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Abstract: Water resources operational planning, managements or either flood defence infrastructure 
designs often demand the estimations of flow exceedance probability for visualizing the risk of flood 
episodes. Numerous literature often incorporated copulas for the development of bivariate joint 
dependence structure among the flood characteristics, flood peak flow, volume and duration, but it 
could be more realistic and comprehensive if we focus all the three mutually correlated flood 
characteristics simultaneously. Actually, the inclusion of more flood characteristics could provide 
better and much justifiable information in correlation and dependency modelling. In this study, 
trivariate copulas are incorporated and applied to a case study to analyse flood episodes in the 
Kelantan River basin at Gulliemard bridge gauge station in Malaysia. Firstly, for describing  
best-fitted bivariate copulas for establishing the joint dependence structure of each flood attribute 
pairs, the Gaussian copula is recognized most justifiable model for peak-volume pair and the Frank 
copula for peak-duration and volume-duration pairs. After that, the trivariate joint distribution is 
modelled using one Archimedean copula, the Frank copula and one Elliptical copula, the Gaussian 
copula. Based on Cramer-von-Mises-type statistics, Sn and p-value, the Gaussian copula best 
representing the trivariate dependence structure of flood and which further employed in the deriving 
of trivariate joint and conditional return periods. 
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1. Introduction 

Water-related operational planning, managements or either flood defence infrastructure designs 
often demands accurate estimations of the flood exceedance probability for assessing the hydrologic 
risk [1–3]. The probabilistic assessment often provides a flexible way to inference and extrapolates 
long term historical streamflow characteristics by fitting the most justifiable probability distribution 
functions and estimating their specified flood exceedance probability or return periods. The flood 
frequency analysis or FFA is an approach to relate flood design quantiles and their frequency of 
occurrence or non-exceedance probability by fitting the probability distribution functions [4,5]. The 
unreliability of univariate FFA are already highlighted through numerous studies (e.g. [4,6]), which 
cannot sufficiently characterize the full structure of flood hydrograph and might reveals the 
underestimation or overestimation of associated risk of correlated flood characteristics. In actuality, 
the flood is a multidimensional random consequence usually characterized completely through its 
trivariate mutual correlated vector such as flood peak discharge flow, volume and duration of flood 
hydrograph [7,8]. The multivariate distribution modelling often facilitates an effective approach in 
the prediction of hydrologic risk through visualizing the mutual dependencies among its multiple 
intercorrelated characteristics based on the joint probability density functions or JPDFs and joint 
cumulative distribution functions or JCDFs [5,9] also, to demonstrate the uncertainties interlinked 
with these hydrologic events. More especially, from the hydraulic designing perspective where, the 
accountability of multivariate design variables is often an insightful strategies [10,11]. The necessity 
of estimating flood design hydrograph instead of the single variable flood modelling or FFA i.e., 
either flood peak /or volume /or duration as a function with non-exceedance probabilities motivated 
numerous demonstrations (e.g. [6,12,13]), towards the incorporation of distinguished varieties of 
traditional bivariate or trivariate distribution functions for establishing the joint relationship among 
flood characteristics. 

All the above distribution-based flood modelling approaches often surrounded with several 
statistical limitations such as (a) each flood characteristics must assume to have gaussian (or normal) 
distributions (b) statistical parameter of univariate marginal structure is often employed to model 
their joint dependence structure (c) limited space are available for the justification of their joint 
dependence structure under the traditional probability functions (d) complexity in the mathematical 
formulation as the number of random variable got increases [2,7,15]. Therefore, De Michele and 
Salvadori (e.g., [16]) firstly introduced copulas function for establishing the joint dependence 
structure between storm intensity and duration series. After that, extended literatures incorporated 
bivariate or few trivariate copulas distribution as a model risk for tackling different hydrological 
extremes (i.e., [15,17,18]). In actual, the copula function perform the modelling of individual 
univariate distribution and their joint dependence structure separately into two different stages, 
which allow higher degree of flexibility in the selection best fitted marginal distributions and their 
joint structure to capture a wider extent of linear and non-linear dependencies alongwith their 
preservation in their mutual dependence structure [19–21]. 

Existing copula distribution modelling frequently focused towards the establishment of 
bivariate joint analysis of the flood attribute pairs such as between peak flow and volume series 
and/or volume and duration series, and/or peak flow and -duration series(i.e., [9,22]). But the more 
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comprehensive flood risk analysis can be achieved through accounting all the trivariate random 
vector simultaneously by introducing the trivariate copula distribution modelling. Multiple relevant 
vectors of the specified hydrological episodes could likely depends upon the potential damage also, 
the ignorance of spatial dependency among these uncertain flood characteristics may responsible for 
the underestimation of uncertainty [11,23]. Therefore, the consideration of multiple flood relevant 
random vectors could provide better demonstration of their correlation or mutual dependence 
structure. Few existing incorporations such as Grimaldi and Serinaldi (i.e., [17]), performed flood 
distribution modelling by adapting different trivariate functions such as the mono-parametric and 
fully nested structure of Frank functions, Gumbel logistic distributions and pointed the significance 
of Frank function under FNA structure. Similarly, Serinaldi and Grimaldi, (i.e., [24]), derived 
trivariate flood dependence structure using the same fully nested structure. Genest et al., (i.e., [25]), 
modelled the annual spring flood analysis over Romaine River in Canada using the meta-elliptical 
copulas and their results revealed that such incorporation facilities an effective modelling 
environment for the analysis of multi-dimensional observations alongwith the preservation of the 
pair-wise dependencies among multiple random vectors through the correlation matrix but exhibited 
some modelling limitation such as might be ineffective under the low probabilities unless the 
asymptotic properties of data will be justified through the strong arguments. Similarly, Reddy and 
Ganguli (i.e., [3]), applied the fully nested Archimedean or FNA class copula and Student’s t copula 
(Elliptical class copula) for the annual flood characteristics and examined the significance of 
multidimensional designs events by comparing univariate, bivariate and trivariate return periods and 
thus revealed that it could be an essential effort to demonstrate the joint and conditional flood 
occurrence in the light of trivariate return periods. Similarly, Fan and Zheng (i.e., [26]), adopted the 
entropy copula based on the Gibbs sampling procedure along with the Gaussian and the 
Archimedean copula for simulation of trivariate flood characteristics and revealed that using the 
entropy copula one can easily projected into higher dimensional frame directly just like as the 
Gaussian copula. 

The Kelantan River basin is often affected by the most intensive monsoonal flooding in 
Malaysia and perceiving for increasing in term of their frequency and magnitude [27–29]. Few 
historical extremes happening such as intense and prolonged precipitation in the year 2002 caused 
flooding of a total area of 1640 km2 and affected the population of 714,287 or either in the early 
month of December 2014, much heavy precipitation occurred for many of days triggered the flood 
event in most of the part of eastern coast of Kelantan river basin and it was the worst flood ever 
recorded in history and affected more than 200,000 people [29]. The cause of frequent failure of 
flood defence infrastructure in Malaysia due to the impact of moderately severe of flood episodes 
might be responsible due to the lack of complete flood hydrograph or in other words, where only 
flood peak discharge samples often targeted in deriving flood frequency curve during the structural 
development. Therefore, multivariate probabilistic assessments of flood characteristics and their 
associated return periods could be a comprehensive way for making a defensive risk-based decision 
making in the various basin perspective water-related issues. In this study, the copulas distribution 
modelling is incorporated for establishing trivariate joint dependence structure of flood peak, volume 
and duration series. The probabilistic model is implemented on the block (annual) maxima based 
flood sampling procedure, also called at-site event-based methodology, in which the daily basis 
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streamflow discharge records from period 1961–2016 are collected for the Kelantan River Basin at 
the Gulliemard Bridge gauge station in Malaysia. Both the Archimedean class and Elliptical class 
copula function are introduced and their adequacy are tested in the establishment of trivariate joint 
dependency simulations of flood characteristics. For the trivariate cases, joint primary return period 
in both “OR” and “AND” cases (for annual flood analysis) are estimated and also compared with the 
bivariate and univariate return periods. Also, trivariate conditional distribution and their associated 
return periods are investigated and compared with the bivariate cases. 

2. Theoretical framework 

2.1. Trivariate distribution using the copula function 

Let us consider, if the flood peak flow, P, volume, V and duration, D series be the three 
intercorrelated flood characteristics then the joint probability distribution, F, can join the 
probabilities of these random variables and can be expressed as [8,30]; 

F(p, v, q) = P′(P ≤ p, V ≤ v, D ≤ d) = ∫ ∫ ∫ f(p, v, d)dpdvddp
0

v
0

d
0     (1) 

where p, v, q = values of flood characteristics P, V and D; and P’= Non-exceedance probability. 
According to Salvadori and De Michele (i.e., [31]), the multivariate joint return period can be 

derived from the Eq 1, as given below; 

  T(P ≥ p, V ≥ v, D ≥ d) =  μ

1−(P′(P≤p,V≤v,D≤d)=∫ ∫ ∫ f(p,v,d)dpdvddp
0

v
0

d
0 )

   (2) 

where F(.) = joint CDF or JCDF; T = return period; μ = average inter-arrival time of sequential 
hydrologic or flood event =1. 

The ideas of the copula method have been developed by Saklar (i.e., [19]). According to Nelsen 
(i.e., [20]), the copula are function that connects multivariate probability distributions to their 
univariate marginal functions. One of the major advantages of copula function is to modelling the 
dependence structure of the multiple intercorrelated univariate marginal distribution independently. 
Mathematically, let us consider the situation of bivariate random series, according to Sklar’s  
theorem [20], if (X, Y) be the bivariate random variables with continuous marginal distributions 
u1 = FX(x) = P(X ≤ x), and u2 =  FY(y) = P(Y ≤ y) , then it can be characterized uniquely by its 
associated dependence function called Copula or C which can be defined on the unit square, can be 
expressed as; 

 HX,Y(x, y) = C[FX(x), FY(y)] = C(u1, u2)       (3) 

where, C = any type of bivariate copulas under consideration; FX(x) = FY(y) = CDF of univariate 
random variables “X” and “Y”; HX,Y(x, y) = bivariate joint probability distribution functions which 
can be expressed in terms of its univariate marginal functions and the associated dependence 
function C, as revealed from Eq 3. According to Shiau (i.e., [32]) and Zhang and  
Singh (i.e., [7]), the copula C must be unique if are continuous and thus can easily capture the wider 
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extent of dependencies among the random variables. Conversely, if FX(x), FY(y) and the copula 
functions is given, then the above Eq 1 must define the bivariate joint distribution functions with its 
marginal distributions and Similarly, if fX(x) and fY(y) are the PDF of variable X and Y, then the 
joint probability density of the two random variables can be expressed as; 

 fX,Y(x, y) = c(FX(x), FY(y)) fX(x)fY(y)      (4) 

where, c is the density function of bivariate copula C, can be defined as; 

 c(u, v) = ∂2c(u,v)
∂u∂v

         (5) 

in which, u1 = FX(x) and u2 = FY(y). 
Similarly, we consider the situation of trivariate distribution series where the joint distribution 

of random variables can be expresses as; 

 HX,Y,Z(x, y, z) = C[FX(x), FY(y), FZ(z)] = C(u1, u2, u3)     (6) 

where HX,Y,Z(x, y, z) = trivariate joint distribution of random variables; F(.) = marginal distribution; 
and C = trivariate copula function. 

In this study, we introduced the Archimedean copula called Frank copula and elliptical copula 
called the Gaussian copula for establishing trivariate joint dependency of the annual basis (i.e., block 
(annual) maxima) flood characteristics i.e., flood peak flow, volume and duration series. The 
Archimedean copulas are widely accepted in numerous demonstration which exhibited a different 
varieties of families and also much effective and flexible to capture wider extent of joint 
dependencies [17,20]. On the other side, the elliptical family-based Gaussian copula is also 
introduced as a candidate model for testing their adequacy in the establishment of trivariate joint 
dependency simulations of flood characteristics. The Gaussian copula is an implicit copula which 
can be expressed as an integral over the density of X, and that can expressed mathematically for 
bivariate case as given below [33]; 

 Cθ(u, v) = ∫ ∫ 1
2π(1−θ2)1 2⁄ exp �− s2−2θst+t2

2(1−θ2)
�dsdt−ϕ−1(u2)

−∞
−ϕ−1(u1)

−∞    (7) 

The Gaussian copula shows almost no dependence in the tails and is mostly distributed around 
centre of the distribution but because of simple intuition as it is based on normal distribution, it is 
quite popular among the hydrologist and water practioner in extreme event modelling (i.e., [33–35]). 

Mathematically, the two and three-dimensional Frank and Gaussian (or Normal) copula can be 
expressed as: 

For the 3-dimension Frank copula; 

 Cθ3(u1, u2, u3) = −1
θ

ln �1 + �e−θu1−1��e−θu2−1�(�e−θu3−1�
(e−θ−1)

� , −∞ < 𝜃 + ∞  (8) 

where, ϕ(t) = − ln �e
−θt−1
e−θ−1

� = generating function. 
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Similarly, the expression for 2-dimension Frank copula; 

Cθ2(u1, u2) = −1
θ

ln �1 + �e−θu1−1��e−θu2−1�
(e−θ−1)

� ,−∞ < 𝜃 + ∞    (9) 

where, ϕ(t) = − ln �e
−θt−1
e−θ−1

�  = generating function; Cθ2 & Cθ3 = two-dimensional and three-

dimensional copula with parameter θ; u1 = FP(p), u2 = FV(v), u3 = FD(d) = marginal distribution 
of trivariate random characteristics. 

For the 2-dimensional Gaussian copula; 

Cθ2(u1, u2) = ΦΣ(Φ−1(u1),Φ−1(u2)) ,−1 < 𝜃 + 1    (10) 

And, for 3-dimensional Gaussian copula; 

Cθ3(u1, u2, u3) = ΦΣ(Φ−1(u1),Φ−1(u2),Φ−1(u3)) ,−1 < 𝜃 + 1  (11) 

where Φ = cumulative distribution function of standard normal or gaussian distribution. 

2.2. Estimation of copula dependence parameters 

In this literature, the parameter of the 3-dimensional copula, also the 2-dimensional bivariate 
copulas are estimated using the ranked-based Maximum pseudo-likelihood estimations (MPL) 
estimation procedure [9,36,37]. The MPL estimators is the modified version of traditional maximum 
likelihood method where the rank based empirical distributions are used for estimating copula 
parameters and can be applied for both one or multi-parameter copula functions also, copula 
parameters are usually estimated independently from their univariate marginal distribution  
functions [9,38,39]. MPL estimation procedure required firstly, to transform the univariate flood 
marginal variables into uniformly distributed vectors using its empirical distribution function. After 
that, through the maximization of pseudo-loglikelihood function one can easily estimate copula 
dependence parameters. 

Mathematically, 

l(θ) = ∑ log�cθ�F1�Xi,1�, F2�Xi,2�… … … . . , Fk�Xi,k� ��n
i=1     (12) 

where, θ = copula parameter; l(θ) = pseudo log-likelihood function; F1�Xi,1� = F1�Xi,2� =…….= 
Fk�Xi,k� = empirical CDFs. Eq 12 is estimated by putting the value of empirical cumulative density 
or CDFs into copula density function and taking the logarithm to the likelihood function of the 
copula. Also, the empirical CDF is used as a substitute for the unknown univariate marginals 
distribution. Finally, the copula parameter can be derived through maximizing Eq 12, as given below; 

1
n
∂l(θ)
∂θ

= 1
n
∑ lθ�θ, F1�Xi,1�, F2�Xi,2�… … … . . , Fk�Xi,k� �n
i=1 = 0    (13) 

After the estimation of copula dependence parameter “θ”, it can be used for the representation 
of multivariate structure of flood characteristics and estimation of joint and conditional return 
periods that are needed for the hydrologic design. 
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2.3. Goodness-of-fit Statistics 

In the estimation of multivariate copula joint distribution, the Cramer-von Mises test statistics is 
employed to evaluate the adequacy of hypothesized copulas fitted to trivariate (or bivariate) flood 
characteristics [40,41]. According to Genest et al., (i.e., [41]) and Reddy and Ganguli (i.e., [9]), this 
test makes the use of the Cramer-von Mises statistic “Sn” through a comparative assessment between 
empirical, and theoretical probability distribution, using the following mathematical algorithm as 
given below; 

For testing the fitness level of 2-dimensional or bivariate copula function 

Sn = n∫[0,1]2{cn(u1, u2) − Cθ(u1, u2)}2dCn(u1, u2) 

= ∑ �cn�U1i,n, U2i,n� − Cθ�U1i,n, U2i,n��
2n

i=1      (14) 

For testing the fitness consistency during 3-dimensional or trivariate copula construction 

Sn = �n
[0,1]2

{cn(u1, u2, u3) − Cθ(u1, u2, u3)}2dCn(u1, u2, u3) 

= ∑ �cn�U1i,n, U2i,n, U3i,n� − Cθ�U1i,n, U2i,n, U3i,n��
2n

i=1    (15) 

where, cn(u1, u2, u3) & cn(u1, u2) = trivariate and bivariate empirical copulas estimated using the “n” 
observational flood attribute pairs; Cθ =  parametric copula derived under the null hypothesis; 
u1, u2, u3 = univariate marginal distribution of flood characteristics say P,V and D; 
U1i,n, U2i,n or U1i,n, U2i,n, U3i,n = pseudo-observations of C transformed from 

(X1, Y1), (X2, Y2), … … . (Xn, Yn) or (X1, Y1, Z1), (X2, Y2, Z2), … … . (Xn, Yn, Zn). Numerically, the value 
of U1i,n, U2i,n and U3i,n can be estimated by using following mathematical approach; 

U1i,n = 1
n+1

∑ 1�Xj ≤ Xi�n
j=1 ;  U2i,n =  1

n+1
∑ 1�Yj ≤ Yi�n
j=1 ;  U3i,n =  1

n+1
∑ 1�Zj ≤n
j=1

Zi) , i ∈ {1, … . . , n}        (16) 

In this demonstration, the p-values for each fitted copulas are estimated using the parametric 
bootstrapping technique (i.e., [40]), during the simulation of bivariate copulas structure and using the 
faster multiplier approach (i.e., [42,43]) during the simulation of trivariate copulas function. 
Although the empirical processes involved in the multiplier and the parametric bootstrap-based test 
are asymptotically equivalent under the null, the finite-sample behaviour of the two tests might differ 
significantly. Mathematically, the parametric bootstrapping procedure can be formulated as given 
below; 

p = 1
N
∑ 1(Sn,t ≥ Sn)N
i=1          (17) 

where N = number of simulations. 
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This fitness statistics actually involve testing of null hypothesis H0 against the against 
hypothesis Ha as given below; 

Null hypothesis (H0 ) = C ∈  C0 {where, C0 = Cθ; θ ∈ O). 
Alternate hypothesis (Ha) = C ∉  C0. 

where, O is the open subset of ℜq for some integer value q. On the other side, the test statistics  
“Rn” (i.e., [44]) is also incorporated for testing the adequacy of best-fitted trivariate copulas to flood 
characteristics. The “Rn” test is an information ratio statistic which is approximately equivalent to 
the “Tn” test, which is the PIOS (or Pseudo in-and-out-of-sample test). The acceptance or rejection 
of the considered copulas is based on estimated p-values. The null hypothesis must be accepted if the 
estimated p-value is larger than a significance level and which in result that copula must be 
considered as satisfactory performance otherwise will be liable for rejections. Overall, from the  
Eq 15, it must be conclude that minimum the value of “Sn” and “Rn” test value must indicates for 
minimum gap or distance between an empirical and derived parametric copulas word thus, most 
justifiable copula for establishing multivariate (trivariate and bivariate) joint relationship between 
flood variables. 

2.4. Flood risks estimation 

The study of the joint and conditional probability distribution for estimating the different 
notation of return periods (i.e., joint return periods, conditional joint return periods) is often 
considered as an essential concern for hydrologic design, that can be easily facilitated using the 
copulas function (i.e., [10,11,45]). Hydrologist and water practioner are mostly interested in the 
evaluation of the average inter-arrival duration between two design events and which usually defined 
in a year called the return period [10]. According to Yue and Rassumesen (i.e., [5]), the concurrence 
probability defines the chance that any hydrologic happening, which either characterizing through 
univariate or either multivariate exceeding certain a threshold level. Mathematically, the univariate 
return period that occurs once in a year can be defined from univariate cumulative distribution 
function or CDF of the variable (say “X”) as given below; 

TUnivariate = μ
total no.of �lood per year

= 1
P(X≥x)

= 1
(1−F(x))

= 1
1−CDF(x)

   (18) 

where, TUnivariate is return period in years; F(x) is univariate CDF of random variable, X; μ = 1, for 
annually basis or annual maxima-based flood analysis [5]. 

2.4.1. Derivation of joint return periods 

According to Salvadori (i.e., [10]) and Zhang and Singh (i.e., [8]), the joint return periods of 
triplet flood characteristics can be estimated using the inclusive probability, also called “OR” and 
“AND” cases. The joint probability distributions for annual flood analysis can describe the following 
two situation such that in the first condition when all the flood variables (say, P ≥ p, V ≥ v, and 
D ≥ d) simultaneously exceed certain threshold during a flood events and their associated return 
period called AND joint period and it can be written as; 
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A. For the trivariate joint distribution case; 

TP,V,D
AND(p, v, d) = 1

P (P≥p ∧ V≥v∧ D≥d)
= 1

(1−F(p)−F(v)−F(d)+H(p,v)+H(v,d)+H(p,d)−H(p,v,d)
=

  1
(1−F(p)−F(v)−F(d)+C�F(p),F(v)�+C�F(v),F(d)�+C�F(p),F(d)�−C(F(p),F(v),F(d))

         (19) 

B. For the bivariate distribution case (any flood combinations i.e., between P and V); 

TP,V
AND(p, v) = 1

P (P≥p AND V≥v)
= 1

(1−F(p)−F(v)+H(p,v)
= 1

(1−F(p)−F(v)+C(F(p),F(v))
   (20) 

where H(p, v, d) = trivariate joint CDF of random variable P, V and D; H(p, v) = bivariate joint CDF 
of flood random variables; C�F(p), F(v), F(d)� = trivariate copulas CDFs for flood characteristics; 
F(p) = F(v) = F(d) = univariate marginal distribution of flood variables. 

In the second situation, probability either the first or second or third flood variable (say, P ≥ p, 
V ≥ v, and D ≥ d) exceed given threshold and thus their associated return period called OR joint 
return period can be expressed as; 
C. For trivariate case; 

TP,V,D
OR (p, v, d) = 1

P (P≥p ∨ V≥v ∨D≥d)
= 1

(1−H(p,v,d))
= 1

(1−C(F(p),F(v),F(d))
   (21) 

D. For bivariate case (for any combination i.e., between P and V); 

TP,V
OR = 1

P (P≥p ∨ V≥v)
= 1

(1−H(p,v))
= 1

(1−C(F(p),F(v))
     (22) 

2.4.2. Derivation of return periods from conditional distribution 

Besides the necessity of joint return periods, it could be an essential concern to investigate flood 
events in such a manner that one could highlights the priority of one design variables over another 
design variables therefore, from this prospects numerous demonstration focused towards defining the 
concept of the conditional distributional framework in order to derive the conditional return  
periods (i.e., [3,7,8,31,32]). For example, the conditional return period of flood peak series given 
various percentile value of flood volume or vice-versa or in another words, where the flood peak “P” 
exceeds a threshold “p” given that the volume “V” series exceeds a threshold “v”. The conditional 
distributions based on the different conditions are firstly estimated thereafter the associated 
conditional return periods are derived. 
A. For trivariate case, 

The conditional distribution of peak (P), volume (V) given duration (D ≤ d) in “OR” case is 
given by 

FP,V,D(p, v\D ≤ d) = P(P ≤ p, V ≤ v\D ≤ d) = H(p,v,d)
F(d)

= C(p,v,d)
F(d)

    (23) 
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where, F(d) = univariate marginal CDF of flood variable, D. therefore under this condition, their 
corresponding return period can be estimated as, 

TP,V\D(p, v\D ≤ d) = 1
1−FP,V,D(p,v\D≤d)

= 1

1−C(p,v,d)
F(d)

      (24) 

Similarly, the conditional return period of peak (P), duration (D) given volume (V ≤ v) in “OR” 
case is given by; 

TP,D\V(p, d\V ≤ v) = 1
1−FP,D,V(p,d\V≤v)

= 1

1−C(p,v,d)
F(v)

     (25) 

Similarly, the conditional return period of Volume (V), duration (D) given peak (P ≤ p) in “OR” 
case is given by; 

TV,D\P(v, d\P ≤ p) = 1
1−FV,D,P(v,d\P≤p)

= 1

1−C(p,v,d)
F(p)

     (26) 

Again, the conditional distribution of peak (P) given (volume(V ≤ v), duration(D ≤ d))  is 
given by, 

FP\V,D(p\V ≤ v, D ≤ d) = P(P ≤ p \V ≤ v, D ≤ d) = H(p,v,d)
H(d,v)

= C(p,v,d)
C(d,v)

  (27) 

The corresponding return period can be estimated as; 

TP\DV(p\V ≤ v, D ≤ d) = 1
1−FP,V,D(p\V≤v,D≤d)

= 1

1−C(p,v,d)
c(vd)

    (28) 

where,  C(d, v) =  bivariate copula CDF of flood characteristics duration(D) and volume (V). 
Therefore, using Eq 27, it can be possible to estimate trivariate conditional return period for various 
possible combinations of flood characteristics. 
B. For bivariate distribution case; 

The conditional return periods between flood peak (P) given volume (V ≤ v) (or vice-versa) can 
be obtained from the conditional probability distribution function is given by; 

F(p\V ≤ v) = P(P≤p,V≤v)
P(V≤v)

= HP,V(p,v)
F(v)

= C(p,v)
F(v)

      (29) 

T(P\V)(p\v) = T(p\V≤v) = 1
1−F(p\V≤v)

= F(v)
F(v)−C(F(p),F(v))

    (30) 

Overall, using Eq 29 we can easily estimate return periods of one variable conditioning to 
another variable for any possible combination of flood characteristics. 
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3. Case study 

3.1. Trivariate flood characteristics of Kelantan River basin 

To illustrate the trivariate distribution analysis of flood episodes, the 50 years (1961–2016) of 
daily streamflow discharge records of the Kelantan River basin at Gulliemard Bridge gauge station 
in Malaysia (which are collected from the Drainage and Irrigation Department, Malaysia) are 
employed. The Gulliemard bridge station is located at the downstream of Kelantan river near the 
Kuala Kari region. The geographical location of this river basin is Lat 4°30′ N to 6°15′ N and Long 
101°E to 101°E to 102°45′ E. It is the longest river of Kelantan state, which originating from the 
Tahan mountain range to the South China Sea in the north-eastern part of Peninsular Malaysia. The 
river is about 248 km long with a drain area of 13100 km2 and which occupying more than 85% of 
the state of Kelantan. The estimated runoff is about 500 m3sec−1 and the variations of annual 
precipitations for this region in between 0 mm (dry period)–1750mm (wet or north-eastern 
monsoonal period) [27]. The major land use of this area is agriculture (i.e., paddy, rubber and oil 
palm) for midstream and downstream and forest for the upstream (i.e. near to Gua Musang). 

In this study, we adopted the Annual (Maximum) series or AM approach, also called block 
(annual) maxima to delineate the triplet flood vectors i.e., flood peak discharge flow (P), volume (V) 
and duration (D) from the daily basis stream flow discharge records [9,37]. The characterizations of 
flood peak flow values are based on their maximum streamflow discharge records at an annual scale 
using Eq 31, such that at the targeted site there is only one flood episodes at each year (refer to 
Figure 1) [4,5,37]. Figure 1, illustrating the single-peaked flood hydrograph where both the flood 
duration (D), which are estimated by recognizing the time of rise and fall of the flood hydrograph 
(i.e., points at Qis and Qie in the Figure 1) and volume (V) series are obtained using algorithm which 
is reported in the literature (i.e., [4,5]) (see Eqs 32 and 33). Flood peak discharge often attains their 
maximum value but not mandatory for hydrograph volume and duration series [37]. 

Mathematically, 

 Pi = max�Qij, j = SDi + SDi + 1, … … . . , EDi� = Annual �lood peak series   (31) 

Volume = Vi = Vitotal − ViBase�low = ∑ Qij −ED
j=SDi  (1+Di)(Qis+Qie)

2
    (32) 

Duration = Di = EDi − SDi       (33) 

where, Qij = jth days streamflow magnitude for the ith year; and Qis & Qie = streamflow magnitude 
for the start date “SDi” and end date “EDi”of the flood runoff. 
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Figure 1. A typical hydrograph showing the flood characteristic. 

3.2. Descriptive behaviour and relationship between hydrological characteristics 

In this research methodology, the flood events are characterized based on annual maximum 
discharge series method which is also called partial data series based distribution modelling. Table 1 
representing the descriptive behaviour of individual flood characteristics which indicating that each 
flood characteristics exhibiting positively skewed distribution. Figure 2a,b representing the 
histogram distributions plot and time-series visualization of the annual flood characteristics. 

Table 1. Basic descriptive statistics of the annual flood characteristics. 

Descriptive statistics P (m3/sec) V (m3) D (days) 
Sample Size 50 50 50 
Range 19670 71558 57 
Mean 6078 19122 19.04 
Variance 21,520,084 213,845,800 117.75 
Std. Deviation 4639 14623 10.851 
Coef. of Variation 0.76324 0.76473 0.56993 
Std. Error 656.05 2068.1 1.5346 
Skewness (Pearson) 1.506 1.590 2.210 
Kurtosis (Pearson) 1.883 2.864 6.252 
Min 916.3 3182.3 7 
50% Percentile (Median) 4961 15959 16 
Max 20586 74740 64 
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Figure 2. Visualizing the annual flood characteristics of the Kelantan River Basin at 
Gulliemard Bridge station between the year 1960–2016 in the context of (a) histogram 
distribution plot (b) Time series plot. 

3.2.1. Dependency measures via analytical approach 

The strength of dependency between the targeted flood vectors i.e., flood peak, volume and 
duration series are estimated using the Pearson’s linear correlation (r), and the two non-parametric 

(a) 

(b) 



105 

AIMS Geosciences Volume 6, Issue 1, 92–130. 

dependence measures, also called the rank based correlations statistics such as Kendall’s tau (t) and 
Spearman’s rho (ρ) and their estimated values are listed in Table 2. The Pearson coefficient only 
capture the linear dependencies therefore might be incompatible for heavy-tailed distribution series. 
On other side, Kendall’s tau (t) and Spearman’s rho (ρ) are invariant under monotonic non-linear 
transformations without any assumption of underlying distribution structure which frequently used as 
effective dependence measures for the nonlinear modeling in multivariate statistics also, it possess 
high resistance to outliers [39]. 

Table 2. Correlation matrix of analysed flood attribute pairs. 

Dependence measure Peak-Volume (P-V) Volume-Duration (V-D) Peak-Duration (P-D) 
Pearson’s correlation (r) 0.7387784 −0.1079511 −0.0061526 
Kendall’s correlation(τ)  0.60759499 −0.0225141 −0.0741828 
Spearman’s correlation (ρ) 0.79425677 −0.0343127 −0.094851 

3.2.2. Via graphical investigation 

Graphical based dependency investigation among the flood characteristics are also undertaken 
using the scatter plots, chi plots (i.e., [46]) and Kendall’s plots (i.e., [47]), as illustrated in the Figures 
3–5. Chi-plot is actually a scatter pot of the pairs (λiχi), where it uses the data ranks and λi values is 
a measure of the distance of bivariate random observations (say pivi) from the center of the data sets 
within the range of [−1(negatively correlated), 1(positively correlated)]. Also, the control limits 

χi are the another measuring factor in chi-plot that are placed at χ = ± cp √n⁄  [46]. Thus, in case of 

stronger dependency the random pairs must be outside the control limit of chi-plot otherwise, inside 
the control limit region can be indicated for independence between random pairs. On other side, 
when the point data are largely on the upper side of control limits, which could indicate for 
positively correlated variables and for negatively correlated random variables, the data points are 
distributed in the lower side of the control limits. Similarly, the Kendall’s plot are analogous to 
quantile-quantile (Q-Q) plot such that, deviation of random pairs from the main diagonal of K-plot is 
the indication of inter-dependence otherwise could be revealing for independence when the pot tends 
to be linear [21,47]. 
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Figure 3. Scatterplot of multidimensional flood characteristics. 

 

Figure 4. Graphical interpretation to investigate strength of dependency among flood 
characteristics using Chi-plot between P-V, P-D and V-D. 
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Figure 5. Kendall’s plot (or K-plot) of flood characteristics i.e., between P-V (shows 
high and positive correlation structure), P-D (shows negatively correlated random pairs 
with weak dependency exhibited), V-D ( negatively correlated random pairs). 

3.3. Estimating marginal distribution of flood characteristics 

3.3.1. Empirical probabilities 

The empirical nonexceedance probabilities are estimated for the each individual flood 
characteristics by using commonly used the Gringorten based position-plotting formula [7,48], which 
usually compared with CDF of the fitted distributions for pointing the gaps and deviations between 
empirical and fitted samples, as given below, 

Empirical Cumulative frequency =  P(K ≤ k) = (k − 0.44) (N + 0.12)⁄   (34) 

where N = length of the sample (i.e., the total number of flood observations); and k = kth smallest 
observations where the dataset is arranged in an ascending order. 

3.3.2. Univariate flood marginal distributions 

Selecting the most justifiable univariate probability distribution functions for defining flood 
marginal distribution is often a mandatory pre-requisite demands before the establishment of flood 
dependence structure. Several models often would fit the data equally well but, each would give 
different estimates of a given quantile especially, in the tails of the distribution and which is solely 
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based on the goodness-of-fit procedure to visualize the compatibility of the fitted distributions [49]. 
A distinguish varieties of univariate parametric family-based probability distribution are selected and 
introduced as a possible marginal distribution. The parameter of each distributions is first estimated 
using maximum likelihood estimation (MLE) (i.e., [50]), method of moments (MOM) (i.e., [1]), least 
square method (LS), and L statistics-based method of L-moments (i.e., [51]) and then the best fitted 
distributions are selected for each individual flood characteristics using different goodness-of-fit test 
statistics. All the univariate distribution fitting procedures are carried out using the  
Easyfit-distribution fitting software. 

4. Results and discussions 

4.1. Modeling of univariate marginal distribution 

A distinct variety of univariate parametric families-based probability distributions (i.e.,  
1-parameter, 2-parameters, 3-parameters & 4-parameters) are introduced as a candidate models as 
listed in the Table 3 and their estimated parameters values are listed in the Table 4. Fitness level of 
each fitted distributions are examined through different analytical based goodness-of-fit measures 
such as based on distance criteria statistics Kolmogorov-Smirnov (or K-S) test and Anderson-Darling 
(or A-D) test (i.e., [37,52]), based on information criteria statistics such as Akaike Information 
criteria (or AIC) (i.e., [53]), Schwartz’s Bayesian Information criteria (or BIC) (i.e., [54]) and  
Hannan-Quinn Information criteria (HQIC) (i.e., [55]), and also based on error indices statistics such 
as Mean square error (or MSE) and Root mean square error (or RMSE) (i.e., [56]). Table 5a–c listed 
the performance level of different univariate distributions for fitting the marginal distribution for the 
flood characteristics. Investigation results reveals that the Lognormal-2P distribution are much 
satisfactory for flood peak flow series, the Johnson SB (4P) for volume and the Gamma(3P) 
distribution for duration series because these distribution possess the minimum values of K-S, A-D, 
AIC, BIC HQC, MSE and RMSE test statistics in compare with their peer candidates function for 
each individual flood characteristics. 

4.2. Bivariate modeling using the 2-dimensional copulas 

Before initiating the fitting procedure of two-dimensional copulas function for establishing 
bivariate joint relationship among the flood characteristics, we investigated the level of dependency 
through both analytical and graphical procedure. The Pearson’s linear correlation (r), Kendall’s tau (t) 
and Spearman’s rho (ρ) are used to measure the strength of dependency (see Table 2). Analytical 
investigation reveals that flood peak and volume pair exhibited strong positive correlation but the 
correlation structure between flood peak-duration, and flood volume-duration pair are very weak and 
negatively correlated. On the otherside, the graphical illustrations i.e., based on scatter plot (see, 
Figure 3), chi-plots (see, Figure 4) and Kendall’s plots (see, Figure 5) are also in support of the 
analytical approach. Based on scatter plot, it clearly indicating the existence of positive and strong 
dependency between peak-volume pairs because the increased density of points are located near the 
diagonal region (i.e., close to 45° angle) but weak and negative dependencies are exhibited between 
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flood volume-duration and flood peak-duration pairs. Similarly, based on chi-plot, strong deviation 
from the control limit is observed for flood peak-volume pairs (indicates for high and positive 
correlation) but most of the data samples are within the region of control limit for peak-duration and 
volume-duration pairs. Similarly based on the Kendall’s plot, peak-volume data pairs are much 
deviated from the main diagonal (high and positive correlation) but much closer to main diagonal for 
peak-duration and volume-duration pairs (low and negative correlation). 

Referred to Table 6, the mono-parametric Archimedean copulas such as the Clayton copula, 
Gumbel copula, Frank copula, and Joe copula and also, one Elliptical copula such as the Gaussian or 
normal copula are introduced and tested for establishing bivariate joint distribution of flood 
characteristics. Actually, the Gumbel-Hougaard, Clayton and Joe copula cannot be used for 
negatively dependent flood characteristics (i.e., only applicable to model positively correlated 
random variables). The copulas dependence parameter are estimated using maximum pseudo  
log-likelihood (or MPL) estimation procedure, using Eqs 12 and 13 and their estimated values are 
listed in Table 7. Identification and selection of most parsimonious copulas for each flood attribute 
pairs are performed using the Cramer-von Mises distance statistics with parametric bootstrap 
procedure, using Eq 14. The test statistics “Sn” and its associated p-value have been computed from 
1000 and 500 simulated random samples by the mean of parametric bootstrap procedure and their 
values are listed in the Table 6. Investigation reveals that the Gaussian copula exhibited minimum 
“Sn” statistics and highest p-value for flood peak-volume pair and thus identified as most appropriate 
for this pair. On other side, the Frank copula is identified as the most justifiable bivariate model for 
capturing the joint structure of both flood peak-duration and volume-duration pairs, referred to the 
same Table 7. Figures 6–8 represents the joint probability density function (JPDF) and joint 
cumulative distribution function (JCDF) (i.e., scatterplot and surface plot) derived from the  
best-fitted bivariate copulas for flood peak-volume, volume-duration and peak-duration pairs. 
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Table 3. The probability density functions (PDF) and vector of unknown statistical parameters of different univariate functions. 

Parametric distribution functions Probability density function (PDF) Remarks 
Frechet (2P) f(x) =  

α
β
�
β
x
�
α+1

e−�
β
x�

α

  α > 0 (shape),β > 0(scale), such that, γ ≡ 0 yield 2-parameter Frechet functions 

Gamma (2P) & (3P) f(x) =  
(x − γ)α−1

βαΓ(α)
e
−(x−γ)

β  & 𝑓(x)

=  
xα−1

βαΓ(α)
e
−x
β   

α > 0,𝛽 > 0, 𝛾 > 0 —shape, scale and locations parameter such that γ ≡ 0 yield 2-
parameter gamma structure 

GEV(3P) f(x) =
1
σ

e−(1+kz)−1 k⁄ (1+kz)−1−1 k ⁄ for k ≠ 0  
1
σ

e�−1−e(−z)� for k = 0  

k,σ, μ signifies for shape, scale & their location parameter, such that, σ > 0 & z ≡ (x−μ)
σ

 

Domain: 1 + k (x − μ) σ⁄  for k ≠ 0 & −∞ < 𝑥 < +∞ 𝑓𝑜𝑟 𝑘 = 0 

Gen. Gamma (3P) f(x) =
k(x)kα−1

βkαΓ(α)
e−(x β⁄ )k   Domain:y ≤ x < +∞;𝑘 > 0 & 𝛼 > 0 (shape),β > 0(𝑠𝑐𝑎𝑙𝑒), 𝛾 > 0(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)  

Inv. Gaussian (2P) 
f(x) = � λ

2πx3
e
−λ(x−μ)2
2μ2(x)   

λ > 0,  𝜇 > 0 (𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟,  
γ(location parameter) for γ < 𝑥 < +∞ 

Johnson SB(4P) f(x) =  δ
λ√2πz(1−z)

e−0.5�γ+δ ln z
1−z�

2

  Domain: ξ ≤ x ≤ ξ + λ 
γ,  δ > 0 (shape);  λ > 0 (scale);  ξ location parameter) 

Log-Gamma (2P) f(x) = (ln x)α−1

xβαΓ(α)
e−�

ln x
β �  Domain: 0 < 𝑥 < +∞ 

α > 0,𝛽 > 0 (𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)  
Log-Logistic (2P)  f(x) =  

α
β
�

x
β
�
α−1

�1 + �
x
β
�
α
�
−2

 Domain: α > 0 (shape);  β > 0(scale) 

Lognormal (3P) & (2P) 
f(x) =  

e−0.5�ln(x−γ)− μ
σ �

2

(x − γ)σ√2π
 & 𝑓(x)

=  
e−0.5�ln(x)− μ

σ �
2

(x)σ√2π
  

γ < 𝑥 < +∞ ; σ > 0 (shape parameter); 
γ (location parameter);  μ (scale parameter) 

 

Weibull (2P) f(x) =  α
β
�x
β
�
α−1

e−�
x
β�

α

  Domain: α > 0 (shape),β > 0 (scale)  



111 

AIMS Geosciences Volume 6, Issue 1, 92–130.  

Table 4. Estimated parameters of fitted univariate probability distributions. 

Parametric Functions Flood Peak (P) Flood Volume (V) Flood Durations (D) 
Frechet (2P) a = 1.576, b = 3207.5 a = 1.5703, b = 10017.0 a = 2.6001, b = 13.304 
Gamma (2P) a = 1.7166, b = 3540.6 a = 1.71, b = 11183.0 a = 3.0786, b = 6.1845 
Gamma(3P) a = 1.2106, b = 4290, g = 884.47 a = 1.0848, b = 14723.0, g = 3150.8 a = 1.4696, b = 8.3319, g = 6.7958 
GEV(3P) k = 0.22596, s = 2683.6, m = 3765.6 k = 0.20446, s = 8736.0, m = 11890.0 k = 0.20682, s = 6.0766, m = 13.987 
Log-Gamma(2P) a = 129.15, b = 0.06544 a = 164.32, b = 0.05839 a = 35.165, b = 0.08037 
Log-Logistic (2P) a = 2.2801, b = 4541.7 a = 2.2731, b = 14202.0 a = 3.6928, b = 16.426 
Log-Normal (2P) s = 0.7362, m = 8.4513 s = 0.74093, m = 9.5943 s = 0.47178, m = 2.826 
Log-Normal (3P) s = 0.75437, m = 8.4267, g = 85.951 s = 0.8237, m = 9.4858, g = 1115.2 s = 0.69194, m = 2.413, g = 4.8982 
Weibull (2P) a = 1.599, b = 6398.7 a = 1.5993, b = 20008.0 a = 2.5437, b = 20.375 
Inverse. Gaussian (2P) l = 10434.0, m = 6078.0 l = 32699.0, m = 19122.0 l = 58.617, m = 19.04 
Johnson SB (4P) g = 1.5161, d = 0.74495, 

l = 27319.0, x = 1304.2 
g = 2.2027, d = 1.0357, l = 1.3052E+5, x = 961.8 g = 2.5314, d = 0.92215, l = 118.81, x = 8.2791 

Gen. Gamma (3P) k = 1.054, a = 1.8127, b = 3540.6 k = 1.0521, a = 1.8019, b = 11183.0 k = 1.0877, a = 3.4664, b = 6.1845 
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Table 5a. Fitness measures of univariate distributions Based on K-S and A-D test distance statistics. 

 

 

 

(a) Peak Volume Durations 
Functions p-value KSn  

(d-max) 
ADn 
(d-max) 

p-value KSn  
(d-max) 

ADn  
(d-max) 

p-value KSn  
(d-max) 

ADn  
(d-max) 

Frechet (2P) 0.32428 0.13147 1.0751 0.28744 0.1359 1.1173 0.36268 0.1272 0.58456 
GEV(3P) 0.99655 0.05451 0.21667 0.99931 0.04897 0.24945 0.82259 0.086 0.35244 
Log-Gamma (2P) 0.97557 0.06486 0.22646 0.95247 0.07004 0.26683 0.85726 0.08255 0.3451 
Log-Logistic (2P) 0.96909 0.06655 0.24216 0.88242 0.07982 0.32827 0.73162 0.09416 0.49615 
Gamma (2P) 0.81376 0.08684 0.44712 0.94562 0.07126 0.34627 0.54764 0.10968 1.1617 
Gamma (3P) * 0.8802 0.08007 0.26953 0.98701 0.06089 0.21109 0.89254 0.07865 0.37708 
Log-Normal (2P) * 0.9977 0.05293 0.19412 0.98539 0.06157 0.2338 0.60127 0.10511 0.4602 
Log-Normal (3p) 0.99466 0.05638 0.20029 0.93057 0.07365 0.28195 0.79396 0.08867 0.33032 
Weibull (2P) 0.81311 0.0869 0.73212 0.89172 0.07875 0.63575 0.23928 0.14235 1.5472 
Inv. Gaussian (2P) 0.98175 0.06293 0.38095 0.81919 0.08633 0.48954 0.87056 0.08114 0.60496 
Gen.Gamma (3P) 0.66896 0.09944 0.45939 0.89941 0.07782 0.36811 0.28097 0.13672 0.91168 
Johnson SB (4P) * 0.84788 0.84788 14.822 0.99811 0.05222 0.17314 0.56249 0.1084 11.874 

Notes. K-S test stands for Kolmogorov-Smirnov test; A-D test stands for Anderson-Darling test. 
*, indicates that Lognormal (2P), Johnson SB (4P) and Gamma (3P) distribution exhibited minimum test statistics i.e., K-S and A-D values for describing flood peak, volume and 
duration series. 
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Table 5b. Fitness measures of univariate distributions based on Information criteria statistics such as AIC, BIC & HQC. 

(b) Peak Volume Duration 
Functions AIC BIC HQIC AIC BIC HQIC AIC BIC HQIC 
Frechet (2P) −284.118 −280.294 −282.66 −274.569 −270.745 −273.11 −307.04 −303.22 −305.588 
GEV(3P) −374.335 −368.599 −372.15 −268.985 −263.249 −266.8 −336.32 −330.583 −334.135 
Log-Gamma (2P) −370.146 −366.322 −368.69 −359.914 −356.09 −358.46 −340.53 −336.709 −339.077 
Log-Logistic (2P) −360.392 −356.568 −358.94 −294.927 −291.103 −293.47 −321.32 −317.493 −319.861 
Gamma (2P) −335.861 −332.037 −334.4 −360.025 −356.201 −358.57 −260.55 −256.722 −259.089 
Gamma (3P) * −216.301 −210.565 −214.12 −210.107 −204.371 −207.92 −343.62 −337.88 −341.438 
Log-Normal (2P) * −379.344 −375.52 −377.89 −371.028 −367.204 −369.57 −327.46 −323.633 −326.001 
Log-Normal (3p) −285.412 −279.676 −283.23 −352.906 −347.17 −350.72 −340.76 −335.026 −338.578 
Weibull (2P) −329.681 −325.857 −328.23 −342.868 −339.044 −341.41 −292.91 −289.085 −291.453 
Inv. Gaussian (2P) −362.489 −358.665 −361.03 −344.722 −340.898 −343.27 −325.76 −321.938 −324.306 
Gen.Gamma (3P) −321.553 −315.817 −319.37 −338.918 −333.182 −336.73 −290.95 −285.21 −291.856 
Johnson SB(4P) * −340.899 −333.251 −337.99 −381.821 −374.173 −378.91 −223.65 −216.006 −220.742 

Notes. AIC stands for Akaike information criteria; BIC stands for Bayesian information criteria; HQIC stands for Hannan-Quinn information criteria. 
*, indicates that Lognormal (2P), Johnson SB (4P) and Gamma (3P) distribution exhibited minimum values of AIC, BIC and HQC test statistics for describing flood peak, volume 
and duration, thus could be further indicated for the better performance. 
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Table 5c. Fitness measures of univariate distributions based on error indices statistics such as MSE and RMSE. 

(c) Peak Volume Duration 
Functions MSE RMSE MSE RMSE MSE RMSE 
Frechet (2P) 0.00314 0.05607 0.00380 0.06168 0.00199 0.04458 
GEV(3P) 0.00049 0.02229 0.00409 0.06394 0.00106 0.03261 
Log-Gamma (2P) 0.00056 0.02372 0.00069 0.02627 0.0010172 0.031894 
Log-Logistic (2P) 0.00068 0.02615 0.00253 0.05032 0.00149 0.03865 
Gamma (2P) 0.00111 0.03341 0.00068 0.02624 0.005037 0.070973 
Gamma (3P)* 0.01173 0.10882 0.01327 0.11520 0.000918 0.030312 
Log-Normal (2P)* 0.00046 0.02163 0.00055 0.02351 0.001321 0.03635 
Log-Normal (3p) 0.00294 0.05425 0.00076 0.02762 0.000973 0.031191 
Weibull (2P) 0.00126 0.03555 0.00097 0.03115 0.002637 0.05135 
Inv. Gaussian (2P) 0.00066 0.02561 0.00094 0.03059 0.00137 0.03697 
Gen.Gamma (3P) 0.00014 0.03780 0.00101 0.03177 0.00248 0.04977 
Johnson SB* (4P) 0.00093 0.03053 0.00041 0.02028 0.00972 0.09861 

Notes. MSE stands for Mean Square Error; RMSE stands for Root Mean Square Error. 

*, indicates that Lognormal (2P), Johnson SB (4P) and Gamma (3P) distribution exhibited minimum values of MSE and RMSE test statistics for describing flood peak, volume and 

duration, thus could be further indicated for the better performance. 
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Table 6. Mathematical expressions for bivariate Archimedean copula families and their associated properties. 

Copula 
family 

Bivariate copula 𝐶𝜃(𝑢, 𝑣) Parameter range (𝜃) Generating function (or generator) 𝜙(𝑡) Relation of Kendall’s 𝜏 𝑎𝑛𝑑 𝜃 (𝜏𝜃) 

Clayton �𝑚𝑎𝑥�𝑢−𝜃 + 𝑣−𝜃 − 1; 0��
−1

𝜃�  0 ≤ 𝜃 < ∞ 1
𝜃
�𝑡−𝜃 − 1� 

𝜃
𝜃 + 2

 

Frank −1
𝜃

ln�1 +
�𝑒−𝜃𝑢 − 1��𝑒−𝜃𝑣 − 1�
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Table 7. Estimating the value of parameter θ of 2-dimensional copulas function and their corresponding goodness-of-fit statistics for flood 
characteristics. 

For (P-V) pair N = 1000 (No. of bootstrap 
sampling) 

N = 500 (No. of bootstrap 
sampling) 

 

Copula family Parameter 
Estimates θ� 

Standard Error 
SE 

Maximized log 
likelihood 

Sn (p-value)  
Sn 

Sn (p-value)  
Sn 

Kendall’s tau (𝜏 ∗) estimated 
from fitted copula 

Gaussian* 0.8333772 0.052 26.98 0.013444 0.9356 0.013443 0.9411 0.6271915 

Clayton 2.600312 0.716 26.57 0.035144 0.1923 0.035144 0.1806 0.5652469 

Gumbel-Hougaard (GH) 2.311711 0.331 22.21 0.027751 0.2063 0.027751 0.2605 0.56742 

Frank 7.878869 1.829 23.98 0.02383 0.464 0.02383 0.4361 0.5980901 

Joe 2.553838 0.372 16.26 0.083346 0.0004995 0.083346 0.002498 0.4572527 

Note: Bold letter indicated via * indicates that the Gaussian copula exhibiting minimum Sn value, which means performance for P-V is much consistence that the other copula 
functions also, (𝜏 ∗) in the last column of above table indicated the estimated kendall’s tau value from derived copulas fitted to observed random series 

For (P-D) pair    

Gaussian −0.1276312 0.052 0.3041 0.032132 0.486 0.032132 0.48 −0.08147478 

Clayton NA NA NA NA NA NA NA NA 

Gumbel-Hougaard (GH) NA NA NA NA NA NA NA NA 

Frank* −0.6942 0.777 0.262 0.031215 0.4001 0.031215 0.3762 −0.07676464 

Joe NA NA NA NA NA NA NA NA 

Note: Bold letter indicated via * denotes that the performance of Frank copula is most satisfactory that other copulas. NA denotes that for Gumbel-Hougaard, Clayton and Joe 
copulas can’t be used for negatively dependent data [i.e., only positively correlated random variables can be simulated (i.e., Kendall’s tau > 0)]. 

Continued on next page 
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Copula family Parameter Estimates 
θ� 

Standard 
Error SE 

Maximized 
log likelihood 

Sn (p-value)  
Sn 

Sn (p-value)  
Sn 

Kendall’s tau (𝜏 ∗) estimated 
from fitted copula 

 
 
 
 

For (V-D) pair N = 1000 (No. of 
bootstrap sampling) 

N = 500 (No. of bootstrap 
sampling) 

 

Gaussian −0.05098 0.163 0.0478 0.034466 0.3132 0.034466 0.3224 −0.03246895 

Frank* −0.225 0.86 0.03082 0.032761 0.2922 0.032761 0.3084 −0.02498735 

Clayton NA NA NA NA NA NA NA NA 

Gumbel-Hougaard (GH) NA NA NA NA NA NA NA NA 

Joe NA NA NA NA NA NA NA NA 

[Notes: NA denotes that for negatively dependent data the above following copulas can’t be used, which is only applicable for positively correlated random variables. Bold letter 
with * indicates that the performance of Frank copula is much satisfactory than other functions.] 
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Figure 6. Joint probability density function (JPDF) and joint cumulative distribution 
function (JCDF) of flood peak-volume using best-fitted two-dimensional Gaussian 
copula. 
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Figure 7. Joint probability density function (JPDF) and joint cumulative distribution 
function (JCDF) of flood peak-duration using Frank copula distribution. 
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Figure 8. Joint probability density function (JPDF) and joint cumulative distribution 
function (JCDF) of flood volume and duration series using Frank copula distribution. 

4.3. Trivariate modeling using the 3-dimensional copulas 

The Archimedean class copula called the Frank copula and the elliptical copula called the 
Gaussian copula are incorporated (see Eqs 8 and 11) and their adequacy for establishing the trivariate 
joint distribution among flood characteristics flood peak flow, volume and duration series are 
investigated. The dependence parameter of trivariate copulas are estimated using the maximum 
pseudo log-likelihood (or MPL) estimation procedure of Eqs 12 and 13 and their estimated values 
are listed in the Table 8. To analytically validate and identify the best-fitted copula for describing 
trivariate joint distribution of flood characteristics, the Cramer-von Mises distance statistics are 
employed where the approximation of p-values for the test statistics are obtained by means of a 
faster multiplier bootstrapping approach (i.e., [42,43]) followed by Eq 15. For this purpose both the 
test statistics “Sn” and its associated p-values and also, the test statistics “Rn” (i.e., [57]) and its 
associated p-value has been computed from 1000 and 500 simulated random samples by the mean of 
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faster multiplier approach and their estimated values are listed in Table 8. Result reveals that the 
Gaussian copula is recognized as most consistence copula for establishing the trivariate joint 
distribution of flood characteristics, which exhibited minimum “Sn” test statistics (i.e., “Sn” = 
0.082819) their p-value (i.e., p-value = 0.01748, for N = 1000 bootstrap samples and p-value = 
0.01098, for N = 500 random bootstrap samples) than the Frank copula test statistics. Also, for the 
Gaussian copula the “Rn” test statistics is less than the Frank copula statistics (i.e., “Rn” = 1.2742) 
and their p-value (i.e., p-value = 0.1294, for N = 1000 bootstrap samples and p-value = 0.1307, for  
N = 500 random bootstrap samples) such that based on both test statistics it is concluded that the 
estimated p-values are exceeding the specified significance level (i. e. ,α = 0.05) , and which is 
higher than the Frank copulas, referred to same Table 8. 

4.4. Probabilistic analysis of flood characteristics 

4.4.1. Via joint return periods 

In order to analyse the critical hydrologic behaviour of flood episodes for tackling the several 
basin perspective water-related issues the multivariate frequency analysis is much comprehensive 
approach. The univariate return periods are derived from the best-fitted CDFs for each flood 
characteristics i.e., Lognormal-2P distribution for flood peak, Johnson SB-4P distribution for volume 
and Gamma-3P distribution for duration series using Eq 18 and their estimated values are listed in 
Table 9. It is already pointed in the section 1 that estimation of univariate return period as a design 
criterion would be problematic and might attributes for underestimations or overestimations of 
hydrologic risk. Therefore, the bivariate joint CDFs which are derived from the best-fitted copulas 
for each flood attribute pairs are employed to derived primary return period for both the “OR” and 
“AND” case using Eqs 20, 21 and their estimated values are listed in Table 10. It is revealed that the 
AND-joint cases produce higher return period than the OR-joint cases for different possible 
combination of flood characteristics i.e., TAND

PV > TOR
PV or TAND

VD > TOR
VD or TAND

PD > TOR
PD. In 

other words, the occurrence of bivariate flood characteristics simultaneously is less frequent in 
“AND” case in compare with “OR” case of joint return periods (i.e., more frequent). For example, a 
flood event with peak flow, P = 10463.8 m3s−1, volume, V = 17148 m3, and duration, D = 29 days, 
then OR-joint return period between P-V is, TOR

PV = 2.2037 years, between P-D, TOR
PD = 3.7524779 

years and between V-D pair is, TOR
VD = 1.94310711 years. On otherside, joint return for “AND” case 

for same flood combination is, between P-V, TAND
PV = 7.5013958 years, between P-D, TAND

PD 
66.4233248 years and between V-D pair, TAND

VD = 17.1879396 years, (see Table 10). Also, the 
univariate return periods derived from flood peak, T(P) and volume, T(V) is higher than that derived 
from their joint distribution for “OR” cases but produces low return periods than “AND” joint cases 
i.e., T(P) >T(V) > TOR

PV and T(P) < T(V) < TAND
PV . Similarly, univariate return periods derived 

from peak, T(P) and duration, T(D) as well as volume, T(V) and duration T(V) is higher than the 
joint return periods for “OR” cases for the same flood attributes but lower return periods for “AND” 
joint cases i.e., T(V) > T(D) > TOR

VD and T(P) > T(D) > TOR
PD also, T(V) < T(D) < TAND

VD and T(P) 
< T(D) < TAND

PD. 
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Actually, the estimation of trivariate joint and conditional distribution and their associated 
return periods often required at first to determine bivariate joint copula distribution i.e., 
C(p, v), C(v, d)or C(p, d) of flood characteristics for various possible combinations (see Eqs 19, 27 
& 28). At first, the trivariate return periods for the conditions (1) when all the flood characteristics 
(say, P ≥ p, V ≥ v, and D ≥ d) simultaneously exceed certain threshold (also called “AND” primary 
joint return period) and (2) probability either any of the flood variable (say, P ≥ p, V ≥ v, and D ≥ d) 
exceed given threshold (also called “OR” primary joint return period) ) during a flood events are 
examined using Eqs 19 and 21 and their estimated values are listed in Table 11. For example, the 
flood event having peak, P = 10463.8 m3s−1, volume, V = 17148 m3 and duration, D = 29 (days), in 
joint return period for “OR” and “AND” cases are TAND

PVD = 34.8401 years and TOR
PVD = 1.87605 

years. Similarly, for P = 18875.4 m3s−1, V = 31945.6 m3and D = 33 (days), TAND
PVD = 547.92 years 

and TOR
PVD = 4.12544 years. It is also clearly revealed from Table 10 that for all the cases 

considering trivariate flood characteristics (i.e., P, V, D) the joint return periods in “AND” case is 
greater than “OR” case i.e., TAND

PVD > TOR
PVD. In other words, we can say that the occurrence of 

trivariate flood characteristics simultaneously is less frequent in “AND” case in compare with “OR” 
case of joint return periods (i.e., more frequent). 

4.4.2. Via conditional joint return periods 

The joint return period of two flood characteristics conditional on third flood characteristic, i.e., 
conditional distribution of peak (P), volume (V) given duration (D ≤ d), T(p, v\D ≤ d), T(p, d\V ≤
v) and T(v, d\P ≤ p) are estimated using Eqs 24–26 and their estimated values are listed in Table 11. 
For example, a flood episode characterized with peak flow, P=10463.8 m3s−1, volume, V= 17148 m3 
and duration, D = 29 (days), using Eq 24–26, then joint return period of, “P” and “V” conditional to 
“D” is T(p, v\D ≤ d) = 2.19874 years, T(p, d\V ≤ v) =5.50286 years and T(p, d\V ≤ v) = 
2.1822555 years. Similarly, for P = 20586.4 m3s−1, V = 43273.2 m3, D = 7 (days) the conditional 
return periods are T(p, v\D ≤ d) = 83.650777 years, T(p, d\V ≤ v) = 1.0034823 years and T(v, d\
P ≤ p) = 1.0032946 years. On the other side, the joint return periods of one flood characteristics 
conditional on other two flood characteristics i.e., TP\DV(p\V ≤ v, D ≤ d) , TV\PD(v\D ≤ d, P ≤ p), 
TD\PV(d\V ≤ v, P ≤ p) and are estimated using Eq 27. For example, a flood event with P = 10463.8 
m3s−1, V = 17148 m3 and D =29 (days), then the conditional return period of peak (P) given 
(volume(V ≤ v), duration(D ≤ d))  is TP\DV(p\V ≤ v, D ≤ d)  = 26.386055 years, TV\PD(v\D ≤
d, P ≤ p) = 2.7519296 years and TD\PV(d\V ≤ v, P ≤ p) = 5.718863 years. Similarly, for the flood 
events (P = 18875.4 m3s−1, V = 31945.6 m3 and D = 33 (days)), TP\DV(p\V ≤ v, D ≤ d) = 404.30955, 
years, TV\PD(v\D ≤ d, P ≤ p)  = 7.25924 years and TD\PV(d\V ≤ v, P ≤ p)  = 10.4372045 years. 
Similarly, for the flood episode (P = 4603 m3s−1, V=25999 m3 and D = 25 (days)), TP\DV(p\V ≤
v, D ≤ d) = 2.44463, years, TV\PD(v\D ≤ d, P ≤ p) = 19.3565 years and TD\PV(d\V ≤ v, P ≤ p) = 
3.7111744 years. 
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Table 8. Values of parameter “𝜃” of 3-dimensional copulas function and their corresponding goodness-of-fit statistics. 

 N = 1000 (No. of 
bootstrap sampling) 

N = 500 (No. of bootstrap 
sampling) 

N = 1000 (No. of bootstrap 
sampling) 

N = 500 (No. of bootstrap 
sampling) 

Copula family Parameter 
Estimates 𝜃  ̂

Standard Error 
SE 

Rn p-value Rn p-value Sn p-value Sn p-value 

Gaussian 0.2595 0.067 1.2742 0.1294 1.2743 0.1307 0.082819 0.01748 0.082831 0.01098 

Frank 1.347 0.464 2.3196 0.1384 2.3196 0.1427 0.10173 0.003497 0.10173 0.01098 

Table 9. Univariate return period derived from best-fitted marginal distribution function of flood characteristics. 

P (m3s−1) V (m3) D (days) T(P) T(V) T(D) 
2597 13729.8 20 1.26865844 1.85501224 2.8085943 
10436.8 17148 29 7.24346213 2.32921063 6.96912677 
20586.4 43273.2 7 45.2067321 13.394053 1.0032606 
11192.4 21994.2 30 8.46033619 3.21967868 7.73634535 
18875.4 31945.6 33 34.3443917 6.24648635 10.6134579 
15103.7 32864.7 8 17.9245588 6.64098818 1.04288336 
11324.5 30381.1 15 8.69006457 5.62841222 1.76270469 
8028.4 53185.7 16 4.31295471 26.8384326 1.92808252 
5435.5 10887.75 12 2.38328056 1.53997782 1.36798906 
7786 18911.1 9 4.0857416 2.6204764 1.10282765 

 
 
 
 
 



124 

AIMS Geosciences Volume 6, Issue 1, 92–130.  

Table 10. Bivariate joint return periods of flood characteristics derived from the joint cumulative function of best-fitted  
2-dimensional copula function. 

P (m3s−1) V (m3) D (days) 𝑇𝑃𝑉𝐴𝑁𝐷(years) 𝑇𝑃𝑉𝑂𝑅(years) 𝑇𝑉𝐷𝐴𝑁𝐷 (years) 𝑇𝑉𝐷𝑂𝑅(years) 𝑇𝑃𝐷𝐴𝑁𝐷(years) 𝑇𝑃𝐷𝑂𝑅(years) 
2597 13729.8 20 1.8956685 1.2503190 5.39125825 1.40915619 3.74255457 1.14013769 
10436.8 17148 29 7.5013958 2.3037387 17.1879396 1.94310711 66.4233248 3.7524779 
20586.4 43273.2 7 55.800594 12.680757 13.4420881 1.00299213 45.4055525 1.00316311 
11192.4 21994.2 30 9.1821312 3.1261582 26.7236536 2.48490441 87.0822263 4.23773322 
2495.4 16867.15 26 2.3047989 1.2388910 12.3189158 1.8119749 6.74531088 1.17517145 
18875.4 31945.6 33 36.917886 6.1682820 72.5134819 4.15766772 505.997238 8.2399106 
11324.5 30381.1 15 11.323725 4.8915594 10.3391302 1.54259078 17.6820031 1.59787989 
10746.3 37576 11 13.632454 6.0245175 11.7799366 1.22726507 10.4717863 1.21380131 
11612.5 43375.9 15 19.311904 7.636906 24.91585169 1.663022131 18.76059677 1.606189886 

Table 11. Trivariate joint and conditional return periods. 

P (m3s−1) V (m3) D 
(days) 

𝑇𝑃𝑉𝐷𝑂𝑅 (years) 𝑇𝑃𝑉𝐷𝐴𝑁𝐷(years) 𝑇(𝑝, 𝑣\𝐷 ≤
𝑑) (years) 

𝑇(𝑝,𝑑\𝑉 ≤
𝑣)(years) 

𝑇(𝑣,𝑑\𝑃 ≤
𝑝) (years) 

𝑇𝑃\𝐷𝑉(𝑝\𝑉 ≤
𝑣,𝐷 ≤ 𝑑) 
(years) 

𝑇𝑉\𝑃𝐷(𝑣\𝐷 ≤
𝑑,𝑃 ≤ 𝑝) (years) 

𝑇𝐷\𝑃𝑉(𝑑\𝑉 ≤
𝑣,𝑃 ≤ 𝑝) 
(years) 

2597 13729.8 20 1.116254 5.189694921 1.1929357 1.29191472 1.96774417 1.5593051 6.5498644 2.0842240 
10436.8 17148 29 1.876052 34.84014218 2.19874894 5.50286046 2.18225548 26.386055 2.7519296 5.7188639 
11192.4 21994.2 30 2.328124 34.13868707 2.89985406 5.79627005 2.83235363 22.050297 3.9473251 6.2026968 
5052.6 19073.8 64 1.603469 9.263537116 1.60648426 2.52890799 3.28159236 2.5417539 3.3087039 4.4579073 
2495.4 16867.15 26 1.145157 10.01044791 1.18705747 1.29087479 2.81989688 1.3944448 6.6836202 2.9185839 
18875.4 31945.6 33 4.125447 547.9258783 6.11278641 10.2044853 4.55212964 404.30955 7.2592403 10.437204 
3755 16635.4 21 1.2552974 6.916888717 1.42940401 1.57722517 2.13667663 2.2197248 6.431746 2.36817306 
3007.3 17604.1 20 1.181136401 7.111431617 1.31259713 1.35648649 2.27223994 1.7095796 22.76157 2.36767201 
9929.3 9667.4 56 1.372616776 40.52366099 1.37654485 11.1918456 1.47211228 12.247682 1.4777196 11.3114697 
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Table 12. Bivariate conditional return periods of flood characteristics derived from conditional joint distribution of best-fitted copulas function. 

P (m3s−1) V (m3) D (days) 𝑇(𝑃/𝑉 ≤ 𝑣) 
(years) 

𝑇(𝑉/𝑃 ≤ 𝑝) 
(years) 

𝑇(𝑉/𝐷 ≤ 𝑑) (years) 𝑇(𝐷/𝑉 ≤ 𝑣) (years) 𝑇(𝑃/𝐷 ≤ 𝑑) 
(years) 

𝑇(𝐷/𝑃 ≤ 𝑝) 
(years) 

2597 13729.8 20 1.76790171 18.3162609 1.82115367 2.70232014 1.23590059 2.38333189 
10436.8 17148 29 120.216827 2.9117633 2.3077213 6.68939406 6.96346327 6.71113133 
20586.4 43273.2 7 220.337776 17.2346824 12.1815919 1.00323433 33.5532361 1.0032349 
11192.4 21994.2 30 74.1984419 4.3722186 3.18753928 7.50664468 8.15947394 7.48706776 
2495.4 16867.15 26 1.52155663 54.8218787 2.25774928 4.91627523 1.22745507 4.148129 
18875.4 31945.6 33 413.811146 7.29971652 6.19127366 10.4428152 33.3736912 10.525197 
11324.5 30381.1 15 30.725477 9.90295038 5.34514704 1.74744446 7.3939753 1.73258314 
10746.3 37576 11 15.856349 23.8523655 8.41910424 1.26267802 6.18093928 1.25367329 
11612.5 43375.9 15 16.2994709 39.8692511 12.72433967 1.756267201 7.82704575 1.73424829 
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The bivariate conditional return periods for different possible combination of flood 
characteristics are also estimated using Eq 30 and their values are listed in the same Table 12. For 
example, a flood episode characterized with flood peak, P = 10436.8 m3s−1 and volume, V = 17148 m3 
then, the conditional return periods T(P/V ≤ v) = 120.216827 years and T(V/P ≤ p) = 2.9117633 
years. Similarly, for the flood events (P = 20586.4 m3s−1 and D = 7 (days), then the conditional 
return periods T(P/D ≤ d) = 33.5532361 years and T(D/P ≤ p) = 1.0032349 years. Similarly, the 
flood episode which has volume of V = 31945.6 m3 and duration D = 33 days, the return period of 
volume given duration or vice versa is T(V/D ≤ d)  = 6.19127366 years and T(D/V ≤ v)  = 
10.4428152 years. Again, the flood episodes characterized based on peak, P = 18875.4 m3s−1 and 
duration, D = 33days then conditional return periods, T(P/D ≤ d) = 33.3736912 years and T(D/P ≤
p) = 10.525197 years. 

5. Research conclusions 

This literature incorporated the copula-based methodology to establishing the trivariate 
distribution modelling of the flood episodes for the Kelantan River basin in Malaysia. Firstly, a 
distinguish varieties of parametric families-based probability functions are tested for defining the 
univariate marginal structure of each flood characteristics. Results reveals that the Lognormal (2P), 
Johnson SB (4P) and Gamma (3P) distribution are recognized as most justifiable for describing 
marginal distribution of flood peak, volume and duration series. Based on the correlation measuring 
statistics, via the analytical approach such as the Pearson, Kendall’s tau and Spearman rho 
correlation coefficient as well as the graphical visual inspection (i.e., based on ranked based scatter 
plot, K-plot and Chi-plot). It is found that flood peak flow and volume pair exhibited higher and 
positive dependence structure but both flood volume and duration pairs as well as peak flow and 
duration pairs are found to be negatively correlated random pairs with very weak correlation and thus 
considered for flood frequency analysis. The adequacy of one elliptical copula, the Gaussian copula 
and one Archimedean copula, the Frank copula are introduced to model the trivariate joint 
distribution of flood characteristics. The copula dependence parameter of fitted trivariate copulas are 
estimated using maximum pseudo log-likelihood (or MPL) estimation procedure. The best fitted 
trivariate copulas are selected using the Cramer-von Mises distance statistics where the 
approximation of p-values for the test statistics are obtained using the faster multiplier bootstrapping 
approach. The test statistics “Sn” and “Rn” and their associated p-values are computed from 1000 
and 500 simulated random samples by the mean of the faster multiplier approach. Result reveals that 
the Gaussian copula is recognized as most justifiable copula function for establishing the trivariate 
flood dependence structure as it exhibited the minimum values for “Sn” and “Rn” test statistics. The 
estimation of trivariate joint probability distribution often required at first to determine bivariate joint 
copula distribution. Therefore, the mono-parametric Archimedean copulas such as the Clayton 
copula, Gumbel copula, Frank copula, Joe copula and one Elliptical copula such as the Gaussian or 
normal copula are tested for establishing the bivariate joint distribution of the flood characteristics. 
Investigation reveals that the Gaussian copula is identified as most appropriate for flood peak flow 
and volume pair and the Frank copula is for volume and duration and peak flow and duration pairs. 
Finally, the cumulative distribution function or CDF of the best fitted trivariate copula is further 
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employed to derive trivariate joint and conditional return periods. The bivariate and univariate return 
periods are also estimated and compared with trivariate return periods. It reveals that the trivariate 
joint return period for “OR” case is less than return periods for “AND” case for triplet flood 
characteristics. In other words, the occurrence of trivariate flood characteristics simultaneously is 
less frequent in “AND” case in compare with “OR” case of joint return periods (i.e., more frequent). 
Overall, it is concluded that copula function effectively preserving the flood dependence structure 
and thus found as very flexible and dynamic tools for the assessments of multidimensional extreme 
episodes i.e., flood. From the estimated trivariate return periods it could be revealed that for an 
effective flood risk assessments, it could be an essential concern to take the accountability of 
trivariate return periods, by considering all the inter-associated random vector simultaneously, 
instead of just pair-wise joint association or bivariate return periods. 
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