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Abstract: A closed form solution of the Stress Intensity Factor (SIF) for stiffened flat sheets, 
typically used in aircraft construction, in Multiple Site Damage (MSD) conditions, has been 
developed. The well-known theory of complex variable functions has been used, through the 
application of functions specifically developed for the case of cracks equally spaced and of equal 
length. Moreover, the superposition principle has been applied to evaluate the compression loads 
transmitted by the stringers through the rivets, by imposing the equilibrium on the crack free surfaces 
and the compatibility of displacements between sheet and stringers at the rivets location. The results 
have been compared with solutions available in the literature, obtained by combination of various 
analytical techniques and experimental methodologies, showing a good agreement. The proposed 
method is a reference for the validation of other numerical or analytical methods and effectively can 
replace the Finite Element Method for simple geometries. 
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1. Introduction  

In 1988, an Aloha Airlines Boeing 737 lost a large portion of the fuselage when the aircraft 
reached its cruising altitude of 24,000 ft. The aircraft in question was one with the highest number of 
ground-air-ground cycles. The collapse was produced by the simultaneous presence of several cracks 
in a fuselage riveted joint (Multiple Site Damage: MSD). 

The Damage Tolerance philosophy, recommended for the design of aircraft structures, involves 
the ability of a component to sustain anticipated loads in the presence of fatigue, corrosion or 
accidental damage until such damage is detected [1]. However, standard DT analyses focus only on 
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the evolution of singular or isolated flaws [2]. The occurrence of Widespread Fatigue Damage 
(WFD), as in the case of the Aloha Airlines flight, poses therefore a risk that the analyses can be 
invalidated over time due to the simultaneous presence of flaws within a structure. This problem 
produced the introduction of revised requirements to take into account in the fatigue life evaluation, 
among others, the effect of corrosion or repairs, as may happen in aging aircraft [3]. The new rules [4] 
included the definition of a Limit of Validity of the engineering data in order to support the 
continuing structural maintenance of an aircraft. As a result, there is a renewed interest in robust and 
efficient analysis methods for predicting WFD and its effects [5]. 

The time to the onset of WFD in a structure can be determined by deterministic or by statistical 
methods [6]. In both cases, the growth rate of a set of variously arranged cracks in a structure has to 
be evaluated. The interaction between the cracks, propagating under fatigue loads, may indeed 
reduce the residual static strength of the structure, when the dimensions of the cracks become 
significant. This reduction can be significant and depends on a number of factors such as: material 
properties, geometry of the joint, size of the cracks and its distribution [7]. 

The growth rate of the individual cracks is calculated by means of the Fracture Mechanics 
criteria, such as the Stress Intensity Factor (SIF). In such calculations, most of the life of the structure 
is spent in the presence of very small cracks, thus poorly interacting. As long as the size of the cracks 
remains small, the problem can be approximated as linear elastic; conversely, for longer cracks, the 
effects of reciprocal interactions and the nonlinearity of materials become significant. The numerical 
evaluation of the SIF has already been developed for many different geometrical configurations [8,9,10]; 
however, the comparison of these results with the corresponding closed form to date has never been 
carried out, since the only available solution is related to the isotropic flat sheets with multiple 
collinear cracks. 

This paper therefore develops a closed form solutions of SIF for a riveted stiffened flat sheet 
with a collinear array of cracks of equal length. The problem is solved by the theory of complex 
variables functions, referring to literature solutions for the calculation of the state of stress, while 
developing the tools to calculate the displacement field in the flat sheet; the knowledge of the 
displacements allows the evaluation of the influence functions in the body equilibrium equations. 
Furthermore, a sample calculation on a stiffened flat sheet was conducted, confirming the 
effectiveness of the results. 

2. SIF Evaluation by the Complex Variable Functions Method 

An infinite thin plate of metallic material (elastic homogeneous isotropic, plane stress 
conditions), riveted to equally spaced stiffeners (Figure 1) has been taken into account. The plate and 
the stringers are subject respectively to the uniaxial tension ߪ and ߪ	ܧ௦	/	ܧ, so as to obtain the same 
deformation at a great distance from the cracking line. 

A multiple damage configuration with a series of collinear cracks originated in correspondence 
of the housing holes of the rivets and interacting between them will be analysed. This configuration 
is representative of actual fatigue problems in aircraft skin and the results in [11] indicate that this is 
the most critical case of real interest. In Figure 2, the forces shared by the rivets and the stiffened flat 
sheet are shown. 



1617 

AIMS Materials Science  Volume 3, Issue 4, 1615-1622. 

 

Figure 1. Stiffened sheet geometrical configuration. 

 

Figure 2. Forces shared by rivets and sheet. 

 

Figure 3. Superposition principle: (a) infinite cracked plate with uniform load;        
(b) infinite cracked plate with row of concentrated forces. 

The SIF at each crack tip for the sheet of Figure 1 can be calculated using the superposition 
principle, as shown in Figure 3: 

ூܭ ൌ ഥܭ  ∑ ܭ ∙ ܲ 			                      (1) 

where: 
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is the SIF for the infinite cracked plate with uniform load (Figure 3a), and: 
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is the SIF for the infinite cracked plate with unknown loads ܲ, transferred by the i-th rivets row at 
, distance from the crack line; ݇ሺܽݕ  :ሻ is a function from literature [12]ݕ
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In the case of multi cracked stiffened sheets, no explicit solutions are available in the literature. 
The SIF calculation is then considerably more complicated than in the case of a simple plate. In fact, 
the stress field around the crack tips is influenced not only by the tensile load applied to the sheet but 
also by the compression loads transmitted by the stringers through the rivets. The first step is the 
evaluation of rivet loads ܲ in Eqn. (1). 

The magnitude of the concentrated forces ܲ  is calculated applying the displacement 
compatibility method whereby, as suggested by Poe [13], the equality between skin and stiffeners 
displacements under the investigated loading condition is imposed. 

The displacement components for symmetrical problems with respect to the x axis (Figure 1) 
are given by [14,15]: 
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       (5) 

where: ߭ and E are respectively the Poisson ratio and the Young’s modulus of the sheet’s material; 
Z(z) is an analytical function of the complex variable z = x + iy; ෨ܼ(z) is the first integral of Z(z); A is 
a constant depending on the boundary conditions. The displacements calculation is therefore linked 
to the evaluation of Z(z) and A. 

By imposing the equivalence of the displacements of the plate ݒ and the stringers ݒ
௦ in the 

i-th row of rivets, a system of algebraic equations in the unknowns ܲ  can be written. The 
displacements can be expressed as a function of coefficients of influence ܣ, ܤ, ܣ

௦ ܤ ,
௦ [13]: 
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being ܧ௦ and ܧ respectively the elastic moduli of the stringer and the plate. Matching the Eqn. (6) 
and Eqn. (7) for the i-th row, with N indicating the number of rivets rows and L the number of the 
stringers considered in the calculation, the following linear system in the unknowns ܲ can be 
obtained: 
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2.1. Coefficient of Influence ܤ 

For an infinite plate loaded by uniform asymptotic traction, with multiple damages (Figure 3a), 
the v displacement is given by Eqn. (5), assuming A = σ/2 [9] and, for ܼሺݖሻ and ෨ܼሺݖሻ, the 
following expressions: 
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Finally, the coefficient of influence ܤ, i.e. the displacement of a point in the plate coincident 
with the i-th rivet position under unitary uniform asymptotic traction, is obtained considering ߪ ൌ 1, 
being ݖ ൌ ݔ   . the spatial coordinate of the i-th row of rivetsݕ݅

2.2. Coefficient of Influence ܣ 

The displacements along the y-axis of the cracked plate loaded by a row of concentrated forces 

ܲ placed at a distance ݕ from the crack row (Figure 3b), are given by Eqn. (5) assuming for ܼሺݖሻ 
and ෨ܼሺݖሻ the following expressions [12]: 
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where F is a stress function and ܨ෨ its first integral [12]. The coefficient of influence ܣ, i.e., the 
displacement of a point in the plate coincident with the i-th rivet position under unitary concentrated 
force coincident with the j-th rivet position ( ܲ ൌ 1), is obtained by replacing in Eqn. (5), with a = 0, 
the Eqns. (11) and (12). 

2.3. Coefficient of Influence ܤ
௦ 

The v displacement of a generic point of a stringer loaded by an axial asymptotic direct stress 
ߪ ௦ܧ ⁄ܧ  is given by: 

ௌఙݒ ൌ
ఙ∙௬

ா
           (13) 

Finally, the coefficient of influence ܤ
௦ , i.e. the displacement of a point in the stringer 
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coincident with the i-th rivet position under unitary uniform asymptotic traction, is obtained from the 
Eqn. (13) using ߪ ൌ 1. 

2.4. Coefficient of Influence ܣ
௦  

The v displacement of a generic point of a stringer loaded by a pair of concentrated forces 
arranged symmetrically with respect to the x axis is given by [13]: 

ௌݒ ൌ
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where ݐ is the stringer equivalent thickness and ߖ is a stress function. The ܣ
௦  coefficients, i.e. 

the displacement of a point in the plate coincident with the i-th rivet position under unitary 
concentrated force coincident with the j-th rivet position, can be obtained by using ܲ ൌ 1 into the 
Eqn. (14). 

3. Example of SIF Calculation 

A Fortran software has been developed for the calculation of the SIF in a stiffened sheet with 
multi-site damage by means of the complex variable functions theory. The results have been 
compared with literature data and analytical solutions. 

The test geometry consists of an aluminum stiffened sheet, Figure 1, loaded with a uniform 
tension σ = 10 MPa, with the following geometric characteristics: w = 120 mm, ݕ = 20 mm,     
d = 5 mm, t = 1 mm, b = 25 mm, ݐ = 4.8 mm. The SIF has been calculated for crack half-length 
values of 12 mm, 24 mm, 36 mm, 48 mm, corresponding to a/w ratios respectively of 0.1, 0.2, 0.3, 
0.4. The values of ܭ ⁄ܭ  ratio (ܭ ൌ ߪ ∙   at the tip of the central crack are compared in (ܽߨ√
Figure 4 with the well-known results on the same stiffened panel containing a single crack [13] and 
the data on the MSD configuration obtained by applying the compounding method [16]. 

 

Figure 4. Comparison of the single crack, complex variables MSD and compound 
solutions for FIS in a stiffened sheet. 
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As long as the size of the slots is small in comparison to the spacing of the current (a/w < 0.2), 
the ܭ ⁄ܭ  ratio value in multiple damage condition is equal to the value for a single crack while, 
with increasing the size of the cracks, the interaction effects become relevant, producing a rapid rise 
of the values of the parameter K. Again, the difference between the SIF values evaluated with the 
complex variable functions respect those obtained by applying the method of composition is always 
lower than 7%. 

4. Conclusion 

An original method based on the analytical solution of the complex variable function has been 
developed for the evaluation of the Stress Intensity Factor in a stiffened panel in the presence of an 
infinite array of cracks. Some examples of SIF calculation were performed in function of crack 
parameters (length, position and number of the slots); the results were compared with solutions 
available in the literature, obtained by combination of various analytical techniques and experimental 
methodologies, showing a good agreement. Therefore, the presented method can be advantageously 
used for a theoretical prediction of the SIF values, the key parameter in Fracture Mechanics for the 
determination of the residual static strength of a component with different damage conditions. 
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