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Abstract: Plant microbiota has a variety of impacts on the plant. Some are beneficial, while some are 

pathogenic. This study discusses the general metagenomics procedures in processing plant-related 

metagenomes and focuses on the tomato plants’ rhizosphere species. Metagenomics, associated with 

eventual DNA, is isolated from environmental samples and thus permits absolute microbial population 

identification. Meanwhile, the genetic content of the DNA sample obtained allows the functional 

capability identification and biochemical procedure of many microorganisms. This review reveals the 

recent utilization and application of the potential of Next-Generation Sequencing (NGS) in agriculture. 

It involves plant-associated microbiota, the factors driving their diversity, and plant metagenome to 

tackle current challenges experienced in food security. This review provides the newest methods for 

rapidly identifying the microbial communities inhabiting the rhizosphere soil of tomato plants. 
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1. Introduction 

The problem in agriculture today is how to produce abundant harvests and how the harvested 

crops can sustain the entire global population, which may be approximately nine billion people by 
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2050 [1]. The demand for food items like tomatoes will rise by 70%, according to projections by the 

Food and Agriculture Organization of the United Nations (FAO). The demand for fruits and 

vegetables is expected to double in developing nations [2]. To obtain the necessary agricultural 

products and increase the total harvested crops, stakeholders should improve abundant production 

techniques for tomatoes. To achieve the abundant agricultural yield, a mechanized agricultural farming 

system is required, facilitating the addition of necessary nutrients and eradicating the spoilage 

organisms that can affect the growth and health status of tomato plants [3]. 

Numerous problems have been encountered while cultivating tomatoes due to some abiotic and 

biotic stresses [4,5] as well as the unavailability of land due to the land tenure system [2,6]. Tomato 

plants interact with several microbial communities in the soil including bacteria, fungi, archaea, etc. 

These microbes are soil microbial communities or endosphere communities that are known as a 

secondary genome of the plants [7,8]. 

The cost of crop improvement escalated dramatically in the last ten years while inquiring about 

the plant microbiome was acknowledged in agricultural production [9]. Furthermore, the knowledge 

gained in molecular biology has improved omics techniques, substantiating the increment in the 

diversity of microbial communities. 

Meanwhile, studying the microbiome for plants focuses on appreciating the structural and 

functional diversity of microorganisms related to a particular plant host in its community. The 

microbial plant-related communities are primarily associated with a specific gene pool interrelated 

with the plant host, despite microbial populations’ taxonomy and functionality in the rhizosphere. The 

various parts of plant communities growing on its rhizosphere contain an enormous variability in 

microbial diversity [10]. The microorganisms dwelling in the rhizosphere of plants need nutrients and 

water, so they concentrate on the sources of organic matter in the soil [11]. These make the microbial 

population and diversity greater in rhizosphere soil found at the root region of plants. As a result of 

their proximity to the roots of the plants, they affect plants by improving their health status [12]. 

However, organic processes include phosphorus solubilization, inhibition of phytopathogens, nitrogen 

fixation, and soil aggregation as a result of decomposition. Soil microbes are also known to endanger 

plants' health if they were responsible for disease invasion on plants [13]. Therefore, tomato plants 

allow various routes like the production of discrete metabolites and the accumulation of specialized 

structures such as trichomes and hairs to endeavor and trigger the colonization of microorganisms [14]. 

An enormous number of microbes live in plants, including; archaea, bacteria, fungi, viruses, and 

oomycetes. These forms of microorganisms found in the soil are non-pathogenic but can be pathogenic 

depending on other conditions. The non-pathogenic organisms have more ecological relationships with 

the plant hosts than commensal or mutualistic associations, including competition [15]. Rhizospheric 

organisms include a beneficial relationship with the plant in the soil harboring them and keeping plants 

in place. These organisms do not harm the plant but supply nutrients and contribute to the health status 

of the plant by promoting plant growth and resisting disease invasion [16].  

There are reasons to look into various plant species of microflora to obtain a deep perception of 

the microbiome's ability to improve crop productivity. Modern methods have tried to expose plant-

microbe interrelation by studying the plant organs nourished with particular microorganisms [17]. 

Understanding the microbial community and its interrelationship with plants requires a particular 

observation in its surface area of research. It has several routes well expressed by scientists all around 

the globe [18]. Furthermore, microorganisms dwelling in the rhizosphere soil exist in diverse forms 
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ranging from bacteria, fungi, archaea, chlamydia, parasites, viruses, etc. They depended on plant 

species, selection pressure, and certain factors like improvement and other environmental 

characteristics [19]. 

The area of the soil influenced by plant roots, especially where various ecosystem procedures like 

the uptake of nutrients such as phosphate and nitrogen, the molecular and biochemistry nature around 

the rhizosphere, and the plants’ roots take place, must be well known to improve the microbiome 

functions [20]. Adedayo et al. [21] explained carbohydrates are the molecular products of the soil 

around the organ of the tomato plant found in the soil. Yet, it has been reported that plant metabolites 

perform as a chemical determinant in the ground. Moreso, some materials like plant metabolites 

(carbohydrates, proteins, phenols, and flavonoids) were known as causal agents for producing some 

specific host microbes present at the root region in the soil [22]. 

Tomato (Solanum lycopersicum) is cultivated globally in agricultural or farming systems. This 

vegetable crop has been used as a distinctive crop for elementary and systematic research on fruit and 

vegetable quality to study the interrelationship between plants and microorganisms and other 

physiological characteristics [23]. On tomato-producing farms across the world, pathogens or spoilage 

organisms are the primary challenges troubling the production of tomatoes. Biological control 

mechanisms have been applied as a substitute means of controlling spoilage organisms [24]. The 

pathological state of tomatoes’ spoilage mechanisms, including bacteria and fungi can be characterized 

and recognized by applying biological control agents to act against the spoilage organism’s growth [25]. 

The rhizosphere microbial communities of tomatoes were dominated by the following listed 

phyla; Acidobacteria, Proteobacteria, and Bacteroidetes as reported by Cheng et al. [26]. Other phyla 

reported include; Actinobacteria, Firmicutes, Planctomycetes, Nitrospirae, Ascomycota, 

Basidiomycota, and Euryarchaeota [3]. At the genus level of classification, the following genera 

(Burkholderia, Candidatus solibacter, Geodermatophilus, Gemmatimonas, Methylobacterium, and 

Rubrobacter) have been reported to inhabit the rhizosphere of tomato plants thereby promoting the 

health status and improving the growth of tomato plants [3]. 

Metagenomics is a branch of science that reveals the study of taxonomical diversity and its 

functions obtained directly from environment samples based on DNA sequences [27]. According to 

Odelade and Babalola [28], the broad field encompasses community, ecological, and environmental 

genomics. It was regarded as a genomic tool by bringing together several methods. The microbial 

genome is applied as a role precursor for recognizing the diversity and functional genes with the help 

of bioinformatics to obtain detailed signification from the received data. This review portrays the 

current and prospective metagenomic sequencing analysis of microbial communities in the soil 

samples of tomato plants to enhance the production in agriculture.  

2. Taxonomic and functional diversity of microbial communities in the rhizosphere 

The region annotated in Figure 1 explained how the rhizosphere soil at the root region of tomato 

plants accommodates microbial communities and various activities regulated by the biotic and abiotic 

factors that include biological, chemical, and physical features. The rhizosphere soil is a region where 

microbial communities including bacteria, fungi, archaea, and other microbes interact with plants 

through their roots [29]. Diverse microorganisms embedded in the soil, structurally and functionally 

controlled by soil structure, types, texture, porosity, and environmental features. Backer et al. [30] 
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reported that root exudates and rhizosphere deposits add helpful and non-useful bacteria to the soil at 

the root. 

The microbial communities in rhizospheric soil are more diverse due to a high concentration of 

nutrients or substrate utilized for bacterial, fungal, and archaeal through root exudates. Unlike soil 

with no plantation does not necessitate microbial community biomass in the root region. In the 

rhizosphere, microbial populations are involved in interactions known to affect the quality of soil 

and plant fitness [31]. They partake in basic activities that ascertain the stability and abundant 

production of agricultural and natural ecosystems. These microbial populations are advantageous to 

plant growth by making available the production of mineral nutrients, phytohormones, degradation 

and decomposition of phytotoxic compounds, and inhibition of phytopathogens [32]. Microorganisms 

inhabiting the rhizosphere also possess a major function in ecosystems and promote a large number of 

significant procedures, including carbon cycling, nitrogen cycling, nutrient acquisition, and soil 

formation [33]. This review reveals the significance of studying the taxonomical and functional 

diversity of rhizosphere microbial communities and how various components determine microbial 

activity in the rhizosphere soil. Nwachukwu et al. [29] supported this earlier statement, indicating that 

the total number of bacterial cells in a gram of rhizosphere soils ranges from 108–1012 due to root 

deposition in the rhizosphere of the crop plant. The reason for the biomass of bacteria in the 

rhizosphere soils was detailed in the provision of relative humidity, which adds moisture and nutrient 

to the soil [34]. 

The importance of microbial diversity in the rhizosphere soil makes them strenuous to manage. 

Various methods can be employed to manage soil microbes ranging from introducing advantageous 

microbes to reducing the activities of phytopathogens. These methods range in cost, require equipment 

and labor, efficient labor, and scale of application. Most times, agricultural needs are targeted by major 

crop management practices (crop rotation, application of manure, compost or mulch, tillage, and cover 

cropping) and coincidentally affect microbial communities in the soil. 

 

Figure 1. Biotic and abiotic factors affecting the tomato plant. 
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2.1. Rhizosphere microbiota  

In soil science, the rhizosphere is the narrow region of soil that is proportionally attributed to root 

exudates and associated microbiomes (bacteria, fungi, and archaea). Hence, the rhizosphere effect is 

the process by which biological, chemical, and physical changes in soils occur because of root 

secretions and rhizodeposition. The microbes present in the rhizosphere soil of the root segment 

of Arabidopsis thaliana which is not the same as those microorganisms from the bulk soil with no 

plantations [35]. Rani et al. [36] reported that microorganisms within the same species and distinct 

genotypes in the rhizosphere also produce extraordinary microbial communities.  

Adeleke and Babalola [37] contributed by shedding light on types of soil, phenotypes of roots, 

various stages of plant growth, and the nature of the rhizosphere microbial communities. Furthermore, 

the plant pathogen or spoilage organisms had a specific effect on gathering microbiomes in the root 

where the soil had recently been established. 

Certain signals produced by the plant are Quorum sensing (QS).  QS was famous for signaling 

that counts on how the density of a rhizobacteria cell adjusts the genetic explanation of 

microorganisms’ physiological processes [38]. QS endeavors to many plant-associated bacteria to be 

nourished in plant-associated communities; likewise, they need QS to adjust unique phenomena, e.g., 

conjugation, competition in the rhizosphere, and biofilm maturation [39]. Nevertheless, QS-mimicking 

exudates produced from plants disturb QS, showing that plants empower microorganisms in the 

rhizosphere through some biological group tracts. Still, a regular shape of the conjugate deed is not 

apparent [40]. The community of microbial in the plant rhizosphere possesses certain necessary 

features. Overall, these and other factors are significant in determining the shaping of the microbiome 

composition, so biotic (living) and abiotic (nonliving) factors impact the community of microbes of 

the rhizosphere [41]. 

2.2. Soil microbiota’s functionality in reducing soil‑borne spoilage organisms 

According to De Corato [42], suppressive soils can control spoilage organisms, thereby 

improving other researchers’ search for various forms of disease-suppressive soil. Modern research 

indicates that microbiota present in some soil can produce specific environmental features for the 

growth of spoilage organisms, thereby producing suppressive factors controlled by the soil microbial 

community to spoilage organisms. However, soil microbiota could positively contribute to plant 

feeding for the development of the plant [43]. 

In disease-suppressive soils, spoilage organisms’ potential subjugates to natural immunity, 

focusing on the following fungi: Fusarium oxysporum, Phytophthora cinnamomi, Pythium irregular, 

Rhizoctonia solani, Pythium aphanidermatum, Pythium ultimum, Phytophthora capsici, and 

Phytophthora nicotianae, and oomycetes [44]. The suppressive characteristics can be informed by 

adding, more importantly, antimicrobials utilized by units and microorganisms, or the process of 

biological control between microbiota and spoilage organisms [45]. 

Disease suppressions are based on biological factors made up of a collection of different actions 

[46]. The procedures below show that the suppressive outcome is interrelated with the natural 

microbiome present in the soil that deals with the soil microbiota and the plant in the community. The 

increase in microbial activity showcases the most necessary attributes and fungistatic [47]. These 
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promote soil structure and space and activate nutrient competition, eliciting microbiostasis and 

hyperparasitism. The production of antibiotic materials for diffusion purposes during soil organic 

matter decomposition leads to the release of mineral nutrients and systemic disease resistance 

activated in the plant host [48]. 

Microbial load instantly inhibiting more than one spoilage organism is one of the features where 

diversified procedures are activated, procuring specific protection against a broad range of spoilage 

organisms known as the general suppression effect [49]. In this form of suppression mechanism, 

antibiotics formulation, and competition are present and cannot easily be transferred from one soil to 

another [50]. Transfer can occur without much effort in soil characterized by little microbial 

community activity against few spoilage organisms. This effect is known as a specific suppression 

effect [51], whereby specific processes like parasitism, predation, and disease resistance activation 

occur. Concerning suppression, the soil classes are not commonly exclusive concerning their co-

existence and suppressive activities [52]. 

Microbiota biologically controls spoilage organisms. They include actinomycetes (Streptomyces), 

bacteria (Bacillus, Paenibacillus, and Pseudomonas), and filamentous fungi (Aspergillus, Fusarium, 

Trichoderma, Gliocladium, and Penicillium) that enable processes involved in conjunction with 

disease suppression. Specific microbiota contains Plant Growth Promoting Rhizobacteria (PGPR) of 

disease-suppressive compost pathogenic and non-pathogenic species like Fusarium oxysporum and P. 

oligandrum. They will increase plant development and vegetative propagation, enabling the host to 

resist or tolerate the infection [53]. Certain soils and energy impart plant growth to make required 

nutrients and assimilation for the production of crops by microbiota like bacteria (actinomycetes, 

Bacillus, fluorescent pseudomonads, Paenibacillus) and arbuscular mycorrhizal fungi (AMF), 

available. Fluorescent pseudomonads inhibit the spoilage organisms in the rhizosphere [54], but 

Adedayo et al. [21] discussed the assimilation of nutrient improvement and production of materials by 

plant growth-promoting substances. 

Nitrogen could fix into the crop plant by Paenibacillus brasilensis and promote the production of 

auxin hormone [55] and cytokinin hormone [56]. According to De Corato [55], absorbing insoluble P 

by the plant is carried out by species of Bacillus, actinomycetes, and AMF. Furthermore, the species of 

P. oligandrum and Arbuscular Mycchorizal Fungi can generate physical and biological changes in the 

plant’s root system, change the rhizosphere profile, and equilibrate new biomass with root loss [57]. 

Phosphorus (P) is an essential plant nutrient. Its deficiency results in low agricultural income 

globally, mainly where the average weather conditions are unfavorable (high temperature) as in the 

desert and sub-Saharan countries [58]. Kalayu [59] stated that P-solubilization in the soil in the tropics 

is in abundance because of other essential macronutrients like aluminum and iron oxides. These oxides 

increase P’s chance of fixation in the ground, mostly in sub-Saharan Africa.  The potentially 

assimilated P and its usefulness have become famous globally due to its scarceness in soil [58]. In 

contrast, chemical derivatives containing P are minute when measured in harsh climate soil, especially 

in the tropics. Hence, it is necessary to know the total P in the soil to determine the P required for crop 

plant growth, especially in sub-Saharan Africa [60]. 

There is sufficient evidence that soil’s potential to inhibit spoilage organisms on plants basically 

depends on the possibility of soil improving microbial development and other biological processes as 

observed in Figure 2. Among essential microorganisms, including spoilage organisms, soil organic 

matter, and physical, and chemical parameters like major and minor nutrient content, pH, electrical 
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conductivity, etc., have particular interrelations and the special route to the success of disease-

suppressive compost-amended soils. 

 

Figure 2. Microbial functions in rhizosphere soil. 

2.3. The function of fungi and archaea in the rhizosphere using omics 

Archaeal microbiome found in plants is unculturable while applying a conventional culture-based 

procedure. It is revealed by the adoption of genomic phylogenetic studies but is comprehensible in the 

case of fungal diversity, while omics express their usefulness. The following illustrates the variety of 

omics: metagenomics, metabolomics, and metatranscriptomics that provide enabling knowledge of 

advantageous rhizospheric microbial communities, their organization, and abundance in plant 

proximity found in research making use of specific crops [61]. Research on the soil’s microbial 

community has increased significantly by applying next-generation sequencing methods and high 

parallel sequencing output [62] with special duties. These protection duties against non-living features 

include plant growth promotion by biological synthesis of auxin hormone, nutrient supply, stress 

(osmotic and oxidative) tolerance, and the likes suddenly uncovered in archaea ascertaining the need 
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to continually investigate the diversity of microbes present in the plant microbiome [63]. Several kinds 

of metagenomics research (Figure 2) have been done on fungi and archaea, acquiring particular 

organisms and unveiling functions and characteristics of microbial communities in plants enhancing 

agricultural practice (Salk and Kennedy 2020) and its production [64]. 

2.4. Rhizosphere studies conducted in Africa 

Several studies have been conducted globally on different rhizosphere soil. In the African continent, 

various studies have revealed the potential of microbial communities dwelling in the rhizosphere ranging 

from their microbial diversity [3,65], functional diversity [66,67], and functional genes [68,69] produced 

by these microbiomes to improve the health status of the plants. Gashaw et al. [70] have reported how 

Pseudomonas or Bacillus species have displayed their potential action against tomato wilt Ralstonia 

solanacearum in the rhizosphere soil obtained from Central Ethiopia. More studies on various crops not 

limited to tomato plants have been done in Africa which were revealed in Table 1 below. 

Table 1. Some studies conducted in Africa on agricultural soil. 

Crops studied Sampling site Nature of soil and its characteristics References 

Soybean (Glycine max L) Free State, South Africa Sandy and almost neutral pH [71] 

Maize (Zea mays L) Mahikeng, South Africa The soil has 85% sand, 13% clay, and an 

average mean of pH 5.93 

[72] 

Sunflower (Helianthus 

annuus) 

Lichtenburg, South Afica The soil has neutral pH [73] 

Tomato (Solanum 

lycopersicum L.) 

Mafikeng, South Africa Loamy and pH of .6.5 [66] 

Wheat (Triticum aestivum) Cameroun, Senegal Silt, clay, and loamy with pH ranging from 

4.5–5.7 

[74] 

Coffee (Coffea arabica) southern, western, and southwestern parts 

of Ethiopia. 

The soil pH ranges from 4.3–8.2 [75] 

Banana (Musa species) (Meru, Rombo, and Rungwe) Tanzania 

and Uganda (Port Fortal, Kyenjojo, and 

Luweero) 

Clay loam, pH Tanzania 7.4 and Uganda 6.8 [76] 

Sorghum (Sorghum 

bicolor) 

Ethiopia The soil pH ranges from 5.9–7.7 [77] 

Moringa (Moringa oleifera) Ilorin, Nigeria Sandy [78] 

Crop rhizosphere Maputo, Mozambique Sandy, alkaline pH (8.1–8.4) [79] 

Maize (Zea mays), rice 

(Oryza sativa), and wheat 

(Triticum aestivum) 

Kaduna and Kano, Nigeria Sandy in nature [80] 

Pigeonpea (Cajanus cajan) 

and white yam (Dioscorea 

rotundata) 

Fumesua and Ejura, Ghana Fumesua (Greyish brown sandy clay loam 

topsoil, acidic pH 4.4–5.2) and Ejura (Sandy 

loam, alkaline pH 6.6–7.9) 

[81] 
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3. Concept of metagenomics in tomato rhizosphere microbiome and its relationship with 

host plants 

The metagenomic technique of the tomato rhizosphere soil community displaying the microbe’s 

analysis present in the soil is made up of bacteria, fungi, archaea, and actinomyces, as observed in 

Table 2. These microbes are confirmed in a rhizospheric soil sample, particularly on the DNA 

sequencing method and function of the gene found in the soil [27]. 

Metagenomics enhances knowledge and understanding of the microorganisms’ significance to 

plants and their interaction, as explained in Figure 3. Moreover, there are different bioinformatic tools 

employed in metagenomic sequencing of which the following listed were applied in the analysis of 

sequences; PICRUSt, Tax4Fun, and shotgun metagenomic sequencing. 

 

Figure 3. Flowchart displaying the metagenomics studies of rhizosphere microbiomes. 

The first tool produced for functional prediction from sequences obtained from the 16S marker is 

PICRUSt. It is mostly employed for sequencing but due to some challenges faced, it was not the best 

tool for metagenomic sequencing. Employing 16S rRNA sequence of genes, standard PICRUSt1 helps 

to predict Kyoto Encyclopedia of Genes and Genomes (KEGG) Ortholog functions [82]. This tool 

derives the content of unknown genes by a prolonged state of the ancestral reconstruction algorithm in 
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the employed rhizosphere of tomato according to [83]. The algorithm employs the application of the 

phylogenetic tree of Sanger sequencing (16S rRNA gene sequences) as conducted by [84] in the 

rhizosphere of tomato to connect gene content to the operational taxonomic units (OTUs) [85]. The 

procedure of the tool includes supplying sequences to become produced OTUs from closed-referenced 

OTU-picking against congenial forms of the greenhouse database [86]. As a result of the limitations of 

the OTUs, PICRUSt1 progression is incompatible to sequence denoising processes, which liberate 

amplicon sequences variants (ASV) compared to OTUs. ASVs have better resolution, which allows 

the differentiation of related microorganisms. 

Another novel metagenomic tool for profiling the functional diversity of the microbial 

community inhabiting samples based on 16S rRNA data is Tax4Fun and employed to unveil the 

functional diversity in the rhizosphere of tomato plants [87]. The connection of the functional 

annotation of prokaryotic genome sequences with 16S rRNA gene sequences is identified with closely 

related genomes based on the sameness of the limited 16S rRNA sequences [82]. This tool can also be 

used to obtain 16S rRNA procedure pipelines that can carry out the functions of the 16S rRNA gene 

reads to SILVA [88]. The effect of this tool reveals that the relationship between predicted functions 

and the metagenome is greater, unlike the PICRUSt tool. 

Shotgun metagenomic sequencing (MGS) is the best sequencing tool due to its potential to reveal 

the entire microbial diversity, functional diversity, and microbial genomes, unlike the gene marker that 

can be only used to characterize microbial function in a given rhizosphere soil sample [89]. Few 

studies have reported how the shotgun approach has been used to unveil genomic sequences [90], 

microbial diversity [3], and functional diversity [66] in tomato rhizosphere. The disadvantage of this 

sequencing tool is that it does not execute its operation well in case of little microbial community or 

host contamination e.g. in the biopsy. 

In the ecosystem of the developing tomato plants, the plant inhabits various microbiomes as 

reported in Table 2 to contribute to the health status, plant growth promotion, antagonistic activity 

against phytopathogen, etc. The microbial communities' diversity is highly underestimated below 5 % 

microbial population is culturable. The plant-associated microbes are made up of beneficial microbes 

including plant growth-promoting rhizobacteria (PGPR) [70,91,92], fungi (PGPF) [93–95], 

actinomyces [96–98], archaea, etc. the following bacteria including; Pseudomonas, Burkholderia, 

Bacillus, Azobacter, Bradyrhizobium. Other fungi like Trichoderma, Penicillium, Aspergillus, 

Arbuscular mycorrhizae, etc., and archaea have been reported to reveal plant growth traits in the 

rhizosphere of tomato plants. Some of the listed microbes have shown the potential to solubilize 

phosphates, siderophore production, and indole acetic acid production [96,97]. Studies have also 

reported that rhizosphere microbiomes can control abiotic stresses [99–101] among which chelating of 

heavy metals, and uptake of trace elements (Fe and Zn). More of the microbial activity in the 

rhizosphere of tomato were presented in Table 2 below. 
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Table 2. Microbiomes and their activities in the tomato rhizosphere soil. 

Microbiome  Species  Activities References 

Bacteria Burkholderia contaminans The PGPR has been reported to inhibit and or control the 

invasion of Fusarium wilt on tomatoes 

[91] 

 

 Burkholderia spp. and Pseudomonas 

spp. 

 

The PGPRs carry out antifungal potential on tomato plants 

reducing the growth of phytopathogens and improving the 

health status of tomato plant growth under salinity conditions 

[102] 

 Pseudomonas or Bacillus spp. These bacterial species antagonize Ralstonia solanacearum 

causing wilt disease in tomato 

[70] 

 

 Chenopodium quinoa The rhizosphere bacteria was reported to induce resistance 

against Alternaria alternata in tomato 

[103] 

 Proteobacteria, Actinobacteria, 

Acidobacteria, Bacteroidetes, 

Chloroflexi, Gemmatimonadetes, and 

Firmicutes 

The following phyla were reported to promote tomato plant 

growth in greenhouse soils under long-term tomato monoculture 

[104] 

 

 Bacillus subtilis, and Bacillus 

amyloliquefaciens 

The PGPR was used alone and in conjunction with 

cyanobacteria to improve the quality and production of tomatoes 

[92] 

 Bacillus subtilis Green waste biochar and wood biochar, together with compost 

and PGPR against early blight diseases of tomatoes caused 

Alternaria solani 

[105] 

 Enterobacter spp. Strains, 

Paenibacillus spp. Strain, 

Enterobacter mori strain Lelliottia 

spp. Strain 

PGPR was reported to reduce the stresses on tomato plants 

through metabolomic analysis 

[99] 

 Bacillus spp. and Pseudomonas spp. The PGPR in addition to spent mushroom substrate promotes 

tomato plant growth 

[106] 

 Streptomyces cinereoruber strain P6-

4, Priestia megaterium strain P12, 

Rossellomorea aquimaris strain P22-

2, and Pseudomonas plecoglossicida 

strain P24 

They involve in plant growth-promoting activities like the 

production of IAA, phosphate solubilization, and siderophore 

production  

[96] 

 J-62 strain The combination of compost, biochar, and PGPR produced 

significant results in promoting tomato plant growth, because 

Cd metals were found in the soil in a combined state, and the 

growth of tomatoes was sustained by the PGPR in the presence 

of these metals 

[107] 

Fungi Arbuscular mycorrhiza fungi (AMF) 

(F. mosseae and G. fasciculatum)  

These fungi are efficient biological control organisms against 

tomato diseases 

[108] 

 

 Penicillium cyclopium, 

Trichoderma harzianum and 

Trichoderma pseudokoeningii 

These rhizosphere PGPF act against Fusarium oxysporum 

causing soft rot in tomatoes 

[94] 

Continued on next page 
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Microbiome  Species  Activities References 

 Purpureocillium lilacinum This nematophagous fungus has the potential to control the 

invasion of Nacobbus aberrans and contribute to growth 

promotion in tomato plants 

[109] 

 Penicillium spp., Aspergillus sp., 

Coprinellus radians, Neurospora 

spp., Paecilomyces spp. 

The PGPF aids the germination of tomato seedlings when 

combined with silicate 

[110] 

 

 Epichloë typhina and Curvularia 

protuberate 

Improve the negative impacts of biotic and abiotic stresses, such 

as heavy metal toxicity, oxidative stress, drought, salinity, and 

extreme temperatures on tomato 

[101] 

 Metarhizium anisopliae The fungi promote the growth of tomato, maize, and arabidopsis [111] 

 Serendipita indica and Serendipita 

herbamans 

The fungi endophytes contribute to tomato plant growth and 

development 

[112] 

 Rhizophagus irregularis The fungi contribute to the growth promotion and quality of 

tomato plant 

[113] 

 Xylaria feejeensis The PGPF biologically controls tomato disease (Early Blight and 

Fusarium Wilt) and endeavor plant growth promotion 

[114] 

Archaea Haloterrigena The archaea contribute to growth promotion and improve the 

health status of tomato plant 

[3] 

 Thaumarchaeota and Euryarchaeota 

(Methanosarcina, Methanoculleus) 

The archaea were reported to be abundant in the rhizosphere of 

tomato plants 

[115] 

 Euryarchaeota, Crenarchaeota, 

Thaumarchaeota, and unclassified 

Archaea 

The archaea were reported to be abundant in the rhizosphere of 

tomatoes thereby promoting the health status of tomato plants 

[3] 

 Methanosaetaceae, 

Methanosaetaceae, 

Methanosaetaceae, and 

Methanobacteriaceae 

The archaea are L-AD effluent and very effective inoculum for 

SS-AD of on-farm organic waste (ie. co-digestion of tomato 

residues) 

[116] 

Actinomyces Janibacter spp. Promote tomato plant growth [117] 

 Ac83,  Ac4, Ac9, Ac70, and Ac33 The actinomycetes were observed to inhibit the growth of 

Botrytis cinerea in vitro confrontation and were tested for 

biocontrol potential on tomato 

[118] 

 Streptomyces spp., Streptomyces 

atratus, and Arthrobacter humicola 

Promote the growth of tomato seedlings, and induce resistance 

against phytopathogens Sclerotinia sclerotiorum 

[119] 

 Methanosaetaceae They are the dominant methanogens employed in treating tomato 

waste 

[116] 

 Streptomyces albidoflavus H12 and 

Nocardiopsis aegyptica H14 

These strains revealed in-vitro antagonistic activities of soil-

borne pathogens of tomato plant 

[98] 

Continued on next page 
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Microbiome  Species  Activities References 

 Nocardiopsis dassonvillei. 

Streptomyces iakyrus. 

Streptomyces xantholiticus. 

Streptomyces xantholiticus. 

Streptomyces albidoflavus. 

Nocardiopsis aegyptica. 

Streptomyces thinghirensis. 

Streptomyces anulatus. 

Nocardiopsis alba. 

Streptomyces ambofaciens. 

Streptomyces xantholiticus. 

Streptomyces thinghirensis. 

Nocardiopsis aegyptica. and 

Nocardiopsis dassonvillei 

The archaea are involved in various activities thereby improving 

tomato growth like; dissolving inorganic phosphate, producing 

ammonia, producing HCN 

[97] 

 Streptomyces spp. NBM3, 

Streptomyces spp. NBM2, 

Streptomyces spp. NBM1, 

Streptomyces spp. NBM12 and 

Streptomyces spp. NBM8 

The archaea biologically control fungal disease caused by 

Rhizoctonia solani on tomatoes. The microbes are further known 

to produce indole acetic acid (IAA), and siderophores and 

promote tomato plant growth 

[120] 

3.1. Metagenomic of rhizobiome 

Nannipieri et al. [121] reported various similar libraries in metagenomics. These include DNA, 

eDNA, and zoo libraries. Metagenomic research has focused on minor forms of microbial 

communities. Detailed experience with microbial communities and their performance should be 

continuously useful for progress in such techniques. 

The microbiome community in the rhizosphere soil is a significant source of biomolecules applied in 

agricultural practices and medical fields (antibiotic medicines, immune suppressors, and anticancer 

agents). Metagenomics displays a tremendous amount of 16S rRNA gene sequences found in 

particular bacteria of uncultured species [122]. With the assistance of metagenomics, which provides 

information on features of specific genes, many microbes, and microbial genes have been identified.  

3.2. Similarities and differences between the functional diversities in rhizosphere soils  

Microbial functions embedded in the rhizosphere of plants occur in the manifold. They involve 

the breakdown of metabolic substances that improve nutrient production and other needed materials 

needed for plants’ growth [123]. Various functional metabolisms include; protein metabolism, 

phosphorus, potassium, and sulfur cycling, in the plant rhizosphere that promotes the health condition 

of the plants [124]. 

Functional diversity is the component determined by microbial ecologists as the significant link 

between biodiversity with the activities of microorganisms in their ecosystems. It assists in the 

determination of the trophic relationships between microbes, their engagement in biogeochemical 
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cycles, and their responses to environmental change. These functions in the rhizosphere soil are 

abundant and as a result, improve the fertility and quality of the soil [125]. Some studies have 

presented functional analyses associated with different crops and there are similarities between the 

functions presented. Adedayo et al. [66] presented 15 functional diversity to be greater in the healthy 

rhizosphere of the tomato plant compare to the diseased tomato plant rhizosphere and they include; 

Carbohydrates, Miscellaneous, Cofactors, Vitamins, Prosthetic Groups, Pigments, Cell Wall and 

Capsule,  Nucleosides and Nucleotides, Fatty Acids, Lipids, Isoprenoids, Clustering-based subsystems, 

Stress Response, Nitrogen Metabolism, Regulation and Cell signaling, Motility and Chemotaxis, Cell 

Division and Cell Cycle, Potassium metabolism, Dormancy and Sporulation, and Photosynthesis. 

Other studies presented various functions including cell wall and capsule, protein metabolism, 

regulation and cell signaling, iron acquisition and metabolism, membrane transport, miscellaneous, 

motility and chemotaxis, nitrogen metabolism, potassium metabolism, RNA metabolism, stress 

response, phosphorus metabolism, sulfur metabolism, and virulence, disease and defense in maize 

rhizosphere as reported by Chukwuneme et al. [126]. Most of these functions were also reported 

according to Ajiboye et al. [71] that the functional diversity including nitrogen metabolism, sulfur 

metabolism, iron acquisition, etc is more abundant in the rhizosphere of soybean compared to bulk soil. 

The studies mentioned above employed the shotgun metagenomic sequencing approach to unveil these 

functions. The introduction of a culture-independent approach especially shotgun metagenomics has 

assisted in subjugating this limitation. 

3.3. Microbial genome in rhizosphere soil 

The genomic technology of next-generation revealed comparative genomics of phytopathogens 

and their biomass [127]. This method has been applied to determine genes associated with a 

significant disease or phenotypic immunities like type III secreted effectors (T3SEs) produced by 

Gram-negative bacteria and certain groups of effectors in fungi and oomycetes [128]. Bacterial 

pathogens of comparative genomics have shown some pathogens can utilize the same process to bring 

down the immunity of host plants which is accomplished via different evolutionary routes [129]. A 

typical example obtained in the independent lineage of Pseudomonas syringae is to destroy the 

immune response of host plants. An organism may share more than half a percentage of its genome 

with other organisms of the same species [130]. Yet the total genome of the organism can be more 

than 10 times more than the size of the individual genome. Comparative genomics showed the 

adaptation of genomes that are related to the nature of the specific pathogen, with multiplication and 

diversification of a group of genes encoding enzymes required for the lysis of the cell wall of the 

organism and biological synthesis of secondary metabolite to manufacture some materials that 

possessed host cytotoxic potential [131]. Common characteristics of necrotrophic bacteria and fungi 

are their potential adaptation. In comparison, the characteristics of obligate phytopathogens show how 

the organisms derive nutrients from the living host due to the declination of the convergent gene in 

metabolic tracts[132]. This supposedly explains the reason why phytopathogens become obligate 

parasites. Culture-independent methods together with metatranscriptomics studies unveil the 

knowledge of implementing plant-microbial interaction with specific taxonomic diversity [133]. 

Investigating the major microbial functions reveals mutualistic and commensal groups that require a 
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statistical design with some replicates, the formation of synthetic model communities that can be 

influenced, and the interpretation of multiple omics data types. 

Beneficial organisms that include arbuscular mycorrhizal fungi, chlamydia, macroinvertebrates, 

nitrogen-fixing bacteria, parasites, and protozoa, exist and compete for available nutrient in the 

rhizosphere soil that contributes to the growth of the plant. For the translocation of minerals, 

mycorrhizal fungi are symbionts that play an important role in this process [134], they can inhibit soil-

borne spoilage organisms of plants [135], and fixes nitrogen by biological means [136]. Soil 

microorganisms can regulate the plant’s immune systemic resistance by modifying pathways that 

include various defense genes (MPK3 and MPK6), and the ethylene or jasmonic acid pathway [137]. 

Liu et al. [138] reported how Phosphomonoesterases are the significant enzymes in the 

mobilization of Phosphorus (P). The functional gene (phoD) and the soil pH are responsible for the 

control of the procedures of alkaline phosphomonoesterases (ALP) [139]. As a result, ALP processes 

have not been confirmed in plants, it was observed that the genes that code for ALP in soils are found 

in soil bacteria families that include Methylobacteriaceae, Bradyrhizobiaceae, Methylococcaceae, 

Burkholderiaceae, Rhodobacteraceae, and Tolypothrichaceae. PhoD gene is abundant in rice paddy 

soil that contains low P conditions and improves operational taxonomic units of Actinobacteria and 

Cyanobacteria [140]. The functional genes abundance and various activities of the enzymes were not 

importantly corresponded when the P required by microorganisms and plants were acquired [141]. Yet, 

the abundance of phoD genes was positively variable with the process of ALP after the application of 

manure in an organic agricultural farm [142]. So, the expression of this functional gene in soil 

revealed the process of mineralization of P is being controlled in the region corresponding to 

rhizosphere soil [143]. This reveals how microbial communities and crop plants endure during the 

growing phase amidst P deficiency in soil with low alkalinity [144]. 

4. Prospect: modern approaches for assessing functional plant microbiome 

This study adds more quality to the assessment of microbial communities in the rhizosphere soil 

of tomatoes. It then explains how metagenomics methods in high-throughput next-generation 

sequencing technologies have helped eradicate hunger among the populace and improve the abundant 

production of tomatoes in the food security sector. 

According to metagenomic studies, the number of catalytic purposes embedded in the microbiota 

far outnumbers the plant’s catalytic capacity [145]. Any microbiota functions may directly improve 

plant output, with three distinct pathways receiving the most attention. They include plant nutrition 

improvement, pathogen outbreaks curtailment, or the nonliving factor endurance modulation [146]. 

Selective promotion of these beneficial microbial activities in the agricultural system may be a way to 

improve crop yields while reducing synthetic fertilizer and pesticide use. 

Integrating microbiome science into farm practice can significantly increase agricultural 

sustainability. Thus, specific significant motivation gaps limit our potential to influence the microbiota 

found in plants [147] logically. Crop varieties were selected based on their capacity to attract 

advantageous microorganisms into the soil at the root region.  It referred to one way of encouraging 

favorable plant-microbe interactions [148]. However, this technique is not yet commercially viable 

due to the exclusion of high-throughput screening methods for the physical composition of microbial-

mediated characters in high-fostering communities and an insufficient understanding of how genetics 
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in plants impacts the microbiome [149,150]. Inoculating crop plants with advantageous microbes is 

another alternative. Future studies should aim to determine how the complex plant microbiome 

interaction affects final crop yield and, as a result, to modify the effectiveness of microbiome-based 

agricultural adjustments. 

5. Conclusion 

Microorganisms that live in the soil are at the root region of the plant, thereby supplying double 

environments in a different compartment of the plant for reproduction. As a result of plant 

development, soil microbes are subjected to some status as plants react to changing conditions related 

to physiological modifications. Over the last few years, we have learned much about microbial 

population dynamics in different plant microenvironments. However, we still do not know which 

physiological conditions (microbiomes, plant microbial, and environmental conditions) favor the plant 

species’ growth. We also gained knowledge on the potency of plant-associated microbiome 

metagenomic activities. Nevertheless, the operation acted in plants is misfortunately comprehended, 

especially regarding the variety to which microorganisms are exposed and the importance of the genes 

produced.  We will have to acquire more knowledge of plant reactions to rhizosphere soil microbiota, 

environmental status, and an appreciative understanding of the molecular interactions between 

microbiomes and plants. There is a need to focus on microbiome progress from studying microbiota 

structural composition to comprehending functional aspects. 
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