
http://www.aimspress.com/journal/Materials/

AIMS Materials Science, 3(1): 245–259.
DOI: 10.3934/matersci.2016.1.245
Received: 12 July 2015
Accepted: 22 January 2016
Published: 25 February 2016

Research article

Decision maker based on atomic switches

Song-Ju Kim1∗, Tohru Tsuruoka1, Tsuyoshi Hasegawa2, Masashi Aono3,4, Kazuya Terabe1 , and
Masakazu Aono1

1 WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science,
1-1 Namiki, Tsukuba, Ibaraki 305–0044, Japan

2 Department of Applied Physics, Waseda University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555,
Japan

3 Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152–8550, Japan
4 PRESTO JST, Japan

∗ Correspondence: E-mail: KIM.Songju@nims.go.jp; Tel: +81-29-851-3351;
Fax: +81-29-860-4790.

Abstract: We propose a simple model for an atomic switch-based decision maker (ASDM), and show
that, as long as its total number of metal atoms is conserved when coupled with suitable operations,
an atomic switch system provides a sophisticated “decision-making” capability that is known to be
one of the most important intellectual abilities in human beings. We considered a popular decision-
making problem studied in the context of reinforcement learning, the multi-armed bandit problem
(MAB); the problem of finding, as accurately and quickly as possible, the most profitable option from
a set of options that gives stochastic rewards. These decisions are made as dictated by each volume
of precipitated metal atoms, which is moved in a manner similar to the fluctuations of a rigid body
in a tug-of-war game. The “tug-of-war (TOW) dynamics” of the ASDM exhibits higher efficiency
than conventional reinforcement-learning algorithms. We show analytical calculations that validate the
statistical reasons for the ASDM to produce such high performance, despite its simplicity. Efficient
MAB solvers are useful for many practical applications, because MAB abstracts a variety of decision-
making problems in real-world situations where an efficient trial-and-error is required. The proposed
scheme will open up a new direction in physics-based analog-computing paradigms, which will include
such things as “intelligent nanodevices” based on self-judgment.

Keywords: natural computing; atomic switch; tug-of-war dynamics; amoeba-inspired computing;
multi-armed bandit problem; reinforcement learning
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1. Introduction

Many natural phenomena, including the physical, chemical, and biological, can be viewed as com-
puting processes [1, 2, 3]. Inspired by such natural phenomena, many search algorithms for com-
binatorial optimization problems have been proposed to quickly obtain high quality solutions, such
as simulated annealing [4], neural networks [5], genetic algorithms [6], and DNA computing [7]. In
this paper, we propose a new computing architecture that utilizes the desirable physical properties of
“atomic switches” [8, 9] to solve a decision-making problem. If this architecture could be implemented
in physical devices in such a way that their computing processes are elegantly coupled with their un-
derlying physics, we would be able to utilize their abilities to make accurate and speedy decisions in
uncertain environments [10].

Decision-making is one of the most important intellectual abilities of human beings. In the context
of reinforcement learning, the multi-armed bandit problem (MAB) was originally described by Rob-
bins [11], although the essence of the problem had been studied earlier by Thompson [12]. Suppose
there are M slot machines, each of which returns a reward; for example, coins, with a certain probabil-
ity density function (PDF) that is unknown to a player. Let us consider a minimal case: two machines
A and/or B give rewards with individual PDF whose mean reward is µA and µB, respectively. The player
makes a decision on which machine to play at each trial, trying to maximize the total reward obtained
after repeating several trials. The MAB is used to determine the optimal strategy for playing machines
as accurately and quickly as possible by referring to past experience.

The optimal strategy, called the “Gittins index,” is known only for a limited class of problems in
which the reward distributions are assumed to be known to the players [13, 14]. Even in this limited
class, in practice, computing the Gittins index becomes intractable for many cases. For the algorithms
proposed by Agrawal and Auer et al., another index was expressed as a simple function of the reward
sums obtained from the machines [15, 16]. In particular, the “upper confidence bound 1 (UCB1)
algorithm” for solving MABs is used worldwide in many practical applications [16]. The MAB is
formulated as a mathematical problem without loss of generality and, as such, is related to various
stochastic phenomena. In fact, many application problems in diverse fields, such as communications
(cognitive networks [17, 18]), commerce (advertising on the web [19]), entertainment (Monte-Carlo
tree search, which is used for computer games [20, 21]), can be reduced to MABs.

A proposal was made about ten years ago for a conceptually novel switching device called the
“atomic switch,” which is based on metal ion migration and electrochemical reactions in solid elec-
trolytes (SEs) [8, 9]. Because its resistance state is controlled continuously by the movement of a
limited number of metal ions/atoms, the atomic switch can be regarded as a physics-based analog-
computing element. Nanoarchitectonic designs using such atomic switches have recently been pro-
posed for natural computing [22, 23]. In this paper, using two atomic switches that interact with each
other, we show that a physical constraint, the conservation law, allows for the efficient solving of
decision-making problems.

This paper consists of five sections. In Sec. 2, a brief summary of an atomic-switch-based decision
maker (ASDM) model is given, and its operating principle is described. The theoretical analyses of
the dynamics underlying the ASDM are presented in Sec. 3. The simulation results based on the
ASDM and the SOFTMAX algorithm, which is a well-known algorithm for solving the MABs [24],
are compared in Sec. 4. Section 5 presents the conclusion with a short discussion.
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2. Model

Recently, Kim et al. proposed a MAB solver [25, 26] that reflects the behavior of a single-celled
amoeboid organism (the true slime mold P. polycephalum), which maintains a constant intracellular-
resource volume while collecting environmental information by concurrently expanding and shrinking
its pseudopod-like terminal parts. In this bio-inspired algorithm, the decision-making function is de-
rived from its underlying “tug-of-war (TOW) game”-like dynamics. The physical constraint in TOW
dynamics, the conservation law for the volume of the amoeboid body, entails a nonlocal correlation
among the terminal parts. That is, a volume increment in one part is immediately compensated for
by volume decrement(s) in another part(s). Owing to the nonlocal correlation, the TOW dynamics
exhibit higher performance than other well-known algorithms, such as the modified ε-GREEDY algo-
rithm and the modified SOFTMAX algorithm [25, 26, 10]. These observations suggest that efficient
decision-making devices could be implemented using any physical object as long as it holds some
physical conservation law. In fact, Kim et al. theoretically and experimentally demonstrated that opti-
cal energy-transfer dynamics between quantum dots, in which energy is conserved, can be used for the
implementation of TOW dynamics [27, 28, 29].

Stochastic Events

 dispenses reward Rk(t)

ΔVk is added to Vk(t)

If Ik(t)>θ, play k
ASDM
(Solver)

Problem

Figure 1. The ASDM using gapless-type atomic switches. The ASDM decides which
machine (A or/and B) is to be played at time t according to whether the current Ik is
larger than θ or not.

Here, we propose a simplified model for an ASDM based on the TOW dynamics. The ASDM
consists of two atomic switches (named A and B) located close to each other, as shown in Figure 1,
in which a SE including metal ions is sandwiched between one Pt electrode on the top side and two
Pt electrodes on the bottom side. The electrode material does not have to be Pt, but it should be an
inert metal. Each atomic switch is operated in a metal/ionic conductor/metal (MIM) configuration,
which can be referred to as a “gapless-type atomic switch [30]” because each MIM switch can form
a metal filament between the top and bottom electrodes by precipitation on an inert electrode. In the
initial state, we consider the situation where metal ions are distributed uniformly in the SE and the total
number of metal ions is constant. First, a bias voltage of −V0 is applied to both switches A and B, i.e.,
to the bottom Pt electrodes relative to the top Pt electrode (VA and VB = −V0), and the current Ik passing
through the respective switch is measured with a time step increment of ts. Under these circumstances,
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(a)

(b)

Figure 2. (a) Tug-of-war (TOW) dynamics in the ASDM. (b) An example of expected
behavior of the ASDM, showing the relationship between voltage Vk and displacement
Xk. Here, added voltage ∆Vk( j) is determined by each reward Rk( j) (Eq.(1)) at play j
(Ik>θ). The ASDM selected machine A, A, A, B, · · · in this figure.

metal ions migrate to the respective bottom electrodes and are precipitated on them by the reduction
reaction (Me+ + e− → M). Here, we assume that the same amounts of metal atoms are precipitated
on both bottom electrodes, and the heights of these initial precipitations are defined by X0, as shown
in Figure 1. Because of the stochastic nature of precipitation phenomena, the current Ik should fluctuat
with time even after reaching the equilibrium state.

In the next procedure, the ASDM compares the measured current Ik of both switches A and B with
a threshold θ. If the current Ik becomes larger than θ at a certain time step, the ASDM chooses the
corresponding slot machine(s) k (A and/or B), and sends this information to the problem side. On
the problem side, a reward Rk( j) generated from each “unknown PDF” (the mean reward µk is also
supposed to be unknown) is obtained as a result of stochastic events by playing the machine, where j
is the step number. Depending on the reward, the added voltage ∆Vk( j) is determined by

∆Vk( j) = Rk( j) − K, (1)

and is returned to the ASDM. Here, Rk( j) is an arbitrary real value, and K is a parameter that will be
described in detail later on in this paper. As a result, the total voltage applied to the respective switch
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at the j-th step is changed to
Vk = − (V0 + ∆Vk( j)) . (2)

In response to the change in the applied voltages, the height of precipitations in switches A and B may
vary, and each displacement from the initial height X0 at time t is given by Xk(t) (k ∈ {A, B}). The total
height becomes X0 + Xk(t). This procedure is repeated for the number of steps specified by the problem
side or until a metal filament in either switch is formed between the top and bottom electrodes.

During the operation, the following conditions are assumed:

1. The SE is nearly empty of metal ions to be precipitated. Owing to the conservation law of the
total number of metal ions/atoms, precipitation of metal atoms (Me+ + e−→ M) in one switch
occurs together with the dissolution of metal atoms (M → Me+ + e−) in the other switch. This
means that the height increment of one precipitation (XA or XB) is compensated by a decrement
in the other. Eq.(3) represents this condition.

2. The time step ts consists of the time duration of applying the added voltage ∆t and the interval
time ∆tint, as shown in Figure 2(b). In addition, ∆t is sufficiently larger than ∆tint to ignore the
displacement of precipitations during ∆tint. This means that once displacements of precipitations
take place in ∆t, this status is maintained in the subsequent ∆tint after the application of ∆Vk.

3. The difference in precipitation height of switch k from the ( j − 1)-th step to the j-th step is
proportional to ∆Vk( j). For simplicity, the shape of the precipitated atoms is ignored.

4. Ik is also proportional to X0 + Xk(t). This assumption implies that there is also a threshold for the
displacement of precipitations Th, which corresponds to the threshold θ of the current Ik. If Ik is
larger than θ, the condition X0 + Xk(t) > Th is fulfilled. If the Th is set to be smaller than X0, the
ASDM dynamics works from the initial state without fluctuations.

According to the foregoing assumptions, the displacement XA (= −XB) can be described by the
following equations:

XA(t j+1) = QA(t j) − QB(t j) + δ(t j), (3)

Qk(t j) =

Nk∑
j=1

∆Vk( j). (4)

Here, Qk(t j) (k ∈ {A, B}) is an “index” for information of past experiences accumulated from the initial
time 1 to the current time t j, Nk counts the number of times that machine k has been played, ∆Vk is
the added voltage when playing machine k, and δ(t j) is an arbitrary fluctuation to which the body is
subjected, and K is a parameter. Eqs.(1) and (4) are called the “learning rule.” Consequently, the
ASDM evolves according to a particularly simple rule: in addition to the fluctuation, if machine k is
played at each time t, Rk−K is added to determine Xk(t j).

The basic behavior of the ASDM underlying TOW dynamics is illustrated in Figure 2(a). Consider
that the XA of switch A is higher than Th while the XB of switch B is lower than Th at time step j. This
situation corresponds to IA > θ and IB < θ. Under these circumstances, the ASDM chooses slot machine
A, and a reward RA( j) is obtained by playing machine A, which is determined as a result of a stochastic
event. Then, VA=−(V0 + ∆VA( j)) is applied to switch A, whereas switch B is kept VB=−V0. In the
case of ∆VA( j)>0, the precipitation of switch A is enhanced by the reduction reaction Me+ + e− → M.
On the other hand, the precipitation of switch B is reduced by the oxidation reaction M → Me+ + e−,

AIMS Materials Science Volume 3, Issue 1, 245–259.



250

owing to the conservation law of the total number of atoms and ions. As a result, the height difference
between the precipitations of switches A and B increases, as shown in Figure 2(a). Note that ∆Vk( j)
can take both polarities because of the stochastic event. If ∆VA( j)<0, VA and VB are applied to decrease
the height difference between the two precipitations. However, as the number of time steps increases,
the ASDM finally decides to select one of switches (A or B). We illustrate schematically the expected
behavior of the ASDM in Figure 2(b). Here, Th=X0 is assumed. Even under this condition, the current
Ik (correspondingly Xk) fluctuates around θ (Th) with time. At each time step j, the ASDM detects
the switch showing a higher current than θ (larger precipitation than Th) and selects the corresponding
slot machine. The voltages applied to both switches are then updated according to the reward obtained
from the slot machines. The ASDM does not always select one machine. Selection of both machines
or neither of them is also possible.

3. Theoretical Analyses

Theoretical analyses of the TOW dynamics for a Bernoulli type MAB, in which a reward is limited
to 0 or 1, are described in [10]. In this section, theoretical analyses of the ASDM are described for a
general MAB where a reward is not limited to 0 or 1 and can take an arbitrary value.

3.1. MAB Solvability

D

Rk - K

overlapping area

D

Figure 3. (a) Random walk: flight Rk(t) − K . Here, the probability density function of
Rk has the mean µk. (b) Probability distributions of two random walks.

To explore the MAB solvability of the ASDM using the learning rule Qk (Eqs.(1) and (4)), let us
consider a random-walk model as shown in Fig. 3(a). Here, Rk(t) (k ∈ {A, B}) is a reward at time t, and
K is a parameter (see Eq.(1)). We assume that means of the probability density function of Rk satisfy
µA > µB for simplicity. After time step t, the displacement Dk(t) (k ∈ {A, B}) can be described by

Dk(t) =

Nk(t)∑
j=1

Rk( j) − K Nk(t). (5)
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The expected value of Dk can be obtained from the following equation:

E(Dk(t)) = (µk − K) Nk(t). (6)

In the overlapping area between the two distributions shown in Fig. 3(b), we cannot accurately
estimate which is larger. The overlapping area should decrease as Nk increases so as to avoid incorrect
judgments. This requirement can be expressed by the following forms:

µA − K > 0, (7)
µB − K < 0. (8)

These expressions can be rearranged into the form

µB < K < µA. (9)

In other words, the parameter K must satisfy the above conditions so that the random walk correctly
represents the larger judgment.

We can easily confirm that the following form, which we call K0, satisfies the above conditions:

K0 =
γ

2
, (10)

γ = µA + µB. (11)

Therefore, we can conclude that the ASDM using the learning rule Qk with the parameter K0 can solve
the MAB correctly.

3.2. Origin of the high performance

In many popular algorithms such as the ε-GREEDY algorithm [24], at each time t, an estimate of
reward probability is updated for either of the two machines being played. On the other hand, in an
imaginary circumstance in which the sum of the mean rewards γ = µA + µB is known to the player,
we can update both of the two estimates simultaneously, even though only one of the machines was
played.

Table 1. Estimates for each mean reward based on the knowledge that machine A was
played NA times and that machine B was played NB times—on the assumption that the
sum of the mean rewards γ = µA + µB is known.

A:
∑NA

j=1 RA( j)

NA
B: γ −

∑NA
j=1 RA( j)

NA

A: γ −
∑NB

j=1 RB( j)

NB
B:

∑NB
j=1 RB( j)

NB

The top and bottom rows of Table 1 provide estimates based on the knowledge that machine A was
played NA times and that machine B was played NB times, respectively. Note that we can also update
the estimate of the machine that was not played, owing to the given γ.
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From the above estimates, each expected reward Q′k (k ∈ {A, B}) is given as follows:

Q′A = NA

∑NA
j=1 RA( j)

NA
+ NB

(
γ −

∑NB
j=1 RB( j)

NB

)
=

NA∑
j=1

RA( j) −
NB∑
j=1

RB( j) + γNB, (12)

Q′B = NA
(
γ −

∑NA
j=1 RA( j)

NA

)
+ NB

∑NB
j=1 RB( j)

NB

=

NB∑
j=1

RB( j) −
NA∑
j=1

RA( j) + γ NA. (13)

These expected rewards, Q′js, are not the same as those given by the learning rules of TOW dynamics,
Q js in Eqs.(1) and (4). However, what we use substantially in TOW dynamics is the difference

QA − QB = (
NA∑
j=1

RA( j) −
NB∑
j=1

RB( j)) − K (NA − NB). (14)

When we transform the expected rewards Q′js into Q′′j = Q′j/2, we can obtain the difference

Q′′A − Q′′B = (
NA∑
j=1

RA( j) −
NB∑
j=1

RB( j)) −
γ

2
(NA − NB). (15)

Comparing the coefficients of Eqs.(14) and (15), the two differences are always equal when K = K0

(Eq.(10)) is satisfied. Eventually, we can obtain the nearly optimal weighting parameter K0 in terms of
γ.

This derivation implies that the learning rule for the ASDM is equivalent to that of the imaginary
system in which both of the two estimates can be updated simultaneously. In other words, the ASDM
imitates the imaginary system that determines its next move at time t + 1 in referring to the estimates
of the two machines, even if one of them was not actually played at time t. This unique feature in the
learning rule, derived from the fact that the sum of mean rewards is given in advance, may be one of
the origins of the high performance of the ASDM.

Monte Carlo simulations were performed it was verified that the ASDM with K0 exhibits an excep-
tionally high performance, which is comparable to its peak performance—achieved with the optimal
parameter Kopt. To derive the optimal value Kopt accurately, we need to take into account the fluctua-
tions.

In addition, the essence of the process described here can be generalized to M-machine cases. To
separate distributions of the top m-th and top (m + 1)-th machine, as shown in Fig. 3(b), all we need is
the following K0:

K0 =
γ′

2
, (16)

γ′ = µ(m) + µ(m+1). (17)
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Here, µ(m) denotes the top m-th mean, and m is any integer from 1 to M − 1. The MBP is a special case
where m = 1. In fact, for M-machine and X-player cases, we have designed a physical system that can
determine the overall optimal state, called the “social maximum [31, 32],” quickly and accurately [33,
34].

3.3. Performance characteristics

In this section, we calculate a performance measure, called the “regret,” to characterize the high
performance of the ASDM. We consider the “cheater algorithm,” an imaginary model for solving the
MAB, because the regret of this algorithm can be easily calculated.

The cheater algorithm selects a machine to play according to the following estimate S k (k ∈ {A, B})

S A = XA,1 + XA,2 + · · · + XA,N , (18)
S B = XB,1 + XB,2 + · · · + XB,N . (19)

Here, Xk,i is a random variable. If S A > S B at time t = N, machine A is played at time t = N + 1. If
S B > S A at time t = N, machine B is played at time t = N + 1. If S A = S B at time t = N, a machine
is played randomly at time t = N + 1. Note that the algorithm refers to results of both machines at
time t without any attention to which machine was played at time t − 1. In other words, the algorithm
“cheats” because it plays both machines and collects both results, but declares that it plays only one
machine at a time.

The expected value and the variance of Xk are defined as E(Xk) = µk and V(Xk) = σ2
k . Here, µk is

the same as the Pk defined earlier. From the central-limit theorem, S k has a Gaussian distribution with
E(S k) = µkN and V(S k) = σ2

kN. If we define a new variable S = S A−S B, S has a Gaussian distribution
and carries the following values:

E(S ) = (µA + µB)N, (20)
V(S ) = (σ2

A + σ2
B)N, (21)

σ(S ) =

√
σ2

A + σ2
B

√
N. (22)

σ
σ

Figure 4. Q( E(S )
σ(S ) ): probability of selecting the lower-reward machine in the cheater

algorithm

From Fig. 4, the probability of playing machine B, which has a lower reward probability, can be
described as Q( E(S )

σ(S ) ). Here, Q(x) is a Q-function. We obtain

P(t = N + 1, B) = Q(φ
√

N). (23)
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Here,

φ =
µA − µB√
σ2

A + σ2
B

. (24)

Using the Chernoff bound Q(x) ≤ 1
2 exp(− x2

2 ), we can calculate the upper bound of a measure, called
the “regret,” which quantifies the accumulated losses of the algorithm.

regret = (µA − µB)E(NB). (25)

E(NB) =

N−1∑
t=0

Q(φ
√

t)

≤

N−1∑
t=0

1
2

exp(−
φ2

2
t)

=
1
2

+

N−1∑
t=1

1
2

exp(−
φ2

2
t)

≤
1
2

+

∫ N−1

0

1
2

exp(−
φ2

2
t)dt

=
1
2
−

1
φ2

(
exp(−

φ2

2
(N − 1)) − 1

)
(26)

→
1
2

+
1
φ2 . (27)

Note that the regret becomes constant as N increases.
Using the “cheated” results, we can also calculate the regret for the ASDM in the same way. In this

case,

S A = XA,1 + XA,2 + · · · + XA,NA − KNA, (28)
S B = XB,1 + XB,2 + · · · + XB,NB − KNB. (29)

Xk,i is also a random variable. Then, we obtain

E(S k) = (µk − K)Nk, (30)
V(S k) = σ2

kNk. (31)

Using the new variables S = S A − S B, N = NA + NN , and D = NA − NN , we also obtain

E(S ) =
µA − µB

2
N +

(
µA + µB

2
− K

)
D, (32)

V(S ) =
σ2

A + σ2
B

2
N +

σ2
A − σ

2
B

2
D. (33)

If the conditions K = K0 and σA = σB ≡ σ are satisfied, we then obtain

E(S ) =
µA − µB

2
N, (34)
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V(S ) = σ2N, (35)

and

P(t = N + 1, B) = Q(φT

√
N). (36)

Here,

φT =
µA − µB

2σ
. (37)

We can then calculate the upper bound of the regret for the ASDM

E(NB) =

N−1∑
t=0

Q(φT
√

t)

≤
1
2
−

1
φ2

T

(
exp(−

φ2
T

2
(N − 1)) − 1

)
(38)

→
1
2

+
1
φ2

T

. (39)

Note that the regret for the ASDM also becomes constant as N increases.
It is well known that optimal algorithms for the MAB, defined by Auer et al. [16], have a regret

proportional to log(N). The regret for the optimal algorithms has no finite upper bound as N increases
because it continues to require playing the lower-reward machine to ensure that the probability of
incorrect judgment goes to zero. A constant regret for the ASDM means that the probability of incorrect
judgment remains non-zero, although this probability is nearly equal to zero. However, it would appear
that the reward probabilities change frequently in actual decision-making situations, and their long-
term behavior is not important for many practical purposes. For this reason, the ASDM would be more
suited to real-world applications.

4. Simulation Results

In this section, to show the effectiveness of the ASDM, we investigate the performance compari-
son between the ASDM and the SOFTMAX algorithm which is a well-known algorithm for efficient
decision-making [24] (see Appendix). From computer simulations, we confirmed that, in almost all
cases, an ASDM with the parameter K0 (=µA+µB

2 ) can acquire more rewards than a SOFTMAX algo-
rithm with the optimized parameter τopt, although SOFTMAX is well known as a good algorithm [35].
Here, the parameter K0 is nearly optimal as shown in Fig. 5(a). Regret, as defined in the previous
section, is a performance measure where a lower value indicates higher performance (more rewards).
Figure 5(b) shows an ASDM/SOFTMAX performance comparison. The vertical axis denotes the regret
(mean values of 1000 samples), and the horizontal axis denotes the number of plays. The blue dotted
line denotes the upper bound of the ASDM with K0 (Eq.(39)). For the reward PDFs, we used normal
distributions N(µA, σ

2) and N(µB, σ
2), where µA=0.6, µB=0.5, and σ=0.2. Computer simulations were

executed under the condition that Th=X0 and δ=sin(π/2 + πt).
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Figure 5. (a) The regret of the ASDM with K until 1, 000 plays (black solid line). The red
dashed line denotes the regret of SOFTMAX with τopt=0.3 (b) Performance comparison
between the ASDM (black solid line) and SOFTMAX [24] (red dashed line). We used
K0=0.55 for the ASDM and τopt=0.3 for SOFTMAX. The blue dotted line denotes the
upper bound of the ASDM with K0 (Eq.(39)).

5. Discussion and Conclusion

In this study, we proposed an ASDM for solving the MAB, and analytically validated their high
efficiency in making decisions. In conventional decision-making algorithms for solving MABs, the
parameter for adjusting the “exploration time” must be optimized. This exploration parameter always
reflects the difference between the rewarded experiences, i.e., |µA−µB|. In contrast, the ASDM demon-
strates that higher performance can be achieved by introducing a parameter K0 that refers to the sum of
the rewarded experiences, i.e., µA + µB. This type of optimization, using the sum of the rewarded expe-
riences, is particularly useful for time varying environments (reward probability or reward PDF) [26].
Owing to this novelty, the high performance of the TOW dynamics can be reproduced when imple-
menting these dynamics with atomic switches.

The ASDM proposed in this paper is a simple “ideal model.” While the assumptions used for
constructing the model may contain some points that do not match real experimental situations, we
can more accurately extend the model so that the modified assumptions do match real experimental
situations. As we extend the model to treat more than two options, it may be found that there are
some experimental limitations in implementing TOW dynamics when more than two atomic switches
are used. As long as the TOW dynamics between atomic switches is implemented, high performance
decision-making can be guaranteed even in the extended model.

The ASDM will introduce a new physics-based analog-computing paradigm, which will include
such things as “intelligent nanodevices” based on self-judgment. Thus, our proposed physics-based
analog-computing paradigm would be useful for a variety of real-world applications and for under-
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standing the biological information-processing principles that exploit their underlying physics.

Appendix

SOFTMAX algorithm

The SOFTMAX algorithm is a well-known algorithm for solving MABs [24]. In this algorithm, the
probability of selecting A or B, P′A(t) or P′B(t), is given by the following Boltzmann distributions:

P′A(t) =
exp[β · QA(t)]

exp[β · QA(t)] + exp[β · QB(t)]
, (40)

P′B(t) =
exp[β · QB(t)]

exp[β · QA(t)] + exp[β · QB(t)]
, (41)

where Qk(t) (k ∈ {A, B}) is given by
∑Nk (t)

j=1 Rk( j)

Nk(t) . Here, β is a time-dependent form in our study, as follows:

β(t) = τ · t. (42)

β = 0 corresponds to a random selection, and β→ ∞ corresponds to a greedy action.
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