim
r→0

√
2π
r

∆ūn(s)

K̄II(s) =
µ

4(1 − ν)
lim
r→0

√
2π
r

∆ūt(s) (12)
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where µ and ν are the shear modulus and Poison’s ratio of the material, ∆ūn and ∆ūt are, respectively,
the normal and tangential components of the transformed crack displacement jump vector, and r is the
distance to the crack tip.

In both finite and boundary element modeling of discrete cracks, the standard approach consists of
incorporating the quarter-point (QP) element [23, 24] to improve the accuracy of the SIF calculations
(e.g., [25, 26]). However, as discussed in [27], the standard QP element in general fails to satisfy a
constraint that exists in the series expansion of the crack opening displacement at the tip of an arbitrary
crack geometry (see also [28]). This has led to the development of an improved MQP element [17]. It
was demonstrated in [17, 29] that the accuracy of the computed SIFs can be significantly improved by
incorporating this MQP element into the SGBEM. Thus, the MQP element is employed to determine
the DSIFs in this work.

By using the MQP shape functions in Eq. (12), the transformed DSIFs are accurately given by

K̄I(s) =
µ

12(1 − ν)

√
2π
L

(
8∆ū(2)

n − ∆ū(3)
n

)
K̄II(s) =

µ

12(1 − ν)

√
2π
L

(
8∆ū(2)

t − ∆ū(3)
t

)
(13)

where L is the distance between the two end-nodes of the crack-tip element, and the superscripts (2)
and (3) denote its quarter-point node and non-tip end-node, respectively.

4. Frequency Domain Analysis using SGBEM and Fast Laplace Inverse Transform

Let P̄(s) and F̄(s) respectively be the Laplace transforms of load P(t) and time response F(t), where
t is time, from a frequency analyis of a dynamic system. It is known that the output F̄(s) is related to
the input P̄(s) as

F̄(s) = H̄(s) P̄(s) (14)

where H̄(s) is called the frequency response which is the response of the system due to a unit harmonic
load eist where i is the imaginary unit.

F(t)

Load

under e

P(s)
LT

F(s) = H(s) P(s)

ist

Problem
H(s)

SGBEM

P(t)

FLIT

Figure 2. A model for obtaining time solutions using the fast Laplace inverse transform.

Figure 2 depicts a model for obtaining time responses of a system from frequency response analysis.
First, the SGBEM is employed to obtain the frequency response H̄(s) of the system under the unit
harmonic load (eist). In the meantime, the Laplace transform (LT) is used to convert P(t) to P̄(s).
Relation (14) is then applied to obtain the dynamic response F̄(s). Finally, the fast Laplace inverse
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transform (FLIT) proposed by Durbin [30] is utilized to transform F̄(s) into the desired time history
F(t).

A procedure for obtaining time responses by using the FLIT can be summarized as follows:

(a) Determine a value for the duration of analysis T f . Note that the frequency resolution ∆ f ( f =

ω/(2π)) is related to T f as ∆ f = 1/T f . The frequency resolution should be small enough to
minimize the loss of frequency information.

(b) Determine a value for the real part ao of the Laplace parameters such that

aoT f = 5 . . . 10 (15)

(c) Perform SGBEM analysis for a series of (No +1) Laplace parameters, namely sk = ao + i2πk
T f

where
k = 0 . . .No to obtain the frequency response H(sk). Note that the very first sample (k = 0) of the
series corresponds to the static sample and No does not have to be a power-of-two number as in
the cases of FFT;

(e) Perform the Laplace transform for the loading function P(t) to obtain

P̄(s) =

∫ ∞

0
P(t) e−st dt (16)

(f) Calculate F̄(sk) = H̄(sk) P̄(sk).
(g) Perform the FLIT for F̄(sk) to obtain the desired time history as follows [30]:

F(t j) =
2

T f
eao j∆t

−1
2
<{F̄(ao)} +<

 No∑
k=0

F̄(sk)
(
cos k j

2π
N

+ i sin k j
2π
N

)
 (17)

In this equation, t j = j∆t = jT f

N where j = 0 . . .N − 1, N = kifNo and kif = 1, 2, . . .. Here, kif > 1
is used as an interpolation factor to increase the resolution of the time-history curve by reducing
the time increment ∆t.

5. Numerical Examples

In this section, three numerical examples of the dynamic interaction between multiple cracks are in-
vestigated via the DSIFs computed using the Laplace-SGBEM technique outlined in Sections 2 through
4. All the cracks are situated in infinite domains. The crack surfaces are symmetrically loaded by a
pressure p(t) = poH(t) (see Figure 3) where po is the magnitude of the pressure and H(t) is the Heavi-
side step function numerically defined as (see also Figure 4 where T f is the final time of analysis).

H(t) = 0 if t < 0
H(t) = 1/2 if t = 0
H(t) = 1 if t > 0 (18)

The material properties of the domains are µ = 76.923 GPa, ν = 0.3 and mass density ρ = 5, 000
kg/m3. In this work, the analysis of the dynamic interaction between the cracks is based on the nor-
malized mode-I and mode-II DSIFs defined as

FI =
KI

po
√
πa

, FII =
KII

po
√
πa

(19)
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which are functions of normalized time cst/a where a is the half length of the crack under consideration
and cs =

√
µ/ρ is the shear wave velocity of the material.

2a

p

Figure 3. Symmetrically loaded crack surfaces.

1

H

tTf

Figure 4. Heaviside step function.

For the SGBEM analysis of all the three problems examined in this section, 10 equal-length
quadratic elements were used to discretize each of the cracks. Among these quadratic elements, MQP
elements were employed as the crack-tip elements for the purpose of obtaining highly accurate DSIFs.

For the FLIT employed in these three problems, a convergence study from the frequency-domain
analysis resulted in the following selection: csT f /a = 120, aoT f = 5 and No = 100.

5.1. Three Collinear Cracks

The first example deals with the dynamic interaction of three collinear cracks, each of length 2a and
separated by a gap c as shown in Figure 5. As the cracks are collinear and perpendicular to the applied
load, the sliding mode (mode II) is absent in this case (FII = 0).

A B
2 2

A B3 3

2a

B1 1A

c

Figure 5. Dynamic interaction between three collinear cracks in an infinite plate.

Figures 6(a) and 6(b) show the histories of the normalized mode-I DSIF for two cases of the gap
between the cracks, namely, c/a = 1 and c/a = 0.2. Due to the symmetry of the problem, the mode-I
DSIF results at crack tips A1, A2 and A3 are the same as at tips B3, B2 and B1, respectively. In these
figures, Fs

I denotes the corresponding static mode-I SIF resulted from the static pressure p = po.
It can be seen from Figures 6(a) and 6(b) that the curves of the mode-I DSIF attain their peak within

a normalized time of 10 after the crack surfaces are suddenly loaded. The largest peak occurs at the tips
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of the middle crack while the lowest peak occurs at crack tips A1 and B3. Also, as the gap between the
cracks (represented by ratio c/a) decreases, the maximum values of FI at the tips increase as expected.

Subsequent travels of the diffracted waves between the crack tips result in decaying oscillations of
FI about Fs

I .

0 5 10 15 20 25
cst/a

0

0.25

0.5

0.75

1

1.25

1.5

F
I

Tips A1 and B3 (FI
s=1.069)

Tips B1 and A3 (FI
s=1.138)

Tips A2 and B2 (FI
s=1.167)

(a)

0 5 10 15 20 25
cst/a

0
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0.5

0.75

1

1.25

1.5

1.75

2

2.25

F
I

Tips A1 and B3 (FI
s=1.171)

Tips B1 and A3 (FI
s=1.591)

Tips A2 and B2 (FI
s=1.634)

(b)

Figure 6. Normalized mode-I DSIF (a) c/a = 1; (b) c/a = 0.2.

5.2. Three Parallel Cracks

This example considers three parallel cracks of the same length 2a (see Figure 7). The cracks are
aligned in the direction of the applied load and the distance between two neighboring cracks is denoted
as c.

A2 B2

A1

1B

B3A3

2a

c

Figure 7. Dynamic interaction between three parallel cracks in an infinite domain.

Normalized mode-I DSIF histories are shown in Figures 8(a) and 8(b) for c/a = 1 and c/a = 0.2,
respectively. While mode-II is absent in the case of the collinear cracks studied in the previous example,
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it does exist for the top and bottom cracks in this example (see Figures 9(a) and 9(b)) due to the presence
of the middle crack which causes shearing deformations of the top and bottom cracks.

0 5 10 15 20 25 30 35 40
cst/a

0

0.2
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0.8

1

F
I

Top and bottom cracks (FI
s=0.74)

Middle crack (FI
s=0.556)

(a)

0 5 10 15 20 25 30 35 40
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0

0.2

0.4

0.6

0.8

F
I

Top and bottom cracks (FI
s=0.637)

Middle crack  (FI
s=0.333)

(b)

Figure 8. Normalized mode-I DSIF (a) c/a = 1; (b) c/a = 0.2.
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0.15
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0.25
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Tips A2 and B2 (FII
s=0)

Tips A3 and B1 (FII
s=-0.179)

(b)

Figure 9. Normalized mode-II DSIF (a) c/a = 1; (b) c/a = 0.2.

For both fracture modes, the maximum (absolute) value of the DSIFs occur at the top and bottom
cracks. As the cracks approach each other, the maximum absolute value of the mode-II DSIF for the
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top and bottom cracks increases while the maximum mode-I DSIFs of all the cracks decreases. The
reduction of FI can be explained by the fact that, as the distance c between the cracks is small enough,
the opening of any crack is obstructed by the opening of the neighboring crack(s). Also, the decrease
of FI for the middle crack is more pronounced as the opening of this crack is hindered by the opening
of both the top and bottom cracks. For this example, the decaying oscillatory behavior of both FI and
FII about their corresponding static value Fs

I and Fs
II can mainly be attributed to the subsequent travels

of the reflected waves between the two neighboring cracks.

5.3. Four Radial Cracks

c1A B

A

1

4

B

A2B2

4

2a
3

3

B

A

2
b

Figure 10. Dynamic interaction between four radial cracks in an unbounded domain.
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Figure 11. Normalized mode-I DSIF for horizontal cracks: (a) c/a = 1; (b) c/a = 0.2.

In this last example, four equally spaced radial cracks (two horizontal cracks of length 2a and two
vertical cracks of length 2b = a) as depicted in Figure 10 were studied. Figures 11(a) and 11(b) show
the effect of c/a on FI for the horizontal cracks while Figures 12(a) and 12(b) show the said effect on
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FI for the vertical cracks. Due to the symmetry of the problem, there are only four distinct histories of
FI for a given value of c/a at the four pairs of crack tips (A1, A2), (A3, A4), (B1, B2) and (B3, B4).

0 5 10 15 20
cst/a

0

0.2

0.4

0.6

0.8

1
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F
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Tips A3 and A4 (FI
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Tips B3 and B4 (FI
s=0.814)

(a)
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0.75

1

1.25

1.5

F
I

Tips A3 and A4 (FI
s=0.720)

Tips B3 and B4 (FI
s=0.949)

(b)

Figure 12. Normalized mode-I DSIF for vertical cracks: (a) c/a = 1; (b) c/a = 0.2.

As in the previous examples, all the DSIF curves exhibit the decaying oscillatory behavior about
their corresponding static SIF value. As the gap c is not small enough, the maximum values of FI occur
at tips A’s where the corresponding static values are also larger than those at tips B’s. However, the
peaks of FI as well as their corresponding static values, switch from tips A’s to tips B’s as the ratio
c/a decreases. This is expected as the interaction effect is more pronounced at crack tips that are close
enough to each other.

6. Conclusion

A study of dynamic interaction between multiple cracks whose surfaces are symmetrically impact-
loaded in infinite domains using the SGBEM for elastodynamics in the Laplace space was presented
in this work. Four major concluding remarks can be drawn from this investigation as follows:

(a) Although there is no similar work in the literature which could be used to validate the numerical
results reported in the present study, the numerical esults for the DSIFs obtained here can be jus-
tified as they oscillate about their corresponding static value as time elapses. This DSIF behavior
can also be found in other studies where cracks are situated in infinite domains, e.g., [6, 9–11].

(b) For cracks loaded with pressure in the form of the Heaviside step function, the peak of mode-
I (and mode-II, if any) DSIF for a given crack tip occurs almost immediately after the load is
applied.

(c) Due to crack-tip interaction, the maximum (absolute) value of the DSIFs at a crack tip can increase
or decrease as it is approached by a neighboring crack tip.
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(d) Following the sudden loading on the crack surfaces, subsequent travels of the diffracted waves
back and forth between the crack tips (and the reflected waves between the cracks, if any) result
in damped-like oscillatory behavior of the DSIFs about their corresponding static value.
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