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Abstract: Periodic mesoporous organosilicas (PMOs), reported for the first time in 1999, constitute 

a new branch of organic-inorganic hybrid materials with high-ordered structures, uniform pore size 

and homogenous distribution of organic bridges into a silica framework. Unlike conventional 

mesoporous silicas, these materials offer the possibility to adjust the surface 

(hydrophilicity/hydrophobicity) and physical properties (morphology, porosity) as well as their 

mechanical stability through the incorporation of different functional organic moieties in their pore 

walls. A broad variety of PMOs has been designed for their subsequent application in many fields. 

More recently, PMOs have attracted growing interest in emerging areas as biology and biomedicine. 

This review provides a comprehensive overview of the most recent breakthroughs achieved for 

PMOs in biological and biomedical applications.  
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1.  Introduction 

Since the development of the first inorganic mesoporous materials by Kresge et al.[1] in 1992, 

numerous advances have been reported in this field producing a vast variety of mesoporous silica-

based materials through template-directed synthesis. Periodic mesoporous silicas (PMS) with well-

ordered structures, large surface areas, high pore volumes and well-defined pore size (2–50 nm) have 

attracted tremendous research interest in different areas. However, their surface functionalization was 

required in order to extent and to improve their application as adsorbents, catalysts, trapping agents, 

sensors, etc. The surface hydrophobization of mesoporous silicas has been accomplished by post-

synthetic (“grafting”) or in-situ (“co-condensation”) processes using organoalkoxysilanes bearing 

terminal organic groups [2,3]. 

Periodic mesoporous organosilicas, commonly named as “PMOs”, are a new class of ordered 

organic-inorganic hybrid materials in which the organic units are homogenously distributed into the 

silica framework [4–6]. They are synthesized by silsesquioxane precursors of the type Z3Si-R-SiZ3, 

being Z a hydrolysable group (normally ethoxy or methoxy groups) and R the organic bridging 

group, in the presence of surfactants as structure-directing agents. Up to date, numerous organic 

moieties, from simple units (methylene, ethylene, ethenylene, phenylene) to more complex ones 

bearing different functionalities (thiol [7], chiral groups [8], metal complexes [9], heterocyclic 

compounds [10], etc.), have been successfully incorporated within the pore walls.  

PMOs preserve the characteristic properties of mesoporous silicas — high surface areas and 

pore volume, tunable pore size, highly ordered mesostructures — but additionally exhibit some 

advantages as high hydrothermal and mechanical stability over their silica counterparts owing to the 

incorporation of high loading of organic moieties into their framework [11]. Moreover, unlike 

organo-functionalized mesoporous silicas, functionalities are embedded into the pore walls which 

overcome those drawbacks associated with grafting and co-condensation processes.  

Nowadays, PMOs are considered a class of promising nanomaterials for potential applications, 

such as catalysis [12], chromatography [13], electronics [14], metal adsorption [15], inmobilization 

or encapsulation of biomolecules and biomedicine. Herein, we will focus on the use of PMOs within 

the fields of biology and biomedicine. The objective of this review is to show the recent advances 

accomplished in the design of functional PMOs for their subsequent application as suitable 

supports/carriers of different biomolecules, biocatalysts and drugs. Figure 1 shows an overview of 

those application areas that will be deal with throughout this review.  
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Figure 1. Application areas—biocatalysis, biomolecule adsorption and drug delivery 

systems—of PMOs. 

2. PMOs As Supports For Biomolecule Immobilization 

The immobilization of biomolecules — proteins, enzymes, peptides and so on- onto solid 

supports has attracted a great deal of attention for practical applications. Common problems 

associated with the lack of stability of enzymes under extreme conditions and their reusability are 

clearly overcome after their immobilization, providing additionally several advantages as the easy 

separation from the reaction media, modification of the catalytic properties and prevention of protein 

contamination among others [16]. The immobilization of proteins onto porous hosts is accomplished 

by three common methods: physical adsorption, covalent attachment and 

encapsulation/entrapment[17]. Among them, physical adsorption is considered the most cost-

effective and simple approach to immobilize proteins.  

Since its discovery, mesoporous silicas have been extensively studied as supports for the 

immobilization of bioactive molecules [18,19]. The principal driving forces in the adsorption of 

biomolecules onto porous hosts are electrostatic, hydrophobic (weak van der Waals forces) and 

hydrogen-bonding. The main influencing factors may include the experimental conditions, such as 

the temperature, pH of the buffer solutions, ionic strength and the material properties, such as 

nanopore size, composition, mesostructure and morphology. Undoubtedly, another critical and 

determining factor in bioadsorption processes is the surface functionalization of mesoporous silicas. 
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Numerous functional groups have been anchored on silica surfaces in order to enhance their 

interactions with the protein surfaces. 

The periodic mesoporous organosilicas (PMOs) with organic groups homogeneously distributed 

inside the channel wall provide new opportunities for controlling the chemical, physical and 

mechanical properties of these materials through incorporation of different kinds of bridging organic 

units in the mesoporous walls. Despite high participation of mesoporous silicas in bioadsorption 

processes, is not until 2005 when Hudson et al.[20] reported for the first time the use of PMOs as 

supports for protein/enzyme immobilization. They described a systematic methodology to study each 

influencing factor involved in the adsorption of proteins onto mesoporous silicates. For that, they 

carried out the immobilization of cytochrome c (cyt c) onto two adsorbents—SBA-15 and ethane-

PMOs—with similar physical properties but different chemical composition. Adsorption 

measurements showed that electrostatic interactions dominated in SBA-15 while weak hydrophobic 

forces were the most prominent in ethane-PMO. These results were subsequently supported by Qiao 

et al. [21] who performed the cyt c immobilization on a highly ordered large-pore PMO with a 

rodlike morphology. They found that its adsorption capacity was not much higher than that of a pure 

silica with identical morphology and pore structure because the bioadsorption of this protein was 

mainly controlled by electrostatic forces and not hydrophobic ones. Different results were obtained 

by this research group in the immobilization of lysozyme (Lys), an antimicrobial protein, on an 

ethane-PMO with similar structural properties. In this particular case, electrostatic and hydrophobic 

interactions as well as the cohesive attraction and the repulsion between lysine and the amino acids 

present in the lysozyme molecules were determinant in the bioadsorption process [22,23]. 

More recent studies have examined the immobilization of these proteins, cyt c and Lys, onto 

PMOs with different hydrophibicity. Ha et al. [24] synthesized large pore PMOs with dipropylamine, 

phenylene and biphenylene bridging groups for the adsorption of lysozyme. Adsorption kinetics of 

benzene- and biphenylene-PMO for lysozyme were faster than that of SBA-15 at pH near the 

isoelectric point (pI) of the lysozyme because under these conditions the hydrophobic interactions 

were predominant. Comparing both hydrophobic organic silicas, biphenylene-PMO had a higher 

adsorption capacity owing to its greater hydrophobic character. These researchers also compared the 

bio-adsorptive properties of two PMOs with different hydrophobicity—benzene and biphenyl-

PMO—as well as SBA-15 in the adsorption of cytochrome c. Although SBA-15 showed a higher 

adsorption capacity, as reported previously, in terms of hydrophobic forces these were greater on 

biphenyl-PMO than benzene-PMO [25].  

Further efforts on fabricating more hydrophobic walls to adsorb biomolecules involved the use 

of the so-called bifunctional PMOs. These materials composed of bridging organic units in the 

mesoporous wall and terminal organic groups protruding into the pore channels or by combination of 

various bridging organic units in the silica framework allow obtaining mesoporous materials with 

versatile surface properties. For instance, Yang et al. [26] synthesized different bifunctional PMOs 

with 1,4-diethylenebenzene and ethane bridging groups and used them as sorbents to investigate the 
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adsorption of lysozyme. A higher adsorption capacity on those materials was observed as the amount 

of 1,4-diethylenebenzene in the framework increased due to the fact that this aromatic derivative can 

form stronger hydrophobic and hydrogen-bonding interactions with Lys than the ethane groups. 

More recently, Zhang et al. [27] synthesized other bifunctional PMOs by post-grafting of amine- or 

carboxylic acid functionalized trialkoxysilanes on highly ordered ethane-PMO surface. These 

functionalized PMOs with different hydrophobicity and net charge were employed to selectively 

adsorb and purify three proteins—bovine serum albumin (BSA, pI = 4.8), hemoglobin (Hb, pI = 6.8) 

and lysozyme (Lys, pI = 11.0)—with different shapes and isoelectric points. These materials showed 

a high affinity to BSA than to Hb, while they were unsuitable for Lys adsorption.  

Although protein immobilization has been extensively studied on PMOs, its role as biologic 

supports has not been limited to this type of biomolecules. For instance, Ha et al. [28] investigated 

the adsorption behavior of several amino acids on PMOs. In this case, three different functional 

PMOs—dipropylamino, benzene and biphenyl PMO—were synthesized and employed in this study. 

The experimental results showed that the isoelectric point and the hydrophobicity of the PMO as 

well as the hydrophobicity of the amino acid were the most important factors governing the 

bioadsorption process.  

3. Refolding And Enrichment Of Biologic Molecules 

Besides their use as supports of biomolecules, PMOs have also found application in relevant 

processes for the bioengineering industry. For instance, the protein refolding process to obtain 

biologically active proteins from inclusion bodies. Although many proteins can be refolded properly 

without any external assistance at low concentrations, when protein and denaturant concentrations 

are high, it is necessary to find an effective procedure that can compete with the formation of 

inactive protein aggregates. Wu et al. [29] proposed a new method for lysozyme refolding using 

ethylene-bridged periodic mesoporous organosilicas. Owing to its unique surface and structural 

properties, this material could entrap individual denatured proteins inside their mesopores, 

minimizing the formation of protein aggregates, and subsequently exhibiting a stimuli-responsive 

controlled release of encapsulated proteins into the refolding buffer (Figure 2).  
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Figure 2. Protein refolding assisted by PMOs. Adapted with permission from 

Ref.[29]. Copyright (2007) American Chemical Society. 

PMOs can also act as hosts for peptide enrichment. This accurate and efficient process is 

essential to detect and identify a diverse variety of peptides of significant interest in life sciences. 

The first attempts in this field were carried out by Yang et al. [30]. They synthesized bifunctional 

PMOs with ethane groups as bridging units and phosphonic acid groups grafted on the pore walls. 

The capability of coordination of these phosphonic groups with metal ions as Zr+4 and Fe+3 made 

them effective as potential IMAC (immobilized metal affinity chromatography) adsorbent for the 

selective capture of phosphopeptides. Later, Yu et al. [31] achieved the detection of 36 and 28 

peptides from the bovine serum albumin digestion in presence of ethane-bridged PMO and amine-

functionalized PMO, respectively. In comparison with pure silica materials with similar 

mesostructure, both materials showed higher and more selective peptide enrichment. Firstly, as 

mentioned above, PMOs with homogenously distributed hydrophobic organic groups in their 

framework facilitated the peptide adsorption. Secondly, and more important, the opposite charge 

surface of both PMOs allowed to manipulate the electrostatic interactions between peptides and 

adsorbents, leading to porous materials with selective affinity for positively and negatively charged 

peptides, respectively. In order to improve the peptide enrichment capacity of PMOs, these 

researchers extended their studies to the detection of the peptide E7 from biological systems by 

designing ethane-PMO with spherical morphology and tunable pore size from 2.6 to 7.3 nm [32,33]. 
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More recently, taking advantage of the amphiphilic character of PMOs, Liu et al. [34] reported a new 

approach for identification of membrane proteins from mouse liver. The presence of hydrophobic  

(-CH2-CH2-) and hydrophilic (-Si-OH) groups in the same material allowed its participation in 

multiple tasks of substrate dissolution, enrichment and digestion. In a first step, ethane-PMO was 

perfectly dispersed on a methanol solution to concentrate the dissolved membrane proteins. Next, the 

resultant protein-loaded PMO was redispersed in an aqueous solution containing hydrolytic enzymes, 

thus proceeding rapidly to the protein digestion.  

4. PMOs As Enzymatic Supports “Biocatalysts” 

The use of enzymes as biocatalyst has been the subject of an increased interest for chemical and 

pharmaceutical industries in the production of a wide range of natural products. Lipases are 

considered one of the most important enzymes in biocatalysis owing to their availability, stability 

and capability of resolving a wide variety of different substrates. The first attempts to immobilize 

this biocatalyst onto PMOs were performed by Shakeri et al. [35] in 2008. Ethane-PMO exhibited a 

higher adsorption capacity than SBA-15 toward Rhizopus oryzae lipase (ROL) adsorption, due to the 

co-existence of electrostatic and hydrophobic interactions for the immobilization of the enzyme. In 

this particular case, the specific surface characteristics of lipase, more particularly, the presence of 

hydrophobic domains on its external surface generated stronger hydrophobic interactions than 

electrostatic interactions with the hydrophobic PMO surface. After its immobilization onto PMOs, 

factors as the hydrophobicity, the lid movement of the ROL and easy access of the substrate to the 

active sites led to a higher reaction activity versus that immobilized onto SBA-15 or even the free 

ROL.  

Although the hydrophobization of hosts is undoubtedly essential in the immobilization of this 

kind of biocatalysts, the structural characteristics and porous topology can also play a decisive role 

during the bioadsorption/biocatalysis processes. Blanco et al. [36,37] carried out a comparative study 

of an ethylene-bridged PMO and several organosilicas with tunable hydrophobicity for lipase 

immobilization. The immobilization yield achieved by PMO was much higher than that of a non-

functionalized SBA-15 (91 versus 44 mg/g) for lipase from Candida Antarctica with identical pore 

size (around 7–8 nm) due to the combination of electrostatic-hydrophobic forces in the adsorption. 

Moreover, this adsorption capacity also exceeded that of a methyl-functionalized SBA-15 having 

similar morphology, pore diameter and particle size owing to the weak hydrophobicity provided by 

the methyl groups in comparison with the ethane groups embedded in the pore walls. Nevertheless, 

the maximum enzyme loading capacity was exhibited by amorphous silica grafted with octyl groups; 

its higher pore size (23 nm) facilitated the continuous diffusional access throughout the pores. In 

terms of catalytic efficiency—catalytic activity per milligram of immobilized enzyme—PMO 

showed the highest activity among the studied supports. Although those octyl groups grafted on 

amorphous silica showed the highest enzyme loading and a negligible leaching, at the same time, its 
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stronger interaction with lipase caused a higher distortion of the tertiary structure of the enzyme and 

therefore a lower activity.  

Hartmann et al. [38,39] evaluated the immobilization of lipase from Thermomyces lanuginosus 

and its catalytic activity onto several large cage-like PMOs with ethylene, ethenylene and phenylene 

bridging groups. The largest adsorption efficiency was exhibited by a phenylene-bridged PMO due to 

its higher hydrophobicity. This surface property was also responsible for its higher relative activity in 

transterification and hydrolysis reactions. As previous found for hydrophobic carriers, the PMO 

facilitated the fast diffusion of the organic substrates to the enzyme and promoted the interfacial 

activation through stabilization of its active open conformation.  

Despite the wide interest to immobilize lipases, also other types of enzymes have been 

immobilized on PMOs to participate as biocatalysts of relevant industrial processes.[40-42] For 

instance, Hudson et al. [43] reported the synthesis of different PMO materials by co-condensation of 

TEOS with bis [3-trimethoxysilyl)propyl] amine to be used as supports of chloroperoxidase (CPO) 

(ca. 6.2 nm), a heme peroxidase. This enzyme was successfully immobilized at pH = 6 in those 

materials with pore entrances large enough to allow the enzyme to enter the pores. Although the 

immobilized CPO showed lower activity that the free enzyme, it could be reused 20 times with only 

a small loss in activity.  

More recently, another heme enzyme, the horseradish peroxidase (HRP) (3.7 nm × 4.3 nm × 6.4 

nm) was immobilized on functionalized periodic mesoporous silicas. Zhu et al. [44] reported the 

synthesis of PMOs containing urea and carbamothioic units into the silica framework. They used 

mixtures of precursors (1) and (2) (see Figure 3) in the presence of P123 to produce materials with 

different composition, morphology and structural and surface properties. These characteristics were 

clearly decisive in HRP adsorption. Thus, the material with the highest C and N content adsorbed 

more HRP (40 mg/g) due to the combination of hydrophobic interactions between the propyl groups 

of the support and the hydrophobic domain of the enzyme, and hydrogen bonds between the 

secondary amine groups and the carboxyl groups present in the enzyme. Moreover, the pore size and 

the morphology of these PMOs also affected the adsorption process. Both the catalytic activity and 

the stability of the immobilized HRP were dramatically improved in comparison with the free 

enzyme. Later, these researchers extended their HRP adsorption studies to a different class of 

periodic mesoporous organosilicas with hydrophilic bridging units containing –OH, –O– and –S– 

groups (3) into the pore walls [45].  
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Figure 3. PMO precursors for horseradish peroxidase immobilization. 

5. PMOs as Potential Drug Delivery Systems 

In the last few years, numerous efforts have been devoted by the scientific biomedical 

community to the search of new kinds of host materials as controllable drug delivery systems (DDS). 

These DDS should have the capability to transport the therapeutic drugs without any loss to the 

targeted cells or tissues and, once reached its destination, to release the cargo in a controlled manner. 

A wide variety of materials, such as hydroxyapatite [46], biodegradable polymers [47], hydrogels [48] 

or mesoporous silicas [49] have been employed in controlled drug delivery systems. Among them, 

silica-based mesoporous materials have been proven to be promising candidates to confine drugs or 

biologically active species in their mesopores. Numerous model drugs, such as ibuprofen, 

amoxycilin, gentamicin, erythromicyn, naproxen, aspirin and alendronate, have been incorporated 

into ordered mesoporous silicas. Their increased participation as host matrices is due to several 

factors, such as uniform and tunable pore size, large surface areas, high pore volumes, nontoxic 

nature and good biocompatibility. However, in some cases, the hydrophilic silica walls need to be 

functionalized with organic groups to allow the loading of hydrophobic drugs. This functionalization 

seems to be the main controlling factor on the drug adsorption/desorption processes, leading to 

higher drug loading capacities and slower release kinetics, avoiding the well-known “burst release” 

effect. Excellent reviews on this matter have been published by Vallet-Regí et al. [50,51].  
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Figure 4. Parameters that govern the loading and release rate of drug molecules in 

silica-based ordered mesoporous materials. Reproduced from Ref.[51] 

As depicted in Figure 4, functionalization or post-modification by silylation with functional 

alkoxysilanes leads unavoidably to pore narrowing or even pore blocking. Nevertheless, PMOs with 

well ordered structures and high loading of organic groups embedded into the pore walls show a 

lower steric hindrance to the access to drug molecules into their mesopore channels.  

Controlled drug release systems based on PMOs were reported for the first time in 2009 [52]. 

Since then, PMOs have been explored as host matrices for different kinds of drugs -anti-

inflammatory, antibiotics or antitumoral- (see Figure 5). 

 

Figure 5. Model drugs employed in adsorption/release processes onto periodic 

mesoporous organosilicas. 
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Solid and hollow spheres of ethylene-bridged PMOs were reported as drug delivery systems, 

where tetracycline (TA)—a broad spectrum antiobiotics—was chosen as model drug to study the 

adsorption and release processes. Higher adsorption capacities on those PMO hosts than on solid 

spheres of pure silicas owing to the stronger hydrophobic interactions between the pore walls and 

tetracycline were reported. These forces were also determinant in drug release process, leading to 

lower release rates in the former materials. Although the wall composition had a great influence, the 

morphology also played an effective role in the adsorption of guest molecules. Thus, the hollow 

PMO, with higher pore volume and surface area, exhibited better adsorption (loading) and release 

performances for tetracycline.  

Recently, Kao et al. [53,54] achieved to synthesize functionalized PMOs with ethylene- or 

phenylene bridges embedded into the pore walls and a high loading of protruding carboxylic acid 

groups. The carboxylic acid group (COOH) is well-known in organic chemistry for its ability to be 

easily deprotonated under neutral and basic conditions, giving rise to negatively charged groups. 

These bifunctional PMOs with negative COOH and hydrophobic (–CH2–CH2– or –C6H4–) groups 

showed an excellent adsorption capacity for a positively charged, hydrophobic anticancer drug, 

doxorubicin (DOX). In fact, the stronger electrostatic interactions between the negatively and 

positively charged host and guest molecules, respectively, in combination with hydrophobic forces, 

led to lower release rates in those materials with higher –COOH functionality.  

PMOs with specific functional groups can also be effective carriers for hydrophilic drugs (see 

Figure 6). For instance, Ha et al. [55] prepared PMO materials with a long functional chain by 

condensation of the bis-silane precursor (4), that contains ureylene (–NHCO–N–) and a heterocyclic 

ring (piperazine), and TEOS. The resulting materials were tested in vitro in the loading and release of 

two hydrophilic drugs, i.e. CAP (highly hydrophilic) and 5-FU (weakly hydrophilic), at pH 7.4. On 

the one hand, that material with a higher content of the ureylene moiety showed a higher adsorption 

capacity of CAP (25 %) and 5-FU (22 %). The incorporation of this drug into PMO materials was 

mainly driven by hydrogen bonding interactions between the organic functionalities (imine or 

carbonyl) and the drug molecule. On the other hand, even though all materials exhibited similar and 

sustained release kinetics, the slowest release rate was observed on that host material with the 

smallest pores. Similar observations were reported for the adsorption/desorption of CAP and 5-FU 

onto PMOs containing urea (NHCONH) and sulphonamide functionalities (5) [56].  

Additionally, on the basis of these facts, Ha’s group took this research a step further by 

introducing an amphoteric ligand –amidoxime– as bridging group in the framework of PMOs 

through co-condensation reactions of (6) with TEOS.[57] These materials with ureylene (–NHCO–

N–) and amidoxime (H2N–C=N–OH) moieties were examined as drug loading/release carriers for 

both hydrophobic (IBU) and hydrophilic (5-FU) drugs in a phosphate buffer solution at different pH 

values. As for other cases, they observed that the drug loading capacity of both drugs into that 

material increased as the content of organic bridges increased. Moreover, all materials had a higher 

affinity for IBU than for 5-FU due to the existence of more favorable hydrophobic/hydrogen bonding 
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interactions between the host and IBU than those for the hydrophilic 5-FU.  

 

 

Figure 6. Functionalized bridged precursors used in the synthesis of PMOs for 

controlled drug delivery. 

6.     PMO Nanoparticles For Medical Applications 

The growing interest in the field of nanobiotechnology has promoted the development of novel 

and biocompatible nanomaterials. Particle morphology and size are decisive factors in the 

biocompatibility of these materials. In recent years, the use of nanoparticles in biomedicine has 

exponentially increased in applications such as drug delivery, biomedical imaging and sensing and 

cell tracking. Among those different kinds of nanoparticles employed in biomedicine, MSNs 

(mesoporous silicas nanoparticles) have been extensively reported owing to their controllable sol-gel 

synthesis, easy post-functionalization, high biocompatibility and low toxicity. Unlike the silica 

mesoporous nanoparticles, PMO nanoparticles (PMO NPs) not only have the already-mentioned 

advantages of bulk PMOs (hydrothermal and mechanical stabilities, hydrophobicity and homogenous 

distribution of organic groups), but also some additional properties related to their nanometric size 

such as fast mass transport, effective adhesion to substrates and good dispersity. 

One of the earliest studies in the preparation of nanometer-sized mesoporous organosilica 

particles was described by Lu et al. [58] in 2006. They obtained hollow spheres of ethylene-bridged 

PMOs with highly ordered hexagonal mesotructure and tunable particle size (300–500 nm). In the 

following years, numerous efforts have been devoted to the development of PMOs with smaller 
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particle size (< 300 nm) and ordered mesostructures. However, most of the synthetic approaches 

were unsuccessful, resulting nanomaterials of suitable particle size and worm-like mesostructures 

[59-62]. 

In the last two years, great advances have been accomplished in the synthesis of adequate PMO 

nanoparticles for biomedical applications. Huo et al. [63] reported a new route to synthesize a variety 

of highly ordered PMO NPs with methylene-, ethylene-, ethenylene- and phenylene- bridging groups 

using cetyltrimethylammonium bromide (CTAB) under basic conditions. The ammonia 

concentration and co-solvent content in the reaction mixture influenced significantly the particle size. 

Once confirmed their high thermal stability and good dispersion in organic solvents, they studied the 

internalization of methylene-bridged PMO into HeLa living cells. They observed that the PMO 

nanoparticles could enter into the living cells and accumulate preferably in the perinuclear region. 

Moreover, cell viability measurements in the presence of 4–125 μg/ml PMO nanoparticle for 24 h 

revealed that a maximum of 25 % of the HeLa cells died at the highest concentration. These values, 

similar to those obtained with mesoporous silica nanoparticles, confirmed the low toxicity of PMO 

NPs and, therefore, their biocompatibility.  

In a recent study published in 2013, novel functional PMO NPs containing pyridine units into 

the pore walls were synthesized by co-condensation of (7) with TEOS [64]. The spatial arrangement 

of the pyridine ring and two close N–H groups endowed this PMO with unique properties to 

participate in a wide range of applications such as chemosensor for nucleobases or drug nanocarrier, 

among others. In the former case, this chemosensor allowed to selectively recognize thymidine — a 

nucleobase — over other competitive nucleobases (adenosine, guanine and cytidine) due to the 

existence of strong intermolecular three-point hydrogen-bonding interactions between the organic 

moieties and thymidine. In the latter one, these materials were evaluated as suitable nanocarriers for 

the loading and release of 5-FU in cancer therapy. In this sense, the pyridine-containing PMO 

exhibited a high loading capacity of 5-FU (128 mg/g), whose release was controlled by pH, giving 

rise to a stimuli-response carrier. Finally, in vitro cytotoxicity studies confirmed the effectiveness of 

5-FU loaded PMO for cancer-cell treatment as well as its excellent biocompatibility.  

7. Future Prospects 

In this review, a comprehensive overview of the incipient applications of periodic mesoporous 

silicas in biology and biomedicine has been reported. The most important developments in the use of 

PMOs as supports for the immobilization of active biomolecules—protein, aminoacids and enzymes 

—have been summarized. In most cases, periodic mesoporos organosilicas showed higher adsorption 

capacity than silica-based mesoporous materials due to the existence of hydrophobic interactions 

between the organic groups embedded in the pore walls and the guest molecules. Additionally, PMOs 

presented a lower steric hindrance to the access of bulky molecules inside the pores than 

functionalized silica materials where pore narrowing was unavoidably observed. The possibility of 
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using PMOs as controlled drug delivery systems into simulated body fluids has been also outlined. 

PMOs provide great possibilities for designing suitable host-matrices for this application through the 

careful choice of suitable bridges able to interact with functional groups of the drug. In this sense, 

these tailor-made materials could enable to control the drug loading and their subsequent release. 

Finally, the most recent advances aimed at developing nanometer-size PMOs for their application in 

bionanotechnology have been presented. Although the studies on this field are really scarce, their 

good biocompatibility and low cytotoxicity open challenging opportunities for the use of PMOs as 

biomaterials in the future.  
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