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Abstract: In this study, we report our efforts to elucidate the electronic structures of two lattice 

structures of lanthanide sulfides (LnS and Ln3S4) and for three lanthanides (Ln = La, Sm and Gd) 

using density functional theory calculations performed with the CASTEP code. A DFT+U method 

was used for the corrections of on-site Coulomb interactions with U = 6 eV. The calculated electronic 

structures show that both lanthanum and gadolinium sulfides have metallic properties, consistent 

with the available experimental results. However, the calculated electronic structure of Sm3S4 is 

considerably different from those of the La3S4 and Gd3S4 and is predicted to have semiconducting 

properties. 
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1.  Introduction 

Chalcogenide based semiconductors are a broad class of materials which display a wide variety 

of useful electronic properties. For example, copper indium gallium selenides and cadmium 
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tellurides are widely used in photovoltaics for power generation, [1] and bismuth tellurides are 

widely used for thermoelectric devices [2]. Additionally, while not as common as III-V 

semiconductor lasers such as gallium arsenide, zinc selenides have been used for lasing 

applications [3]. Moreover, cadmium tellurides, selenides, and sulfides are widely used for tunable 

fluorescent dyes (quantum dots) for medical research and diagnostics [4].  

In the interest of extending the library of chalcogenide materials available for electronic 

applications, we have investigated the band structure and the partial density of states for three 

lanthanide sulfide systems. The lanthanide sulfides (LnxSy) are a class of chalcogenides composed of 

a lanthanide cation (57La–71Lu) and the anion sulfur. Sulfur is, by convention, considered as the 

simplest chalcogen anion due to its similarities with selenium and tellurium and dissimilarity with 

oxygen. Although lanthanide cations tend to prefer to take a 3+ oxidation state, several lanthanides 

are known to additionally take a 2+ oxidation state, for instance, as in monosulfide (LnS) or mixed 

valence (Ln3S4) structures. Generally, La through Sm can most easily take the Ln3S4 mixed valence 

structure, while Gd through Dy are capable of taking this structure with S and Se, but not with Te [5]. 

It is important to note that although the Ln3S4 structure is nominally mixed valency, each Ln atom is 

crystallographically equivalent in this structure. More exotic is the lanthanide monosulfide (LnS) 

structure, in which the rare earth cations are entirely in the 2+ state. Of the lanthanide monosulfides, 

samarium monosulfide (SmS) has received by far the most attention. SmS was discovered as far back 

as 1956 [6], and is notable for the presence of a semiconducting low pressure phase and a metallic 

high pressure phase [7]. More recently, lanthanum monosulfide (LaS) has received increased 

attention due to its metallic properties and low work function, potentially making it suitable for use 

as a cold cathode material [8]. However, difficulty in preparing high quality lanthanide sulfide 

samples with controlled stoichiometry and high crystallinity have limited the understanding and 

electronic applications of this class of chalcogenides. Consequently, several authors have 

recommended using high quality band structure calculations to enable a better understanding of the 

electronic structures of lanthanide sulfides [9]. 

In order to rectify the lack of high quality data on the lanthanide sulfides, we have applied 

density functional theory (DFT) to predict the electronic structures of two specific crystal systems 

with varying sulfide content: the LnS structure and the Ln3S4 structure. Additionally, calculations 

with the lanthanide sulfides are very time-consuming to calculate, because of the need to take into 

account the effect of the f-shell electrons in these many atom unit cells. Thus, we have limited our 

study to three lanthanide group elements: lanthanum, samarium, and gadolinium.  

2.   Materials and Method 

We applied density functional theory implemented in the CASTEP code [10] to calculate the 

band diagram and density of states of two lattice structures of lanthanide sulfides (LnS and Ln3S4) for 

three lanthanides (Ln = La, Sm and Gd). Spin-polarization was considered in the computation 
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because both Sm and Gd have unpaired spins in these structures. The unit cell of ideal LnS adopts 

the NaCl structure with space group Fm-3m (#225) symmetry. The lattice parameters for LaS, SmS 

and GdS were obtained from the International Centre for Diffraction Data (ICDD) and are a = 5.854 

Å, a = 5.970 Å, and a = 5.562 Å, respectively. The unit cell of ideal Ln3S4 adopts the cubic 

symmetry with space group I-43d (#220). The lattice parameters for Ln3S4 were also obtained from 

the ICDD, and are: La3S4 (a = 8.73 Å), Sm3S4 (a = 8.556 Å), and Gd3S4 (a = 8.378 Å). Both crystal 

structures are illustrated in Figure 1. The LnS structure is a simple rock salt cubic structure. The 

Ln3S4 structure is considerably more complex, while still remaining cubic. This structure, prototyped 

by Th3P4, is a non-centrosymmetric body centered cubic system with the space group I-43d. In this 

structure, there are 18 lanthanide cations in each unit cell, with two located in each face along a 

diagonal glide plane, and the remaining 6 making up a distorted octahedron contained within the unit 

cell [11]. In spite of its complex appearance, the entire structure is composed of a single unique 

cation Wyckoff site and a single unique anion site.  

 

Figure 1. Unit cells of two lanthanide sulfides: (left) LnS and (right) Ln3S4 (Ln = La, 

Sm and Gd). 

The plane wave basis set was utilized together with the generalized gradient approximation 

(GGA), and Perdew-Burke-Ernzerhof (PBE) exchange and correlation functional [12]. An energy 

cutoff of 380 eV was applied to the planewave basis set and ultra-soft pseudopotentials were 

employed with the valence electron configurations as 5s25p65d16s2, 4f75s25p65d16s2, and 4f65s25p66s2 

for La, Gd, and Sm atoms, respectively. Brillouin zone integrations were performed with a 

Monkhorst-pack of 7 × 7 × 7 k points for the LnS structures, while 5 × 5 × 5 k points were used for 

the Ln3S4 structures. A Gaussian broadening was applied with a smearing width of 0.1 eV. The 

DFT+U method was used for the corrections of on-site coulomb interactions with U = 6 eV [13,14] 
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for the f-electrons of Sm and Gd. Moreover, the ensemble density functional theory (EDFT) [15,16] 

scheme programmed in CASTEP was used to overcome the convergence problem inherent in  

f-electron systems. 

3. Results and Discussions 

As the simplest lanthanide element, lanthanum serves as a natural place to start the discussion of 

the lanthanide sulfides, even though the electronic structure of LaS does exist in the literature [17]. 

Lanthanum takes a unique spot in the lanthanide series because it contains no f-shell electrons in its 

electronic structure of [Xe]5d16s2 [18], which greatly simplifies the electronic structure calculations 

for lanthanide sulfides. Additionally, the electronic structure of La3S4 generated considerable interest 

in the past due to its conducting to superconducting transition temperature at 7.2 K [19]. As shown in 

Figure 2, both LaS and La3S4 are expected to behave as a metal due to occupied bands overlapping 

the Fermi level (shown as 0 eV in our figures). More specifically, LaS is predicted to be a semimetal 

due to lower occupancy at the Fermi level with large density of states above and below. This indeed 

is consistent with the experimentally determined properties of LaS [8,20] and with previous 

calculations which made use of a full-potential linear muffin-tin orbital (LMTO) method for 

computing the band structure [17]. Similarly, La3S4 is predicted to be a metal. Although again there 

is a gap in energy bands less than 1 eV below the Fermi level, the calculated band structure of La3S4 

has a high occupancy of d-orbitals at the Fermi level visible in the partial density of states (pDOS) 

(Figure 2). This is consistent with previously published experimental and computation results [19]. 

Samarium is typically believed to take the electronic structure [Xe]4f66s2 [18]. Unlike LaS, 

SmS is reported to be a narrow band gap semiconductor at atmospheric pressure and ambient 

temperature, but with a unique ability to switch to a metallic state at a moderately low pressure of  

6.5 kbar [7]. Just as in the case of LaS, older LMTO methods were applied to simulate the band 

structure of SmS [21]. Our results, as shown in Figure 3, indicate SmS to be a narrow indirect band 

gap semiconductor with a gap of about 1 eV. This result corroborates with the observed 

semiconductor behavior of SmS, although it does differ from the experimental band gap of 0.15  

eV [7]. Still, our calculation is an improvement from previous simulation results. Earlier work using 

a LMTO method predicted metallic behavior for SmS, and was forced to change the unit cell to 1.05 

times the experimental values in order to introduce semiconductor behavior [21]. However, we have 

no reasons to doubt previous findings that a decrease in unit cell parameters (such as from high 

pressure) would force a narrowing of the band gap and reintroduce metallic character to the system. 
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Figure 2. Band diagram and density of states of lanthanum sulfides: (left) LaS and 

(right) La3S4. The Fermi level is indicated by the dashed lines. 

The electronic structure for Sm3S4, as shown in Figure 3, is in many ways the most surprising 

result of our calculations. Unlike the other systems, Sm3S4 has a large 2.1 eV band gap above the 

Fermi level. However, unlike in a well-behaved semiconductor, the Fermi level is not located inside 

the band gap. Instead, the Fermi level is 0.6 eV below the edge of the bottom bands, suggesting that 

technically Sm3S4 is a metal, but the large band gap’s presence gives Sm3S4 character similar to that 

of an extremely degenerate semiconductor. Surprisingly, this result is consistent with the observed 

properties of experimental Sm3S4 samples. It was found that Sm3S4’s extinction coefficient trails off 

rapidly for photon energies below 2 eV (similar to a semiconductor with a 2 eV band gap) but 

remains appreciable all the way down to 0 eV (similar to a metal)  [22]. Additionally, this is similar to 

the behavior of other samarium sulfides such as alpha phase Sm2S3 [23]. 
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Figure 3. Band diagram and density of states of samarium sulfides: (a) SmS and (b) 

Sm3S4. The Fermi level is indicated by the dashed lines. 

Unlike the simple case for lanthanum, gadolinium is expected to take the electronic structure of 

[Xe]4f75d16s2 [18]. However, similar to LaS, our calculation predicted gadolinium monosulfide 

(GdS) to be a semimetal with occupied d-orbitals present at the Fermi level (Figure 4).  

Additionally, just as in the case of La3S4, Gd3S4 is a semimetal with a wide gap in energy states 

extending from less than 1 eV below the Fermi level to several eVs below. The partial density of 

states for the gadolinium sulfides provides some clues for this similarity in electronic structure with 

those of the lanthanide sulfides: their occupied f-orbitals are at considerably lower energy levels than 

in the case of samarium (~ −12 eV for both gadolinium sulfides). This is likely a consequence of Gd 

containing a completely half-filled f-shell, which lowers the energy levels of these orbitals. These 
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results are in excellent agreement with the theoretical band structure of GdS and Gd3S4 conjectured 

from electron energy loss and photoemission spectroscopy experiments [24].  

 

Figure 4. Band diagrams and density of states of gadolinium sulfides: (a) GdS and 

(b) Gd3S4. The Fermi level is indicated by the dashed lines. 

4. Conclusion 

Band structures and partial density of states have been calculated for LaS, La3S4, SmS, Sm3S4, 

GdS, and Gd3S4 using a DFT+U approach. To the best of our knowledge, this is the first time that 

this approach has been applied to most of these studied systems. Additionally, our calculation results 

have good correlation with existing experimental measurements for these systems. LaS, La3S4, GdS, 

and Gd3S4 are predicted to be semimetals. While SmS is predicted to be an indirect gap 
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semiconductor, Sm3S4 is expected to behave similarly to a heavily degenerate semiconductor. To 

improve the predictions of our computation method for other lanthanide systems where reliable  

f-orbital electronic contributions must be considered, further experimental measurement are needed 

to obtain a better estimation of the correction factor, U, for the on-site coulomb interactions.  
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