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Rupture of graphene sheets with randomly distributed defects

Samaneh Nasiri and Michael Zaiser∗

Department of Materials Science and Engineering, WW8 – Materials Simulation, Friedrich-
Alexander University Erlangen-Nürnberg, Dr.-Mack-Strasse 77, 90762 Fürth, Germany

∗ Correspondence: Email: Michael.Zaiser@fau.de; Tel: +49-911-65078-65060;
Fax: +49-911-65078-65066.

Abstract: We use atomistic simulation (molecular mechanics and molecular dynamics) to investigate
failure of graphene sheets containing randomly distributed vacancies. We investigate the dependency
of the failure stress on defect concentration and sheet size and show that our findings are consistent
with the Duxbury-Leath-Beale (DLB) theory of mechanical or electric breakdown in random media.
The corresponding distribution of failure stresses falls into the Gumbel, rather than the Weibull class
of extremal statistics. By comparing molecular mechanics and zero-temperature molecular dynamics
simulations we establish the role of kinetic energy in crack propagation and its impact on crack patterns
emerging before sheet rupture.
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1. Introduction

Carbon nanoparticles, in particular graphene both in sheet-like and in cylindrically wrapped (car-
bon nanotube) form, have attracted tremendous scientific and technological interest, with applications
ranging from nanoelectronics [1] to functional and structural composites [2]. In structural applica-
tions, a most attractive feature of graphene is the extreme in-sheet elastic stiffness and rupture strength
of perfect sp2 covalently bonded structures [3, 4].

Significant research has been devoted to assessing the influence of defects on the mechanical proper-
ties of carbon nanoparticles. This is partly motivated by the fact that experimentally measured rupture
strengths e.g. of carbon nanotubes may fall significantly below theoretical expectations [4] for the
defect-free structures, and that they exhibit a very significant statistical scatter [5]. Theoretical investi-
gations of failure of defected carbon nanotubes have mostly focused on molecular mechanics (MM) or
molecular dynamics (MD) simulations, see e.g. [6, 7], although a few ab-initio studies have also been
reported (e.g. [8]). Besides investigations of the effect of single defects, such as vacancies, Stone-Wales
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defects, or cracks [6, 7], several studies have addressed the effect of multiple, randomly distributed de-
fects. Multiple defects may not only lead to a reduction in strength due to microcrack interactions, but
may also give rise to a significant scatter in strength concomitant with statistical size effects as larger
samples have an enhanced probability to contain weak local configurations. Both experiment [5] and
simulation [9, 10] indicate that the strength distribution of carbon nanotubes with multiple defects is
well described by Weibull statistics and exhibits the typical size effects characteristic of weakest-link
controlled failure. Similar investigations have been conducted for Graphene [11, 12, 13].

In the present paper we aim at identifying the statistical features of failure in graphene sheets con-
taining multiple defects. To this end we conduct an investigation of sheets with randomly distributed
vacancies, systematically varying both the sheet size and the vacancy concentration, and determining
for each set of parameters the statistical distribution of failure stresses as obtained from an ensemble of
simulations for different initial defect configurations. Our simulation methodology is detailed in Sec-
tion 2.1, while the theoretical framework used for statistically analyzing the generated data is explained
in Section 2.2. Results are presented in Section 3, and we close with a Discussion and Conclusions.

2. Materials and Methods

2.1. Molecular Simulation

In this study, we perform deformation simulations with the LAMMPS package, using both MD and
MM methods. We stretch graphene sheets along the armchair direction until failure. To correctly rep-
resent the atomic-level mechanisms of graphene failure, we perform our simulations with a modified
REBO potential proposed by Pastewka et al. [14]. Standard AIREBO potentials suffer from the well-
known problem that the built-in cut-off function leads to an artificial stiffening of the bond response
at large bond strains and thus leads to unrealistic deformation behavior and too-high failure stresses.
The commonplace method to overcome this problem is to set the inner cut-off radius (the radius where
the cut-off kicks in) equal to the outer cut-off (the radius where the interaction energy becomes zero),
see e.g. [10, 12]. This method has, however, the obvious disadvantage of rendering the potential
non-analytic – a feature which makes it impossible to perform meaningful molecular mechanics simu-
lations based upon conjugate-gradient energy minimization and which introduces artefacts into the MD
simulations. The potential of Pastewka et. al. overcomes this problem by using a local environment-
dependent cut-off function which leads to smooth changes in forces and to a much better description
of bond breaking and re-forming as compared with conventional truncated REBO potentials. To illus-
trate the advantages we note that, for vacancy defects as considered here, the environment-dependent
cutoff of the Pastewka potential leads to an interaction between the atoms surrounding a vacancy and
to spontaneous reconstruction of two of the three dangling bonds that are left once an atom is removed.
In the standard AIREBO potential the atoms around a vacancy do not interact, which is clearly un-
physical, and the extensive presence of dangling bonds in multiply defected graphene samples leads to
interesting simulation artefacts, for an example see results reported in [12].

We consider sheets with different sizes ranging from 1200 graphene lattice sites (6.5 × 5.0 nm2) to
19176 lattice sites (25 × 20 nm2) contained in the xy plane. Periodic boundary conditions are imposed
in both x and y directions. Point defects (vacancies) are created by randomly removing atoms with
probability f from their lattice sites. Each atom is considered independently, and removed atoms are
taken out of the system. Vacancy concentrations range from f = 0.25% to 8%. For each vacancy
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concentration and system size we simulate 50-100 samples with different, statistically independent
defect configurations.

Deformation is imposed by stretching the system volume in y direction to impose a series of fixed
strains (MM) or a fixed strain rate (MD). No cross-contraction is allowed. In MM at a given strain, the
configuration is optimized using a conjugate-gradient (CG) method which yields a minimal potential
energy configuration. In MD, we perform simulations in the NVT ensemble where the system volume
is stretched in y direction at a fixed strain rate of 0.001 ps−1. This value is low enough to prevent
the results being affected by wave propagation. The system is thermostated by using a Nose-Hoover
thermostat with a relaxation time equal to 0.1 ps. Our time step is 0.5 fs, and prior to deformation the
system is equilibirated over a time of 20 ps.

2.2. Statistical Analysis

Our statistical analysis of simulation data builds upon the Duxbury-Leath-Beale (DLB) theory of
load-driven breakdown in random media [15]. The theory is originally formulated for a network of
fuses carrying a scalar load (a current), however, the results can be transferred to networks of springs
or beams carrying vectorial or tensorial mechanical loads [17]. Here we summarize only the main
ideas, following the presentation in [16], while for mathematical elaboration and further detail the
reader is referred to the original paper [15].

Consider a 2D lattice of nodes connected by load-carrying links. The lattice is assumed of square
shape with a load σ applied in y direction and periodic boundary conditions in x direction. The linear
size of the lattice is L and there are N = (L/a0)2 lattice sites (thus, a0 is of the order of the lattice
constant).

A fraction f of nodes is randomly removed. A cluster of n such nodes aligned perpendicular to the
loading direction is termed a microcrack of size αna0 where α is a geometrical factor which depends
on the lattice morphology. The probability that adjacent vacancies form a microcrack of length a or
larger is given by

P(a) ≈ f

[
a
αa0

]
= exp

[
−

a
a1

]
, a1( f ) = −

αa0

ln f
. (1)

Thus, a simple geometrical argument shows that the microcrack population has an exponential size
distribution. Upon loading, a certain degree of subcritical crack growth and damage coalescence may
take place prior to failure. As demonstrated by Manzato and co-workers, this may increase the charac-
teristic crack length a1 but does not change the exponential nature of the microcrack size distribution
[16].

Now assume that elastic interactions between different microcracks can be neglected (this approxi-
mation becomes asymptotically exact in the limit f → 0). Under a stress σ, the stress concentration at
the tip of a microcrack of length a can then be estimated as [15, 16]

σ̂ ∝ σ

√
a
a2
, (2)

where a2 is again of the order of the lattice spacing. Crack propagation occurs once σ̂ > σc, hence if

σ > σc

√
a2

a
, a > a2

(
σc

σ

)2
. (3)
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In this approximation, the problem of finding the failure stress is thus equivalent to identifying the
size of the largest micro-crack in the sample. There are N = (L/a0)2 possible crack initiation sites,
and the probability distribution of the largest crack can then be obtained using standard arguments of
extreme value statistics: The probability of finding a largest microcrack of size > a in a system of size
L derives from

1 − Pmax(a, L) = [1 − P(a)](L/a0)2
. (4)

Now use Eq. 3 to express a in terms of the stress σ at which the largest microcrack becomes critical.
This directly yields the survival probability distribution (the fraction of samples of size L that have not
yet failed at stress σ):

PL(σ) =

(
1 − exp

[
−

a2

a1

(
σc

σ

)2
])(L/a0)2

. (5)

In the limit of large system sizes this expression is well approximated by the DLB distribution

DL(σ) = exp
− (

L
a0

)2

exp
[
−

(
σ̃

σ

)2] (6)

where σ̃ = σca0/a1. This distribution has several remarkable features. In the limit of very large system
sizes, the distribution flows not towards the Weibull distribution but towards the Gumbel distribution
of extremal statistics [16]. The mean failure stress is of the form

〈σ〉 = σ̃
C√

ln(L/a0)2
= σc

C′ ln(1/ f )√
ln(L/a0)2

. (7)

Here C and C′ are numerical factors which depend on the lattice morphology, and σc is the critical
stress for breaking bonds at the crack tip. We thus expect according to the DLB argument a logarithmic
size dependence and also a logarithmic dependence of the failure stress on vacancy concentration f .

3. Results

3.1. Stress-Strain Curves and Failure Patterns

Figure 1 shows stress-strain curves simulated by MD and MM for pristine as well as for defected
graphene samples. While the failure stresses of the defect-free sheets are almost identical, we see that
for defected graphene MD predicts a lower failure stress than MM. At the same time it is evident that
the MD stress-strain curve has a much more brittle appearance: failure is indicated by an abrupt load
drop and there is little straining in the regime past the peak stress. In MM simulations, by contrast, we
see a much more gradual decrease in stress concomitant with significant post-peak strain accumulation,
hence a more ductile response.
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Figure 1. Stress-strain curves for pristine graphene and for sheets with two different
vacancy fractions ( f = 0.5% and f = 2%); left: MM, right: MD, system size 25 × 20
nm2, N = 19176 lattice sites.

Figure 2. Emergent crack patterns and associated stress fields, vacancy fraction f =

0.5%, system size 25 × 20 nm2, N = 19176 lattice sites; top: MM simulation, bottom:
MD simulation.

To understand the origin of these differences we investigate the concomitant evolution of the crack
patterns. Figure 2 shows emergent crack patterns during a simulated deformation experiment on a
graphene sheet containing N = 19176 lattice sites with f = 0.5% vacancies. The physical dimension
of the sheet is 25×20 nm2. The top series represents a MM simulation, the lower series a MD simulation
performed at a temperature of T = 0.1 K. Clearly the simulated failure patterns are very different: In
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MM, we see evidence of multiple cracking and significant interactions between microcracks. After the
first crack starts to expand, the concomitant growing stress concentration activates further microcracks
while sometimes, the first crack gets arrested as the reduction of the overall stress decreases the stress
intensity at the crack tip. Thus system failure is not always associated with expansion of the first
activated crack, and the simultaneous growth of multiple cracks leads to a quasi-ductile response where
a significant amount of strain can accumulate before the sheet finally ruptures. The thus emerging
multi-crack configurations represent metastable energy minima, and the quasi-ductile behavior in a
MM simulation arises as the system passes through a sequence of such minima. In MD, by contrast,
failure is governed by the activation and propagation of a single crack which takes the system directly
to its global energy minimum, i.e., a broken sample.

These differences are at first glance astonishing given that, at T = 0.1 K, thermal fluctuations are
negligible as compared to typical bond energies in Graphene. However, the low-temperature MD
simulation is not simply tantamount to an energy relaxation: bond breakage releases kinetic energy
which cannot be instantaneously dissipated. In the MD simulation, the finite time needed for kinetic
energy to dissipate is reflected by the finite response time of the MD thermostat. The presence of
excess kinetic energy at the crack tip is evidenced in Figure 3, and this local excess kinetic energy
prevents crack arrest and leads to a macroscopically brittle response.

We can thus conclude that, in MD simulation, dynamic effects associated with inertia may reduce
the complexity of the energy landscape as such effects can help to overcome small local energy barriers
and favor single-crack propagation over multiple-crack activation. Given that such dynamic effects are
surely physically meaningful, this leads us to regard quasi-static simulation methods such as MM,
which implicitly assume instantaneous energy dissipation, with caution.

Figure 3. Kinetic energy distribution around a propagating crack in a MD simulation.
Parameters as in Figure 2.

3.2. Statistical Analysis

We now proceed to statistically analyze the failure stresses derived from our MM and MD simula-
tions. We first investigate the dependency of the mean failure stress on damage fraction f and system
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size L. According to Eq. (7), the mean failure stress should be proportional to the logarithm of 1/ f ,
and the inverse square of the mean failure stress should be a linear function of the logarithm of system
size L2 (or, equivalently, of the number of atoms N). These relations are indeed fulfilled as shown in
Figure 4.
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Figure 4. Mean failure stress as a function of damage fraction f and system size; main
figure: system size N = 19176 atoms, varying vacancy fraction, red symbols: molecular
mechanics results, black symbols: molecular dynamics results at T = 0.1 K; inset:
molecular dynamics results at T = 0.1 K for vacancy fraction f = 2% and varying
system size. Full lines: fits according to Eq. (7).

Comparing the results of MM and MD simulations, we find that for both types of simulations the f
dependence of the mean failure strength is well described by the predictions of DLB statistics. The only
difference between the MM and the MD results is that, in fitting Eq. (7) to the data, we must assume
for MD a critical stress value σc that is about 8% lower than for MM (note that all other parameters
refer to system size and lattice geometry and must thus be identical). This finding is interesting for
two reasons: (i) The reduced stress for crack propagation cannot be attributed to assistance of thermal
equilibrium fluctuations: MD simulations were at a temperature of 0.1K where such fluctuations are
negligible. Rather we are dealing with a dynamic effect: Because of the finite time required for the
system to thermalize, the energy released at the crack tip remains to some extent available for crack
propagation and prevents the system from settling into metastable energy minima. (ii) The very sig-
nificant differences in failure patterns between MD and MM do not affect the applicability of the DLB
argument, which is based upon consideration of isolated cracks - this despite the fact that in MM mul-
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tiple cracking and crack interactions are clearly in evidence from the damage patterns. It thus appears
that the presence of multiple metastable minima in the energy landscape can be represented in the DLT
picture – which considers a simple energy landscape with a single relevant saddle point – by the simple
means of introducing a slightly increased effective propagation threshold.
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Figure 5. Survival probability distributions for simulations with vacancy fraction f =

2% and varying system size. Inset: “DLT plot” of the same distributions.

We now turn to the statistics of failure thresholds and its size dependence. Figure 5 shows survival
probability distributions PN(σ) determined for a vacancy concentration of 2% and system sizes ranging
from 1200 to 19176 atoms (sheet sizes ranging from 6.5×5 to 25× 20 nm2). With increasing system size
the distributions shift to lower stresses, as already expected from the behavior of the mean values shown
in the inset of Figure 4. To assess whether the behavior of the distributions is consistent with DLB
statistics we note that, according to Eq. (6), a plot of ln(− ln(DL)/N) vs. 1/σ2 (note that (L/a0)2 = N)
should collapse distributions that pertain to different L (or N) onto a common straight line. Performing
such a plot for PN (inset of Figure 5) shows that the distributions indeed collapse, within the limitations
of the available statistics, onto a common straight line, thus corroborating the applicability of the DLB
distribution to our simulation data.

4. Discussion and Conclusions

Our investigation shows for the case of rupture of strongly defected Graphene sheets that simple
lattice models of failure in disordered materials, such as the scalar fuse model considered by DLB and
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others [15, 16, 17], can provide important insights even into much more complex material systems.
The energy landscape that controls microstructure evolution in strongly defected Graphene under in-
creasing strain is characterized by multiple metastable minima indicating barriers to crack propaga-
tion, multiple microcracking, and microcrack interactions. Despite this complexity, the main statistical
characteristics of failure can be envisaged within the DLB paradigm which focuses on a single critical
configuration associated with geometrically adjacent defects forming a critical crack. Interestingly,
the comparison of MD and MM simulations shows that dynamic effects in MD – and most likely in
reality – may help the system to overcome intermediate energy barriers, thus effectively reducing the
complexity of the energy landscape and making the problem of failure in randomly defected materials
amenable to simple statistical arguments at least in the regime of not-too-strong disorder. An important
physical question which we have not addressed here concerns the influence of temperature on the frac-
ture process. Investigating this question will require an extension of the – in essence athermal – DLB
framework to include effects of thermal fluctuations on fracture nucleation. This remains an important
task for future investigations.
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