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Abstract: Monitoring unlawful constructions in cultural relic sites is difficult in remote and 

unpopulated areas. This paper aims at facilitating cultural relic protection surveys using remote 

sensing. High-resolution remote sensing images are better alternatives to field visits for locating 

unlawful buildings. However, these buildings are usually hidden by vast wildness around the 

cultural relics, which makes the use of high-resolution imagery costly and inefficient. The main 

purpose of this research is to develop an approach to subpixel building identification from moderate 

resolution images, such as Landsat 8 OLI with reasonable accuracy based on the mixture-tuned 

match filtering (MTMF) partial unmixing method. With this method, pixels with high MF scores 

and low MT scores were identified as candidate locations of possible unlawful buildings. A case 

study in the Mangshan Tombs, China demonstrated that this method had a better accuracy for 

identifying constructions than the commonly used fully-constrained linear unmixing model. 
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1. Introduction 

To protect cultural relic sites, construction permits are required by law for new developments 

in relic sites and surrounding areas. However, the number of unpermitted buildings, mostly for 

private use, is still increasing [1]. This has made monitoring illegal constructions in cultural relic 

sites and world heritage sites an urgent task. These areas are mostly located in remote, mountainous, 

and unpopulated areas with limited accessibility. Due to this reason, frequent field visits to search 

for unlawful constructions are costly and sometimes impossible. 

Modern geospatial technologies such as remote sensing (RS), geographic information system 

(GIS) and global positioning system (GPS) can fundamentally change the way to conduct cultural 

relic surveys [2,3]. For example, remote sensing images offer a synoptic view of the relic sites, thus 

making systematic and long term monitoring of land dynamics associated with human activities 

possible [2,3]. Although buildings are usually only visible from high-resolution commercial satellite 

images [2], such as the WorldView-3 satellites by DigitalGlobe, the use of moderate resolution 

images is still beneficial to the management agencies because they are less costly with much wider 

scene coverage. For example, the Landsat images, which are free to the public have a swath width 

of 180 km, ten times greater than WolrdView-3 images (13 km). In other words, one Landsat image 

is equivalent to over 100 WorldView-3 images in area coverage. However, previous research 

showed that such moderate resolution images did not provide accurate thematic classification maps 

by traditional classification algorithms [4,5] because the pixels are mostly mixtures of different lands. 

The mixed pixel problem becomes especially prevalent where the target buildings are small [6]. The 

low accuracy of building classification reflects the inability of traditional per-pixel classifiers to 

handle the mixed pixel problem [5]. 

Subpixel Mapping Analysis (SMA) is a solution to the mixed pixel problems. The SMA approach 

has proved reasonably accurate in climate change research [7–9], terrestrial ecosystem monitoring and 

management [10–12], precision agriculture and production monitoring [13–16], natural hazard risk 

assessment [17–19], forest inventories and forest health assessments [20–22], water quality 

assessment [23,24], geological mapping [25], mapping of the urban environment [26–30], urban land 

cover area [31,32] and more. A mixture model derives the fractions of a few “pure” materials in a 

mixed image pixel. These “pure” materials are usually called endmembers. Mixed pixel signals are 

generally modeled using either a linear mixture model (LMM) or nonlinear mixture model (NLMM). 

The linear unmixing model assumes the electromagnetic energy reflected from the earth's surface at 

different spectrums is the result of a linear combination of each of the endmembers [33]. Therefore, it 

is possible to use the least squares criterion to “unmix” these components to factions of pixel 

components [34–37]. But to do this one must assume to have full knowledge of materials in the 

scene [38]. This assumption, however, is quite difficult to fulfill given the complex land cover 

conditions in most applications, which makes the selection of endmembers a difficult yet critical step 

of spectral unmixing [39]. If by chance one of the materials is missing in the model, the solution to the 
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unmixing equations will be biased. If one wants to use multi-temporal images, the endmembers may 

vary on these images because of seasonal changes. Furthermore, some endmembers may only exist in 

certain images, which makes long-term monitoring more difficult.  

Partial unmixing methods, such as the mixture-tuned match filtering (MTMF), relax the 

assumption of linear unmixing models by requiring only the knowledge about the target materials. It is 

thus more useful and feasible in the applications where only one material is concerned. MTMF has 

demonstrated superiority in geological mapping [40], vegetation classification [41,42]. But it has not 

been tested on mapping small buildings in an unpopulated area. The main objective of this research is 

to test if MTMF can outperform the fully constrained linear unmixing model. The knowledge gained 

from this research can guide the endeavors of using remote sensing in culture relic site protection. 

2. Materials and Methods 

2.1. Study sites and data 

The study site falls within the Mangshan Tombs of Luoyang, Henan Province, China. Mangshan 

Tombs is one of China's largest national cultural relic protection units, composed of a large number 

of ancient burial sites, many of which are concentrated in certain areas. Mangshan Tombs range up 

to 746 square kilometers, extending into five counties and 46 villages. A total of 972 tombs have 

been found in Mangshan Tombs, including 24 imperial tombs, ranging from the Zhou Dynasty to 

the Qing Dynasty. For this reason, Mangshan Tombs is called “The Oriental Pyramid”. It is 

critically important to protect this relic site from unlawful construction activities, which could 

damage the ancient tombs [43]. The core protection area of Mangshan Tombs consists of three 

management zones: west, middle, and east. This research focuses on the western part (Figure 1). 

 

Figure 1. Location of Mangshan Tombs. (1.west part 2. middle part 3. east part). 



271 

AIMS Geosciences  Volume 3, Issue 2, 268-283. 

Field investigation revealed there were mainly three types of buildings within the study area 

based on their roof colors: yellow, blue and red buildings (Figure 2). Yellow buildings are typically 

illegal temporary buildings for raising hogs or pigs, with minimum width or length between 5 and 20 

meters. They are the primary purpose of our mapping effort. Blue buildings are typically for industrial 

purposes, with minimum width or length over 20 meters. They are mostly buildings with permits. 

However, as they could create harmful materials into the surrounding area, they will also be mapped. 

Red buildings are residential buildings with permits. They have the least impact on the relic tombs. 

The images used in this research are listed in Table 1. We use the Landsat imagery to identify 

unlawful constructions within the study area, and the high-resolution Ziyuan-3 imagery for accuracy 

assessment. Table 2 lists the specifications of Ziyuan-3 data. 

Table 1. Image data. 

Data source Date Level Location 

Landsat 8 

Ziyuan-3 

11/18/2013 

03/20/2013 

l8_surface_reflectance 

L1

Mangshan Tombs 

Mangshan Tombs 

Table 2. Ziyuan-3 specifications. 

Bands Wavelength Resolution 

(micrometers) (meters) 
Band 1-Panchromatic 0.45–0.80 2.1 

Band 2-Blue 0.45–0.52 5.8 

Band 3-Green 0.52–0.59 5.8 

Band 4-Red 0.63–0.69 5.8 

Band 5-Near Infrared (NIR) 0.77–0.89 5.8 

 

Figure 2. Building types in the study area (Ziyuan-3, RGB composition image). (a. 

yellow buildings; b. blue buildings; c. red buildings). 
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2.2. Mixture tuned matched Filtering 

Matched filtering (MF) extracts the component of the material in an image pixel by comparing 

it to the target spectra and suppresses the response of all other unknown background spectra [44]. It 

distinguishes the target from the background but does not perform any further analysis on the 

content of the background materials. Thus, MF performs a partial unmixing of the spectra in each 

pixel of an image. MF requires only the target spectra, rather than a spectrum of all land cover 

materials in the scene. This is one of the major advantages of the MF algorithm. The mixture tuning 

(MT) filter was developed to address the cases where MF generates false positive results. The 

combined method is called mixture-tuned matched filtering (MTMF) [38]. MTMF combines the 

best features of the linear unmixing model and the statistical matched filter model while avoiding 

the drawbacks of the original methods [38], and is capable of detecting specific land cover types 

based on their spectral characteristics [45]. From matched filtering, it inherits the advantage of its 

ability to map a single known target without knowing the other background endmember signatures. 

From the linear unmixing model it inherits the constraints on feasibility including the unit-sum and 

positivity [38]. 

Matched filtering returns an MT score as the number of standard deviations from the mixing 

line which connects the background mean to the target spectrum. MT scores can be interpreted as 

unmixing infeasibility. High MT scores or infeasibility values, which mean a large separation from 

the signature of the target material, are used to identify false positives [38]. The methodology of this 

research consists of three major parts, data preprocessing, building identification from MTMF, and 

accuracy assessment and model comparison. Figure 3 shows the flowchart of the methodology. 

 

Figure 3. Research flowchart. 
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2.2.1. Data preprocessing 

We used the Landsat Surface Reflectance product of the Landsat image produced by the United 

States Geological Survey with their atmospheric correction and radiometric calibration algorithm. 

Next, we applied a minimum noise fraction (MNF) method to the image to remove background 

noise prior to the MTMF algorithm [38,40,42,46]. 

The Ziyuan-3 image was used for accuracy assessment. We enhanced its multispectral 

resolution by fusing the high-resolution panchromatic band (2.1 m) into the multispectral bands. To 

adjust the alignment between the pixels from the Landsat image and the Ziyuan-3 image, we applied 

an image-to-image coregistration using an affine geometric transformation. Thirteen control points 

were identified from both images. The overall RMSE for the coregistration is 0.3941 image pixels. 

2.2.2. Building identification from MTMF 

Implementation of the MTMF algorithm included five steps: (1) remote sensing image 

atmospheric correction; (2) Minimum Noise Fraction (MNF) transformation; (3) pure pixels 

identification with Pixel Purity Index (PPI); (4) MF score and infeasibility output; and (5) target 

mapping from high MF scores. The ENVI Spectral Hourglass Wizard tool was used to aid the image 

analyses. Steps (1) and (2) were described in the last section. This section starts with step (3) to 

describe the procedure of the MTMF analysis.  

Pixel Purity Index (PPI) calculates the possibility of an image pixel of being a pure pixel [47]. 

Pixels with higher PPIs are identified as candidates of pure pixels (often less than 1% of the total 

number of pixels). We used a threshold value of 2.5 times of the noise level (which is 1 for MNF 

transformed data) to identify these pure pixels (Figure 4). 

 

Figure 4. Spectra plot of endmembers (Landsat 8). 
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Figure 5 shows the MF score and infeasibility threshold determination through 2D scatter plot. 

A common way to find the thresholds is to interactively make selections on the scatter plot [38,41,42]. 

The scatterplot between MF scores and infeasibility values is used to filter out false positives. False 

positives are identified by their high infeasibility and low abundance (the pixels to the upper-left 

side of the threshold line). The valid pixels are to the lower-right side of the line. They will be used 

to map possible locations of illegal constructions. Higher MF scores mean there is high chance to 

find illegal buildings in those pixels [48]. 

 

 

Figure 5. 2D scatter plot. The horizontal axis is the MF score (target abundance), 

the vertical axis is the MT score (infeasibility). (a. yellow building b. blue building). 
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2.2.3. Accuracy assessment and model comparison 

We used a Ziyuan-3 high-resolution image to assess the accuracy of the MTMF results. The 

MTMF result is also compared to the output from a fully constrained linear unmixing analysis 

(LMA)[30]. We developed a two-step validation procedure. Step (1): for the full collection of 

reference sites, we applied confusion matrix and treated blue buildings and yellow buildings as two 

classes to examine their presence/absence [41,49–51]. Step (2), for sample targets, we used the 

correlation between reference fractions and modeled fractions to examine the accuracy [32,42]. We 

identified 27 random blue building samples and 29 yellow building samples as the targets. A quadrat 

sampling method [52] was then applied. The correlation between reference fractions and MF scores 

of building coverage was reported for each quadrat (30 m by 30 m Landsat pixel size). For 

convenience, the Ziyuan-3 image was resampled from 2.1 m by 2.1 m to 3 m by 3 m pixel size, 

which resulted in 100 Ziyuan-3 pixels in each Landsat pixel. An example of such quadrat sampling 

is shown in Figure 6. Within the Landsat pixel containing a yellow-roofed building, there are 24 of 

100 Ziyuan-3 pixels belonging to the building. That is reported as a fraction value of 0.24 or 24%. 

An RMSE was then calculated based on the differences between the reference fraction and the MF 

scores from MTMF. 

 

Figure 6. Application of quadrat sampling method (Ziyuan-3 image). 
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3. Results 

The MTMF algorithm successfully identified both yellow and blue buildings. As shown in 

Figure 7 and Figure 8, both the yellow and blue buildings have strong signals from the MTMF 

method. In contrast, the LMA model produced a lot of false positives. For the MTMF method, both 

yellow and blue building classes yielded very high user accuracy. The MTMF method has a higher 

possibility to miss the yellow buildings than the blue buildings. It is expected because illegal 

buildings and some of the yellow buildings were constructed in small sizes. Blue buildings are 

generally industry buildings and are larger. As a result, mapping blue buildings is generally easier 

than mapping yellow buildings. Comparing to MTMF, the LMA method yielded lower accuracies 

(Table 3 and Table 4), both in the commission error (19.85%) and the omission error (58.85%). 

Table 3. Accuracy assessment result of MTMF method.  

Class Prod. Acc User Acc Commission Omission 

 (Percent) (Percent) (Percent) (Percent) 
Yellow Building 51.15 95.34 4.66 48.85 

Blue Building 70.72 99.61 0.39 29.28 

Overall Accuracy = 59.18% 

Table 4. Accuracy assessment result of Linear Unmixing method. 

Class Prod. Acc User Acc Commission Omission 

 (Percent) (Percent) (Percent) (Percent) 
Yellow Building 41.15 80.15 19.85 58.85 

Blue Building 62.98 99.56 0.44 37.02 

Overall Accuracy = 50.11% 

 

Figure 7. Yellow buildings identified from MTMF and Unmixing. (a. high-resolution image; b. 

yellow buildings identified from MTMF; c. yellow buildings identified from Unmixing). 
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Figure 8. Blue buildings identified from MTMF and Unmixing. (a. high-resolution image; b. 

blue buildings identified from MTMF; c. blue buildings identified from Unmixing). 

Our purpose is to identify suspicious areas with illegal buildings. Therefore, we would rather 

have lower omission errors on the yellow buildings by trading in high commission errors. One 

possible method to reduce omission errors is to make an adjustment on the MF score and 

infeasibility value through the 2D scatter plot. Figure 9 shows such a selection of MF score and 

infeasibility value to minimize the omission error (38.08%, Table 5). 

The quadrat sampling method provided more assessments (Figure 10) than just commission 

errors and omission errors, which include the coefficient of determination (R2), correlation 

coefficients, and RMSE, etc. For blue buildings, R2 values were 0.81 (MTMF), 0.76 (LMA). For 

yellow buildings, the R2 values were 0.75 (MTMF) and 0.60 (LMA). The correlation coefficients of 

MTMF results with the reference data were also much higher than that of the LMA results. The 

RMSEs were 0.146 (MTMF) and 0.160 (LMA) for yellow buildings (Table 6). The RMSEs for blue 

buildings are 0.143 (MTMF) and 0.157 (LMA). These RMSE values indicated that MTMF yielded 

a better result of mapping both yellow and blue buildings than the LMA method. 

Table 5. MTMF accuracy based on optimized selection of MF score and infeasibility value. 

Class Prod.Acc User Acc Commission Omission 
 (Percent) (Percent) (Percent) (Percent) 

Yellow Building 61.92 98.77 1.23 38.08 
Blue Building 70.72 99.61 0.39 29.28 

Overall Accuracy = 65.53% 

Table 6. RSME comparison between reference fractions and modeled fractions. 

Methods MTMF Linear Unmixing 

Yellow Buildings 0.146 0.160 
Blue Buildings 0.143 0.157 
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Figure 9. 2D scatter plot (X: MF Score; Y: infeasibility) for yellow 

buildings to reduce omission error. 

 

Figure 10. Regression between reference fractions and modeled 

fractions. (a & b yellow buildings; c & d blue buildings). 
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The illegal buildings are classified into the yellow roof buildings based on their intrinsic 

characteristics (yellowish roof, small, temporary, and built with less expensive materials). These 

illegal buildings will have moderate MF scores because they are generally much smaller than a 30 

m by 30 m Landsat image pixel. Besides, the large and legal yellow buildings have larger MF scores. 

Therefore, the illegal buildings can be separated from those large yellow buildings. The identified 

illegal buildings are shown in Figure 11. Red colored areas are more likely to be an illegal building. 

Because our result contains large commission error, a field visit is still recommended for decision 

makers. But it has largely reduced the cost of field visits. 

 

Figure 11. Buildings identification result. (a. yellow building b. blue building). 

4. Summary and Conclusions 

Cultural relic sites or heritage sites are often sparsely spread in large wildness; thus the illegal 

buildings in the relic are difficult to be identified unless high spatial resolution images are used. At the 

same time, high-resolution images come by high cost and small scene width. The main focus of this 

research is to develop an approach for building identification from moderate resolution images to lower 

the cost for searching the illegal constructions. We tested Landsat images with subpixel mapping 

methods to detect illegal buildings that are usually smaller than the image pixel size. We also compared 

the accuracy of the partial unmixing method Mixture-Tuned Matched Filtering (MTMF) with the fully 

constrained linear mixture analysis (LMA). Our results show that both unmixing methods could provide 
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reasonable accuracy of mapping the buildings (industry, illegal, and other buildings). Owing to the 

uncertainty from the subpixel analysis, mapping illegal buildings from satellites cannot fully replace 

ground surveys. However, our work could help expedite the ground survey process for illegal buildings 

by reducing the total area surveyed to a limited number of image pixels. 

Our analysis confirmed that the partial unmixing method MTMF is stronger than the LMA 

method in mapping the buildings. Therefore, we recommend MTMF for long term illegal-building 

detection in relic sites. Besides, because MTMF only needs the information of the target spectra, it 

is extendable in both spatial and temporal domains. 
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