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Abstract: Via Dissipative Particle Dynamics (DPD) and implicit solvent coarse-grained (CG) 
Molecular Dynamics (MD) we examine the interaction of an amphiphilic cell-penetrating peptide 
PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to 
investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component 
membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide 
PMLKE with single-component membrane. We observe the spontaneous binding and subsequent 
insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, 
respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the 
favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and 
the membrane. Our study provides insights into the mechanism underlying the interactions of 
amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can 
be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell 
membrane. 
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1. Introduction  

Biological cell membranes are dynamic, adaptive, stimuli-responsive multi-component soft 
materials which separate the cytosol from the extracellular environment, and participate in vital 
functions, for example intracellular and extracellular traffic, sensing and cell signaling [1]. 
Phospholipid molecules have been shown to be the primary component of cell membranes [1]; these 
amphiphilic entities typically have a hydrophilic head group and two hydrocarbon tail chains. In 
addition, cholesterol is an essential component of all animal cell membranes, and is required for 
fluidity and structural integrity of the membranes. Cholesterol molecules are composed of a small 
hydrophilic head group, a rigid hydrophobic ring and a single hydrocarbon tail chain. The 
composition of the cell membrane has been found to influence its functions [2]. The self-organization 
of various amphipathic molecules enables the membrane to modulate its tension and mechanical 
properties which facilitate various physiological processes, or promote binding or catalytic events at 
the membrane interface [1,3,4]. In addition, the kinetics and thermodynamics of cell membranes are 
highly susceptible to changes in their external environment; including but not limited to pH changes, 
temperature fluctuations, and binding on active sites. [5] The composition and self-organization of 
different molecular species in the membrane [6–20] have been shown to be critical for the interfacial 
binding events on the cell surface [21,22]. A fundamental understanding of the underlying 
mechanisms driving the binding and insertion of various nanoparticles and macromolecules such as 
proteins, peptides, oligonucleotides or synthetic counterparts to the membranes will enhance the 
development of bionanomaterials via the use of interfacial binding for functional integration. 

Experimental methods for studying the interactions of membranes with peptides and 
nanoparticles pose many challenges [23]. These challenges include limitations of experimental 
methods in capturing dynamics of peptide-membrane and nanoparticle-membrane interactions as 
these biological processes take place in a relatively short time scale. Most peptide-membrane 
interactions involve both electrostatic and hydrophobic contributions, yet it is still not clear which 
one plays a more dominant role in driving the initial binding and subsequent insertion of peptides 
during their interactions with model membranes. Computational simulation techniques can be used 
to model these membranes, along with their interactions with peptides and nanoparticles. All-atom 
simulations of lipid bilayers that resolve the dynamics of the various molecules are computationally 
expensive and limit the investigation to small spatio-temporal scales [24–30]. These tools are not 
suitable for addressing phenomena occurring on the mesoscale, such as membrane fusion and rupture, 
domain formation in the multicomponent membranes as well as the structural and dynamical effects 
of nanoparticle adsorption and self-organization onto the membrane [31]. Dynamics spanning large 
length and time scales can be resolved via coarse-grained [32–52] implicit solvent models which are 
used along with Monte Carlo [24,25,33,34,35,53,54], Molecular Dynamics [31], Brownian dynamics 
simulation methods [55,56] or mean field theoretical approaches [57–65]. 

The interactions between nanoparticles and biomembranes have been extensively studied 
previously by using various computational techniques. [37,66–71]. We have adopted two different 
Molecular Dynamics (MD)-based mesoscopic simulation techniques for the investigations presented 
in this paper. The first simulation technique is entitled Dissipative Particle Dynamics        
(DPD) [7,37,42,72,73] which simultaneously resolves both the molecular and continuum scales as 
well as the hydrodynamics of the system. The DPD method has been used to investigate the 
dynamics and morphology of self-assembly, phase separation and phase transition in lipid    
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systems [44,46] block co-polymers [74,75], dense colloidal suspensions [76], polymers in dilute 
solution or in a melt [77] and chains in microfluidic channels [78,79]. The technique is previously 
used to study the translocation process of the nanoparticles across lipid vesicles [80] and  
membranes [81,82]. The method has been also used to investigate the different pathways of 
spontaneous nanoparticle penetration into a vesicle [83] and examine spontaneous insertion of 
amphiphilic nanotubes into a lipid vesicle and membrane, and their organization in the       
bilayer [36,38]. DPD is limited in its ability to capture the chemical specificity in peptide-membrane 
interactions because the highly coarse-grained approach makes it difficult to differentiate various 
types of amino acids in peptides. In addition, DPD model does not capture the electrostatic 
interactions between charged groups explicitly. As a comparison, the second simulation technique 
used for the investigations presented in this work is the coarse-grained (CG) MD simulation 
technique using the implicit solvent Dry Martini model [84]. Martini is a coarse-grained force field 
which has been used to investigate various biomolecular processes [52]. The Martini model [85,86] 
has been used to investigate the insertion and organization of nanoparticles (such as peptides) in lipid 
membranes. To our knowledge, there is no previous study on the membrane—nanoparticle 
interactions by using Dry Martini model. It is also worthy to note that since no solvent is involved in 
the system, the hydrodynamics of the peptide in aqueous environment is not captured using Dry 
Martini technique. Thus, we are not able to investigate the diffusion of peptide molecules in solvent 
prior to their binding to the membrane.  

In this study, we are interested in investigating the principle mechanisms driving the capture, 
binding and insertion of peptides and peptide-mimetic nanoparticles into bio-inspired membranes. 
We will also examine the effect of explicit and implicit solvent approaches on the interaction of 
natural and synthetic nanoparticles with membranes.  

2. Materials and Method  

2.1. Dissipative Particle Dynamics  

DPD is a mesoscopic MD-based simulation technique that uses soft-sphere coarse-grained (CG) 
models to capture both the molecular details of the system components and their supramolecular 
organization while simultaneously resolving the hydrodynamics of the system over extended time 
scales [36–39,73]. In order to capture the dynamics of the soft spheres, the DPD technique integrates 
Newton’s equation of motion via the use of similar numerical integrators used in other deterministic 
particle-based simulation methods [73,87]. The force acting on a soft sphere i due to its interactions 
with a neighboring soft sphere j (j  i) has three components: a conservative force, a dissipative force 

and a random force, which operate within a certain cut-off distance rc from the reference particle i. 
These forces are pairwise additive and yield the total force acting of particle i, which is given by
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and TkB 22  . aij is the maximum repulsion between spheres i and j, vij = vi – vj is the relative 

velocity of the two spheres, rij = ri – rj, rij = |ri – rj|, ijr̂  = rij/rij, r = rij/rc, γ is viscosity related 

parameter used in the simulations,  is the noise amplitude, ij(t) is a randomly fluctuating variable 
from Gaussian statistics, d and r are the separation dependent weight functions which become zero 
at distances greater than or equal to the cutoff distance rc. Each force conserves linear and angular 
momentum. Since the local momentum is conserved by all of these three forces, even the small 
systems exhibit hydrodynamic behavior [73]. The constraints imposed on the random and dissipative 
forces by certain relations ensure that the statistical mechanics of the system conforms to the 
canonical ensemble [73,87].  

 

Figure 1. (a–d) Coarse-grain model (for DPD) of (a) DPPC, (b) DMPC, (c) 
cholesterol, (d) nanopin. (e–f) Dry martini coarse-grain model (for MD) of (e) DPPC, 
(f) peptide PMLKE with residue gly ( blue ), glu ( yellow ), lys ( magenta ), leu 
( black ), met ( red ) and pro ( lime ). 

The relation between the pair repulsion parameter aij and the Flory interaction parameter  for a 

bead number density  = 3rc
−3 is given by ))(002.0286.0( iiij aa   [73]. 

We model a ternary membrane encompassing two distinct amphiphilic phospholipid species, 
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine 
(DMPC) and a sterol species, cholesterol, as respectively shown in Figure 1 (a), (b) and (c). 
Individual lipid molecules are represented by bead-spring models, and are modeled by a head group 
comprised of three hydrophilic beads and two hydrocarbon tails represented by three hydrophobic 
beads each. DPPC is a cylindrical-shaped molecule with a large head group and two hydrocarbon 
tails. DMPC is an inverted wedge-shaped molecule with a smaller head group and two-hydrocarbon 
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tails [88]. The amphiphilic sterol molecule is modeled by a head group comprising of two 
hydrophilic beads and, a rigid ring and a single hydrocarbon tail encompassing seven hydrophobic 
beads. Two consecutive beads in a chain are connected via a bond that is described by the harmonic 

spring potential 2)/)(( cbondbond rbrKE  , where bondK  is the bond constant and b  is the 

equilibrium bond length. The constants, bondK  and b are assigned to the values of 64ε and 0.5rc, 

respectively [36–39,42]. The three-body stiffness potential along the lipid tails has the form 

)cos1(  angleangle KE
 
where   is the angle formed by three adjacent beads. The coefficient 

angleK  is set to be 20ε in our simulations. This stiffness term increases the stability and bending 

rigidity of the bilayers [39]. 
We draw a correspondence between our model and physical systems via the experimental 

properties of biological lipid bilayers. We obtain the characteristic length scale (rc = 0.76 nm) for our 
model through the comparison of experimental measurements of the interfacial area per lipid of a 
DPPC bilayer at 50 °C with similar measurements from our simulations [90,91]. Similarly, the time 
scale τ is found to be 6.0 ns by comparing the experimental measurement of the diffusion coefficient 
of dipalmitoylphosphatidylcholine (DPPC) bilayer at 50 °C with that obtained from the     
simulations [90,91]. Using a temperature of 50 °C, the energy scale is calculated to be ε = kBT =   
4.5 × 10−21 J. 

We model the amphiphilic nanoparticles after short peptides that have the capability to bind or 
penetrate the membrane of a cell. Most of these peptides are amphipathic and can be categorized into 
two different families: (1) antimicrobial peptide (AMP) and (2) cell-penetrating peptide (CPP). In 
this paper, we specifically model one type of short cell-penetrating peptide, called PMLKE [89]. We 
construct the model such that the helical moieties of the peptide are modeled by a rigid hydrophobic 
rod composed of 6 hydrophobic beads with a spacing of 0.5rc between the center of mass of two 
consecutive beads, the hydrophobic rod is attached with a hydrophilic segment that serves to regulate 
the overall hydrophobicity of the nanopin. As PMLKE has 3 polar amino acid residues, we model the 
hydrophilic segment with 3 flexible beads and 1 bead that is joined to the rigid hydrophobic rod, as 
shown in Figure 1(d). Hence, the PMLKE is effectively modeled as an amphiphilic nanopin. We 
focus our investigations on short peptides to capture their spontaneous interaction with cell 
membranes and the mechanisms underlying their insertion into the membrane. We would like to note 
that the nanopin can also represent peptide-mimetic nanoparticles. Our results can be extrapolated to 
provide insight into experimental observations on the interactions of short peptides or synthetic 
counterparts with cell membranes [85, 86].  

The soft repulsive pair potential parameters for the lipid molecule head and tail beads were 
selected to capture its amphiphilic nature. The interaction parameters between the like components, 

ija , are based on the property of water [73]. The repulsion parameter between two beads of the same 

type is set at 25iia  (measured in units of 
c

B
r

Tk ) which is based upon the compressibility of water 

at room temperature [73] for a bead density of 33  cr . The soft repulsive interaction parameter aij 
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between hydrophobic and hydrophilic beads is set at 
c

b
ij r

Tka 100 , and is determined by using the 

Flory-Huggins interaction parameters, , as 496.3 iiij aa  [73], for 33  cr .  

The soft repulsive interaction parameters between the head (h), tail (t) beads of DPPC, DMPC, 
cholesterol, nanopins and the solvent (s) beads are assigned such that ahh = 25, aht = 100, ahs = 25,  
att = 25, ats = 100 and ass = 25. The interaction parameter between cholesterol head beads and solvent 
beads is set to be ahs = 15, due to the stronger affinity of the cholesterol hydroxyl head group with 
water.  

In our simulations, the respective characteristic length and energy scale are rc and kBT. As a 

result, our characteristic time scale can be described as Tkmr Bc /2 . Finally, σ = 3 and Δt = 0.02τ 

are used in the simulations along with the total bead number density of ρ = 3rc
-3 and a dimensionless 

value of rc = 1 [42]. The mass of all the beads is set to unity [37,42,44,72,73,90].  

2.2. Molecular Dynamics with Dry Martini Coarse-Grained Model 

We use a Martini coarse-graining method which groups approximately four non-H atoms as 
beads of similar radii [52]. Groups are categorized by their overall charge and polarity which leads to 
an established table of pairwise interaction parameters [52]. This form of coarse-graining has been 
used in other simulations involving membranes [52] and proteins [92]. To simulate longer length and 
time scales without increasing computational cost, an implicit solvent can be utilized with 
appropriate adjustments to the model. Dry Martini coarse-graining is one such model and has been 
used to simulate vesicles composed of ~22,000 DOPC lipids [84] and KALP peptides in DPPC 
bilayers [84]. 

We model DPPC by coarse-graining the head groups with 4 beads and tail groups with 8 beads, 
as shown in Figure 1(e). Among the 4 head beads, the top two beads respectively possess a negative 
and a positive charge, the other two beads are neutral. We develop a CG model for the PMLKE 
peptide using the Dry Martini scheme. PMLKE is a cell-penetrating penta-peptide (CPP5) that has 
been studied for protein transduction [89]. It is a sequence of proline, methionine, leucine, lysine, 
and glutamic acid residues that makes it amphiphilic. In physiological pH conditions, lysine and 
glutamic acid side chains are positively and negatively charged, respectively, and the remaining side 
chains are only slightly polar. The coarse-grained structure is composed of a glycine-like nonpolar 
backbone with unique groups branching off the side. Figure 1(f) illustrates this coarse-grained 
representation. 

3. Results and Discussion 

3.1. Creating a Tensionless Membrane 

We begin with a stable pre-assembled 1:1:2 DPPC, DMPC and cholesterol ternary component 
membrane encompassing of 15,998 molecules. The molecular species are organized such that the 
hydrophobic tails point to the mid-plane of the bilayer to form the hydrophobic core with the 
hydrophilic head groups exposed to the solvent.  The simulation is run in the canonical ensemble 
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with three dimensional periodic boundary conditions. Following the equilibration phase, the 
simulation box dimensions are adjusted to change the area per lipid of the lipid molecules, without 
changing the volume of the simulation box [38] to obtain a tensionless membrane. The 
corresponding simulation box dimensions is determined to 98 × 98 × 41.6494 rc

3. These dimensions 
are found through stretching the x and y dimensions of the box while keeping the volume constant. 

We calculate the surface tension using the following equation z

1 1
= ( )

2 2zz XX yyL P P P    [93]. 

3.2. Nanopin Spontaneous Insertion using the Dissipative Particle Dynamics Simulation Technique  

We introduce a total of 80 nanopins into the simulation box at random positions outside the 
interaction range from each other as well as the ternary membrane, as shown in Figure 2(a). 
Nanopins are introduced in increments of 10 in order to prevent significant aggregation between the 
nanopins prior to their insertion into the lipid bilayer. At early times, some of the nanopins are 
observed to interact with each other and form aggregates encompassing 2–6 individual nanopins. The 
aggregation of the nanopins is promoted by the unfavorable enthalpic interactions between the 
hydrophilic solvent and the hydrophobic segments of the nanopins. Following the aggregation, we 
observe spontaneous insertion of nanopin aggregates into the membrane bilayer, as shown in Figure 
2(b–d). We would like to note that other nanopins that are not part of an aggregate are observed to 
interact directly with the membrane. 

We investigate the dynamics of the nanopin insertion into the lipid bilayer by tracking the 
distance between the center of mass of a single nanopin and the membrane midplane in the vicinity 
of the nanopin, during an insertion event (as shown in Figure 3). The membrane region in the 
vicinity of the nanopin is defined by a cylindrical section of the membrane with a diameter of 4 rc 
with approximately 80–100 amphiphilic molecules. The location of this region is dynamic and is 
updated according to the position of the specific nanopin.  Our results show that initially the 
nanopins diffuse in the solution, outside the interaction range from the membrane. Once the nanopin 
is within a distance of 6 rc from the midplane of the membrane, a rapid decrease of the 
nanopin-membrane mid-plane distance is observed as the nanopin inserts itself into the membrane 
within a time interval of 330τ. The steady state value of the distance of the nanopin to the membrane 
midplane is defined as the “insertion depth”. The penetration of the membrane by the nanopin is 
reflected by a small value of the insertion depth. Our results demonstrate the average insertion depth 
for 80 nanopins to be given by 1.5 ± 0.4 rc (1.1 ± 0.3 nm). 

We observe the binding events to be initiated by interactions between the hydrophobic 
components of the nanopins and the bilayer. Our results demonstrate that the favorable interactions 
between the hydrophobic components of the nanopins and the lipid drive the spontaneous capture of 
the nanopins by the membrane bilayer and their subsequent transmembrane insertion.  These 
observations are supported by the time evolution of the interaction count between hydrophilic and 
hydrophobic components of the phospholipids, cholesterol and nanopin, as shown in Figure 3(b). A 
pair of beads is considered to be interacting if their center-to-center distance is smaller than the 
interaction cut-off distance. The initial binding of a single nanopin to the membrane is characterized 
with a rapid increase in the number of interactions between the hydrophobic components of the 
bilayer and the nanopins in comparison to that for the hydrophilic components. The complete 
insertion of the nanopin is demonstrated by the steady value of the interaction count between the 
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hydrophilic and hydrophobic components of the nanopin and the membrane. Our results indicate that 
the interactions between the hydrophobic components of the membrane and nanopin are responsible 
for the insertion of the nanopin into the membrane and its retention by the membrane. In addition, we 
find the favorable enthalpic interactions between the hydrophobic components of the nanopin and the 
membrane is responsible for enabling the capture of the nanopin by the membrane. 

 

Figure 2. Images of the system with 30 nanopins and a three-component lipid 
membrane. Only portion of the membrane and nanopins are shown. The lipid head 
and tail beads are respectively in blue and red. All the images track a nanopin 
which is identified with a red arrow. (a) At time t = 0 τ, the nanopins are initially 
introduced outside the interaction range from each other and the membrane. (b) At 
time t = 2000τ, a number of nanopins aggregate with each other. (c) At time t = 
5500τ, a nanopin (indicated by an arrow) is captured by the membrane. (d) At time 
t = 6500τ, the nanopin (indicated by an arrow) is inserted in the membrane and 
remains in the membrane thereafter. 

3.3. Peptide Insertion into Membrane Bilayer using the Molecular Dynamics Simulation Technique 
with Dry Martini Coarse-Grained Model 

We introduce a single peptide molecule, PMLKE, into a simulation box encompassing a 
single-component (DPPC) tensionless lipid membrane that is derived by using the same protocol as 
detailed in the earlier section. The initial distance between the center of mass of the peptide molecule 



311 

AIMS Materials Science  Volume 2, Issue 3, 303-318. 

and hydrophobic core of the membrane is varied from 4 to 5 nm. The distance is selected to ensure 
that there is no initial interaction between the peptide and membrane. The simulation is run for a time 
interval of 9 × 10−11 s. and is repeated 10 times by introducing the peptide at different initial 
locations above the membrane. 

 

(a) 

 

(b) 

Figure 3. Time evolution of (a) distance from center of mass of nanopin (identified 
in Figure 2) to the midplane of local membrane bilayer; (b) interaction count of 
hydrophobic and hydrophilic components of the nanopin with different components 
of membrane during an insertion event in a time interval of 10000τ. 

We observe that the peptide molecule spontaneously inserts itself into the membrane bilayer, as 
shown in Figure 4. At earlier stages of the simulation, we observe the peptide approaches to the 
bilayer until it is captured by the surface of the bilayer. During that process, the peptide adopts an 
orientation with its backbone parallel to the surface of bilayer in its vicinity. After initially binding to 
the bilayer, the peptide is further accommodated into the hydrophobic region of the membrane. We 
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measure the distance between the center of mass of peptide and the mid-plane of the membrane (in 
its vicinity) as a function of time, as shown in Figure 5(a). Our results indicate the insertion 
dynamics of the peptide into the membrane is very similar to that for the nanopin using the 
coarse-grained explicit solvent DPD approach. The entire insertion process begins with the gradual 
approach of the peptide to the membrane followed by the initial interaction between the peptide and 
membrane. The capture of the peptide by the membrane is indicated by the sudden increase in the 
interaction count between the peptide and the membrane. The insertion of the peptide into the bilayer 
and its subsequent retention by the membrane is characterized by the steady state values of the 
interaction count. The average insertion depth is calculated to be 1.8 ± 0.3 nm, which is in agreement 
with corresponding measurements using the DPD approach.  

 

Figure 4. Images of the system encompassing a single peptide PMLKE and 
one-component (DPPC) lipid membrane. Only portion of the membrane is shown. 
The lipid head and tail beads are respectively in green and orange. (a) At time t = 0 
τ, the peptide is initially introduced outside the interaction range from the 
membrane. (b) At time t = 140 ps, the peptide has bound with membrane surface. (c) 
At time t = 200 ps, part of the peptide has inserted into the membrane. (d) At time t 
= 300 ps, the insertion process is complete and the peptide remains inserted in that 
orientation. 

We measure the number of interactions between the different components of the peptide and the 
membrane in order to elucidate the driving force of the peptide insertion, as shown in Figure 5(b). 
The initial approach of the peptide to the membrane results from the occasional interactions between 
hydrophobic components of peptide and lipid head groups of the membrane, as shown in the inset of 
Figure 5 (b). The subsequent capture of the peptide and its insertion into the membrane is primarily 
characterized by a rapid increase in the interaction count between the hydrophobic components of the 
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peptide and the membrane. Due to proximity of the peptide hydrophobic groups to the lipid head 
groups, the corresponding interaction count also reflects the capture and insertion of the peptide. Our 
results demonstrate that the peptide insertion into the membrane is initiated, and sustained by the 
favorable enthalpic interactions between the hydrophobic groups of the peptide and membrane. 

 

Figure 5. Time evolution of (a) the distance of the center of mass of the peptide from 
the mid-plane of the local bilayer region and (b) the interaction count between the 
hydrophilic and hydrophobic components of the peptide and membrane. The inset 
shows time evolution of the interaction count. The Dry Martini coarse-grained 
model is applied for the system with a single peptide molecule and DPPC 
membrane. 

4. Conclusion  

In summary, we have modeled the interactions between an amphiphilic cell-penetrating peptide 
PMLKE and its synthetic counterpart with a lipid membrane, using the explicit and implicit solvent 
coarse-grained models. We demonstrate spontaneous binding and subsequent insertion of the peptide 
(and nanopin) into the membrane. Our results show that the insertion of nanopins and the peptide are 

(a) 

(b) 
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driven primarily by the favorable interactions between their hydrophobic components. In addition, 
insertion depths of the nanopins and the peptide using respectively, explicit and implicit solvent 
models are found to be in a good agreement with each other. These results can be used to design 
materials that functionally integrate cell membranes with natural or synthetic nanoparticles for 
applications in medicine, sensing and energy. 
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