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Abstract: This study presents a new algorithm to reconstruct both the ice-surface elevation and the altitude of 
the bedrock of a glacier from the knowledge of the ice-surface velocity which could potentially be obtained 
from satellite data. It requires the prior knowledge of the surface mass balance and basal conditions. The 
algorithm is realized in two steps: the first one involves the solution of a partial differential equation obtained 
from a rearrangement of the shallow-ice approximation and the second one involves the mere downslope 
integration of a non-linear function of the ice velocity and ice thickness. It is therefore an efficient algorithm 
which is in principle easy to implement. The algorithm is tested on synthetic data and is shown to be very 
successful with an ideal dataset and robust even when significant noise is added to the input data. Importantly, 
the inversion algorithm does not appear to amplify the input error in the data 
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Glaciers have been identified as good indicators of climate change and have been closely monitored over 
the past two decades. Of paramount interest is the amount of ice contained in glaciers over time. Clearly, in 
order to establish this quantity, it is necessary to know the location of the glacier’s bedrock, the free surface, 
and the ice-density distribution. The field measurement of these quantities is time-consuming, costly, and 
potentially dangerous in such extreme glacial environment. A preferred strategy is to use remote airborne radar 
sensing. Such techniques are best able to provide information at the free surface of the glacier such as its 
surface elevation or ice surface velocity. Obtaining reliable information at the bedrock is however considerably 
more difficult which explains in part why a high-resolution map of the Antarctica ice-thickness distribution is 
still not available at present. In spite of much recent effort, the resolution of the bedrock data set for Antarctica 
is still too coarse to capture mountain topographies such as of those of the Antarctic Peninsula or the 
Transantarctic Mountains with its narrow subglacial valleys and high ice thickness variability [1–4].  

Much is known and understood about how ice flows and there exists a range of mathematical models with 
different levels of approximation able to reproduce the dynamics of glaciers and ice-shelves [5–8]. Such 
models generally require as an input the bedrock location, surface mass balance, ice rheology, and bedrock 
conditions (geothermal heat flux and bed morphology). Clearly, the higher the level of sophistication, the 
greater the hope of correctly modelling the ice dynamics. Given all the above inputs, the task of solving for the 
ice flow dynamics and therefore inferring the ice thickness is generally thought of as the direct problem. On the 
other hand, the task of identifying one of the unknown inputs from field observations is known as the inverse 
problem. Such problems are known to be more challenging to solve because the existence of a solution is not 
guaranteed and if it exists, it is not necessarily unique or stable [9]. 

We explore here the hypothesis that the free surface is an observable signature of the flow conditions at 
the bedrock and we propose a numerical algorithm which enables one to decipher this signature, in principle. 
Specifically, we tackle the inverse problem of identifying the bedrock and the free surface location from the 
free surface velocity field assuming known basal conditions and surface mass balance. This study builds on our 
recent work that proposed a new methodology to tackle such an inverse problem in the plane flow 
regime [10,11].  

The idea that free surface features reveal underlying conditions is not new and there have been several 
important contributions over the years aiming at interpreting these free surface disturbances. The work of 
Gudmundsson and co-workers has shed significant light on the transmission of bedrock features to the free 
surface [12,13]. The authors showed that the governing equations could be seen as transfer functions relating 
the bedrock topography or the basal sliding parameter to free surface observable quantities such as elevation or 
velocity. By inverting these transfer functions, the authors were able to deduce conditions for which basal 
perturbations will transfer to the free surface. Early on, Rasmussen described in [14] a method to estimate the 
bed topography and surface mass balance from aerial photography. The bed topography and surface mass 
balance are inferred from observed changes in the surface topography and by ensuring that a discrete form of 
the mass conservation principle is satisfied. Inspired by Rasmussen’s study, McNabb et al. present in [15] a 
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method that allows the computation of the ice depth from the knowledge of the surface mass balance, values of 
the surface elevation change, the surface velocity field, and an estimated distribution of the ice thickness at the 
boundary of the domain of interest. The method solves for the ice thickness between adjacent flow lines having 
to account for cross-flow ice flux in the mass balance equation. In [16], Fastook et al. used ice surface elevation 
and free surface velocity to estimate the ice thickness and the fraction of the ice velocity due to basal sliding. In [17], 
Warner and Budd propose a numerical method to infer the bedrock depth using the free surface elevation, the 
ice-accumulation distribution, ice flow properties, and the assumption of mass balance. This method computes 
the ice fluxes that would maintain an ice sheet of specified surface elevation in equilibrium with a prescribed 
ice accumulation distribution. Then, using the standard expression for the magnitude of the depth-integrated ice 
flux due to ice flow by deformation, the authors are able to calculate a good estimate of the ice thickness distribution for 
the Lambert glacier basin. The work of Farinotti and co-workers also deserves special mention [18,19,4]. In [18], the 
authors propose and apply a new approach to calculate the volume and thickness distribution of glaciers. The 
required input data is the glacier outline and a Digital Elevation Model (DEM). The authors estimate the 
distribution of apparent mass balance. From this apparent mass balance, the authors are able to estimate the ice 
flux from which the ice thickness can be deduced using the flow law for ice [20]. This technique allows the 
authors to estimate the amount of ice stored in glaciers around the globe [19] and to generate a complete 
bedrock topography map of the Antarctic Peninsula north of 70oS with a resolution of 100m x 100m, [4]. A 
related strategy was used by Gantayat et al. in [21] where the authors demonstrate the potential of the method to 
improve the estimate of ice thickness distribution of glaciers in the Himalayas for which mass balance is not 
available. Recently, Michel et al. have made several important contributions to the field of bedrock 
identification [22–24]. In [22], Michel et al. introduce the steady inverse method, the quasi-steady inverse 
method, and the transient inverse method to reconstruct the bedrock of glaciers from the free surface elevation 
profile using the shallow-ice approximation. The steady inverse method effectively involves solving a 
regularized, diffusive, transient Partial Differential Equation (PDE), the solution of which approaches the actual 
glacier bedrock for a suitable choice of the regularization parameter. The quasi-steady inverse method involves 
replacing the transient term by a suitable estimate which can be computed if the free surface elevation profile is 
available at two different times. The transient inverse method remedies this drawback by using a regularized 
fixed point method for which the glacier bedrock is found as the limit of a series of iterations. Michel et al. 
introduce the shape optimization method in [23] to reconstruct the bedrock of a glacier from the knowledge of 
the free surface evolution over time using optimal control theory. The method is based on the shallow-ice 
approximation and effectively relies on finding the “optimal” bedrock profile which minimizes the misfit 
between the computed and observed free surface elevation. All the methods proposed by Michel et al. are 
compared in [24]. In [25], Morlighem et al. present a method which allows the generation of a highly resolved 
bedrock topography map from sparse ice-thickness data and dense ice velocity data. The idea of the method is 
to optimize the apparent mass balance and the depth-averaged velocity to minimize the error between the 
observed and modelled ice thickness.  The work Haberman et al. in [26] focuses on the reconstruction of basal 
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condition (stickiness) from free surface velocity measurements. The authors used the shallow-shelf 
approximation to calculate the response of the ice to the basal conditions and iterative methods to minimize the 
objective function which gives a measure of the misfit between the computed and observed free surface 
velocity field. In [27], Goldberg and Heimbach derived and implemented the adjoint of an ice flow model 
which is transient and hybrid meaning that it accounts for vertical shear in the stress balance. It allowed the 
authors to recover basal lubrication parameters or the simultaneous retrieval of basal topography and sliding 
coefficient by minimizing the misfit between computed and observed free surface velocity. In [28], van Pelt et 
al. develop a simple iterative scheme to reconstruct the bedrock topography of glaciers and ice caps. The 
intuitive idea to assume a particular bedrock profile and run an ice-flow model to calculate the corresponding 
free surface location. The authors use the PISM ice-flow solver (Parallel Ice Sheet Model, see [29,30]) for this 
purpose. The bedrock location is simply updated by adding a fraction of the mismatch between the actual and 
computed free surface elevation. Recently, Martin and Monnier have shown in [31] that it is possible to identify 
the fluid rheology and basal slip conditions simultaneously from free surface velocity measurements. The 
authors use the full Stokes equation in this study and the inverse problem is solved in the optimal control 
framework whereby one aims to minimize the mismatch between computed and observed data. Basal condition 
of two transantarctic mountain glaciers were also indirectly inferred by Golledge et al. in [32] by using a glacier 
flowline model constrained by observed ice-surface velocity data. 

While undoubtedly successful, the above studies suffer from one or more of the following limitations: 

• They use a local relationship between the measured free surface altitude or velocity and the inferred ice 
thickness. Such a local relationship has a limited applicability. 

• They make some assumption about the relationship between the mean ice-velocity and the free surface 
velocity. Such assumptions have limited applicability. 

• They require many iterations to converge to a solution and each iteration typically involves the solution of 
one or more PDEs which is computationally demanding. 

• They use the complex arsenal of optimal control theory which make them difficult to access to the non-
specialists. 

• They rely on an arbitrary regularization coefficient.  

We propose here a new approach inspired by our recent work on topography reconstruction in thin layer 
flows (see [33] and references therein). The idea behind this approach is to construct a PDE which effectively 
governs the inverse reconstruction problem. The key advantage of this methodology is that it provides the 
solution of the inverse reconstruction problem in one-shot in contrast to iterative or optimization-based 
approaches. The premises of the application of this method to glacier flows were laid out in [10,11] for plane 
flow but we extend the method here to show that the knowledge of the free surface velocity is sufficient to 
reconstruct both the free surface and bedrock elevation in three-dimensional domains. 
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The paper is organized as follows: the next section describes the basis of the mathematical model in the 
framework of the shallow-ice approximation. The description of the inverse reconstruction method follows and 
numerical validation tests are presented thereafter. The paper closes with a discussion and concluding remarks. 

2 Description of the mathematical model and the inversion strategy 

The ice flow dynamics is assumed here to be well-described by the shallow-ice approximation first 
introduced by Hutter in [34]. This approximation is based on a perturbation expansion of the quantities arising 
in the mass and momentum balance equations of the ice sheet in terms of the shallowness parameter ε 
expressing the ratio of the characteristic thickness of the ice sheet to its characteristic extent. The main 
advantage of this approximation is that it transforms the three-dimensional free boundary problem of ice flow 
modelling into a two dimensional problem for which the unknown is the ice-sheet thickness as a function of 
position in a fixed two-dimensional domain. 

  

Figure 1: Glacier flowing downstream with variable surface 𝐒𝐒 and bedrock location 𝐳𝐳𝐛𝐛. The glacier thickness is indicated by 𝐇𝐇. 

The glacier is assumed to occupy the domain enclosed between the bedrock located at an altitude zb(x, y) 
above a reference location and the free surface described by S(x, y). The coordinate system is such that the 
(x, y) plane is normal to the direction of gravity and z points upwards. Clearly, the glacier thickness is given by 
H = S − zb . The spatial variables and the bedrock altitude, the glacier free surface and the glacier thickness are 
given in the unit meters in the following. Considering Figure 1 the conservation of mass requires that 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑎𝑎 − ∇⊥ ∙ 𝑞𝑞⊥����⃗  (1) 
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where ∇⊥= � ∂
∂x

, ∂
∂y
� . The function a(x, y, t)  is the accumulation-ablation function which measures the 

influence of ice flux normal to the glacier surface due to precipitation or melting. The flux q⊥����⃗  is obtained by 
integrating the velocity field u⊥����⃗  over the glacier thickness  

𝑞𝑞⊥����⃗ = � 𝑢𝑢⊥����⃗
𝑆𝑆

𝑧𝑧𝑏𝑏
𝑑𝑑𝑧𝑧. (2) 

Within the framework of the shallow-ice approximation and its underlying assumptions, the velocity is given 
by (see [35]) 

𝑢𝑢⊥����⃗ =
1
2
𝐴𝐴(𝜌𝜌𝜌𝜌)3|∇⊥𝑆𝑆|2∇⊥𝑆𝑆[(𝑆𝑆 − 𝑧𝑧)4 −𝜕𝜕4] (3) 

where |∇⊥S|2 = �∂S
∂x
�

2
+ �∂S

∂y
�

2
, ρ is the ice density, assumed constant here, g is the acceleration of gravity, 

and A is Glen’s flow parameter, a rheological constant. It is assumed here that the glacier is frozen at the base 
such that no sliding occurs there. Inserting eq. (3) into eq. (2) gives 

𝑞𝑞⊥����⃗ = −
2
5
𝐴𝐴(𝜌𝜌𝜌𝜌)3 𝜕𝜕5|∇⊥𝑆𝑆|2∇⊥𝑆𝑆. (4) 

Finally, inserting eq. (4) into eq. (1) yields the well known shallow-ice approximation in its standard form 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑎𝑎 +
2
5
𝐴𝐴(𝜌𝜌𝜌𝜌)3∇ ∙ ( 𝜕𝜕5|∇⊥𝑆𝑆|2∇⊥𝑆𝑆). (5) 

This equation is solved in order to generate synthetic data which can be used for the inverse problem. 
Throughout the paper we use examples of synthetic glacier bedrock data and construct direct and inverse 
solutions where the bedrock is defined by 

𝑧𝑧𝑏𝑏 = 𝑧𝑧0 − 𝛼𝛼𝛼𝛼 + 𝑏𝑏(𝛼𝛼,𝑦𝑦) (6) 

where α is the dimensionless slope of the bedrock and z0 the elevation at x = 0. In addition to the first two 
terms which describe a flat incline we assume a further contribution with a function b(x, y) to add a localized 
topographic structure to the bedrock. The topographic structure is given by 

𝑏𝑏(𝛼𝛼,𝑦𝑦) = 𝛾𝛾 exp�−
(𝛼𝛼 − 2000)2

𝛿𝛿2 −
(𝑦𝑦 − 1000)2

𝛿𝛿2 �, (7) 

where γ is an amplitude, and δ the steepness of the topography. Equation (7) describes a localized bump with 
height  γ. In the following, the parameters are z0 = 860, δ = 200 and γ =  ±100, all with the unit meters 
and the dimensionless slope is α = 0.2. Within the solution domain x ∈ [0, 4000] and y ∈ [0, 2000], the 
topography has the shape as depicted in Figure 2. 
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(a)

 

(b) 

 

Figure 2: Topography shape given in eq. (6)  𝐳𝐳𝐛𝐛. (a) with 𝜸𝜸 = 𝟏𝟏𝟏𝟏𝟏𝟏 and (b) with 𝜸𝜸 = −𝟏𝟏𝟏𝟏𝟏𝟏. 

Furthermore, we have to define an accumulation ablation function which we set in accordance to [6,11]: 

𝑎𝑎(𝛼𝛼,𝑦𝑦) = 𝑎𝑎0 �
(1 − (300 − 𝛼𝛼)/100 , 𝛼𝛼 ≤ 300

(2200 − 𝛼𝛼)/1900  , 𝛼𝛼 > 300
�  , (8) 

where a0 is a constant with the unit meter water equivalent per year [m w. e. a−1].  

Table 1: List of constant parameters with units used within the article 

Parameter Value Unit 
Glen’s law parameter, 𝐴𝐴 4.1 ∙ 10−17 Pa−3 𝑎𝑎−1 
Ice density, 𝜌𝜌 880 kg m−3 
Gravitational acceleration, 𝜌𝜌 9.81 m s−2 
Maximum value of the ablation-accumulation function, 
𝑎𝑎0 5.49 m w. e. a−1 

In a first step we will derive a discretization scheme for the direct problem which consists in a given 
bedrock shape, a known ablation function but an unknown glacier surface. All other parameters are constant, 
see Table 1. We introduce a finite difference scheme with a spatial discretization xi = iΔx, yj = jΔy, where Δx 
and Δy are the spatial grid spacings. For the time discretization we use an explicit Euler scheme and define 
tk = kΔt. Using the spatial and temporal discretizations we define Hi,j

k = H(xi, yj, tk). Eq. (5) is now rewritten 
into a diffusion equation with diffusion coefficient  D = H5|∇⊥S|2: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑎𝑎 +
2
5
𝐴𝐴(𝜌𝜌𝜌𝜌)3∇ ∙ (𝐷𝐷∇⊥𝑆𝑆). (9) 

The spatial discretization in the x-direction is based on a second-order accurate central finite difference 
scheme where we use a staggered grid in space to allow the computation of the diffusion coefficient D at grid 
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points which have an offset of Δx/2 compared to the grid of S and H. The following derivatives are all 
evaluated at a constant time step and we therefore omit the superscript k: 

 

𝜕𝜕
𝜕𝜕𝛼𝛼

�𝐷𝐷
𝜕𝜕𝑆𝑆
𝜕𝜕𝛼𝛼
� =

�𝐷𝐷 𝜕𝜕𝑆𝑆𝜕𝜕𝛼𝛼�𝑖𝑖+1
2,𝑗𝑗
− �𝐷𝐷 𝜕𝜕𝑆𝑆𝜕𝜕𝛼𝛼�𝑖𝑖−1

2,𝑗𝑗

𝛥𝛥𝛼𝛼
 

(10) 

with the definition of the staggered grid: 

�𝐷𝐷
𝜕𝜕𝑆𝑆
𝜕𝜕𝛼𝛼
�
𝑖𝑖+1

2,𝑗𝑗
=
�𝐷𝐷𝑖𝑖+1,𝑗𝑗 + 𝐷𝐷𝑖𝑖 ,𝑗𝑗 �

2
�𝑆𝑆𝑖𝑖+1,𝑗𝑗 − 𝑆𝑆𝑖𝑖 ,𝑗𝑗 �

𝛥𝛥𝛼𝛼
;   �𝐷𝐷

𝜕𝜕𝑆𝑆
𝜕𝜕𝛼𝛼
�
𝑖𝑖−1

2,𝑗𝑗
=
�𝐷𝐷𝑖𝑖 ,𝑗𝑗 + 𝐷𝐷𝑖𝑖−1,𝑗𝑗 �

2
�𝑆𝑆𝑖𝑖 ,𝑗𝑗 − 𝑆𝑆𝑖𝑖−1,𝑗𝑗 �

𝛥𝛥𝛼𝛼
 (11) 

and 

𝐷𝐷𝑖𝑖,𝑗𝑗 = 𝜕𝜕𝑖𝑖,𝑗𝑗5 ��
𝑆𝑆𝑖𝑖+1,𝑗𝑗 − 𝑆𝑆𝑖𝑖−1,𝑗𝑗

2𝛥𝛥𝛼𝛼
�

2

+ �
𝑆𝑆𝑖𝑖 ,𝑗𝑗+1 − 𝑆𝑆𝑖𝑖 ,𝑗𝑗−1

2𝛥𝛥𝑦𝑦
�

2

�. (12) 

The derivative in the y-direction is written as 

𝜕𝜕
𝜕𝜕𝑦𝑦

�𝐷𝐷
𝜕𝜕𝑆𝑆
𝜕𝜕𝑦𝑦
� =

�𝐷𝐷 𝜕𝜕𝑆𝑆𝜕𝜕𝑦𝑦�𝑖𝑖,𝑗𝑗+1
− �𝐷𝐷 𝜕𝜕𝑆𝑆𝜕𝜕𝑦𝑦�𝑖𝑖,𝑗𝑗−1

2𝛥𝛥𝑦𝑦
. (13) 

Finally, together with the temporal discretization we obtain the following discretization scheme  

𝜕𝜕𝑖𝑖 ,𝑗𝑗𝑘𝑘+1 = 𝜕𝜕𝑖𝑖,𝑗𝑗𝑘𝑘 + 𝛥𝛥𝜕𝜕𝑎𝑎𝑖𝑖,𝑗𝑗 + 𝛥𝛥𝜕𝜕
2
5
𝐴𝐴(𝜌𝜌𝜌𝜌)3

⎣
⎢
⎢
⎢
⎡�𝐷𝐷

𝜕𝜕𝑆𝑆
𝜕𝜕𝛼𝛼�𝑖𝑖+1

2,𝑗𝑗
− �𝐷𝐷 𝜕𝜕𝑆𝑆𝜕𝜕𝛼𝛼�𝑖𝑖−1

2,𝑗𝑗

𝛥𝛥𝛼𝛼
+
�𝐷𝐷 𝜕𝜕𝑆𝑆𝜕𝜕𝑦𝑦�𝑖𝑖,𝑗𝑗+1

− �𝐷𝐷 𝜕𝜕𝑆𝑆𝜕𝜕𝑦𝑦�𝑖𝑖,𝑗𝑗−1

2𝛥𝛥𝑦𝑦
⎦
⎥
⎥
⎥
⎤
, (14) 

where the glacier surface is related to the thickness and the bedrock via Si,j = Hi,j + zb,i,j. 
(a) 

 

(b) 

 
(c) (d) 
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(e) 

 

(f) 

 
Figure 3: Solution for the glacier thickness 𝑯𝑯(𝒙𝒙,𝒚𝒚, 𝒕𝒕) and the absolute glacier surface position  𝑺𝑺(𝒙𝒙,𝒚𝒚, 𝒕𝒕) for different time 

steps 𝒕𝒕 = 𝟒𝟒𝟏𝟏 (a), (b), 𝒕𝒕 = 𝟕𝟕𝟏𝟏 (c), (d), 𝒕𝒕 = 𝟏𝟏𝟏𝟏𝟏𝟏 (e), (f). The topography is given by 𝜸𝜸 =  𝟏𝟏𝟏𝟏𝟏𝟏. According to the initial condition, 

the glacier thickness is zero at 𝒕𝒕 =  𝟏𝟏: 𝑯𝑯 = 𝟏𝟏 and 𝑺𝑺 = 𝒛𝒛𝒃𝒃. Time has the unit years. 

We note that eq. (14) has to be complemented with appropriate boundary and initial conditions. As initial 
condition we assume that there is no glacier at t = 0 which is equivalent with H ≡ 0. The choice of initial 
condition is not as crucial since we seek steady solutions which represent the equilibrium between the 
accumulation ablation function and the convection of ice. The solutions of the finite difference scheme show 
that the steady ice thickness is independent of the initial ice thickness for this example bedrock. As boundary 
conditions we assume periodic boundary conditions in the y-direction, namely at y = 0 and y = 2000. This 
boundary condition is assumed to simplify the numerical code but further boundary conditions in the y-
direction can be implemented analogously. For the upstream and downstream boundary at the glacier front and 
back or sides we use an iterative method to track the contact line between ice and the bedrock: For each 
iteration where Hi,j

k+1 becomes negative, we set Hi,j
k+1 = 0. 

The discretization scheme is implemented in Matlab and evaluated until the maximum norm between 
Hi,j

k+1 and Hi,j
k  drops below 0.1. A typical solution with a discretization with 150 gridpoints in the x-direction 

and 20 gridpoints in the y-direction is shown in Figure 3 where we show the solution for the glacier thickness 
H(x, y, t) (left column) and the absolute glacier surface position S(x, y, t) (right column) for different times. 



54 

AIMS Geosciences                                                                     Volume 2, Issue 1, 45-62. 

With the knowledge of the glacier surface we are now able to construct a generic example for the inverse 
problem. Given the surface position of the glacier from solving eq. (5) it is now possible to determine the 
velocity field at the glacier surface by evaluating eq. (3) at z = S. The corresponding steady surface velocity 
field is shown in Figure 4. We note that at x ≈ 300 the velocity in the x-direction is zero and the flow direction 
of the glacier changes direction. This is due to the fact that the ablation accumulation function also changes sign 
close to this position. 

 

Figure 4: Surface velocity field for the steady solution at 𝒕𝒕 = 𝟏𝟏𝟏𝟏𝟏𝟏 in Figure 3. The color indicates the absolute value of the 

surface velocity in the unit [m/a]. 

In order to tackle the inverse problem of reconstructing the glacier bedrock from the knowledge of the free 
surface velocity field, the first step is to rewrite the mass conservation equation in term of the free surface 
velocity. Considering eqs. (1), (3) and (4), it is straightforward to show that 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑎𝑎 − ∇⊥ ∙ �
4
5
𝜕𝜕𝑢𝑢𝑠𝑠����⃗ �, (15) 

where us���⃗  is the free surface velocity simply obtained by setting z = H in eq. (3). It is clear that with the 
knowledge of the free surface velocity and the surface mass balance, the hyperbolic PDE eq. (15) can be solved 
for the glacier thickness H. Hyperbolic PDEs suffer from stability issues and special care is required when 
discretizing and solving this equation. Although we seek steady solutions of (15) we implement a time-
dependent discretization method where only the limit for t → ∞  is of interest. To be independent of 
discretization we use a stable Euler scheme with implicit time stepping. With the surface velocity  us���⃗  , eq. (15) 
is convective dominant with the convection having different sign over the solution domain as shown in Figure 
4. The convection dominance in the x-direction motivates the use of an upwind scheme in the main flow 
direction. We rewrite eq. (15) into  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑎𝑎 −
4
5
�
𝜕𝜕𝑢𝑢
𝜕𝜕𝛼𝛼

𝜕𝜕 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝛼𝛼

𝑢𝑢 +
𝜕𝜕(𝜕𝜕𝐻𝐻)
𝜕𝜕𝑦𝑦

� (16) 

where us���⃗ = (u, v) are the components of the surface velocity. We discretize the first and the last term with 
central finite differences 
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𝜕𝜕𝑢𝑢
𝜕𝜕𝛼𝛼

𝜕𝜕 =
𝑢𝑢𝑖𝑖+1,𝑗𝑗
𝑘𝑘+1 − 𝑢𝑢𝑖𝑖−1,𝑗𝑗

𝑘𝑘+1

2𝛥𝛥𝛼𝛼
𝜕𝜕𝑖𝑖 ,𝑗𝑗𝑘𝑘+1; 

𝜕𝜕(𝜕𝜕𝐻𝐻)
𝜕𝜕𝑦𝑦

=
(𝜕𝜕𝐻𝐻)𝑖𝑖 ,𝑗𝑗+1

𝑘𝑘+1 − (𝜕𝜕𝐻𝐻)𝑖𝑖,𝑗𝑗−1
𝑘𝑘+1

2𝛥𝛥𝑦𝑦
 (17) 

and use an upwind discretization for ∂H
∂x

u: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝛼𝛼

𝑢𝑢 =

⎩
⎪
⎨

⎪
⎧𝜕𝜕𝑖𝑖,𝑗𝑗𝑘𝑘+1 −𝜕𝜕𝑖𝑖−1,𝑗𝑗

𝑘𝑘+1

𝛥𝛥𝛼𝛼
𝑢𝑢𝑖𝑖 ,𝑗𝑗𝑘𝑘+1, 𝑢𝑢𝑖𝑖 ,𝑗𝑗𝑘𝑘+1 > 0

𝜕𝜕𝑖𝑖+1,𝑗𝑗
𝑘𝑘+1 − 𝜕𝜕𝑖𝑖 ,𝑗𝑗𝑘𝑘+1

𝛥𝛥𝛼𝛼
𝑢𝑢𝑖𝑖 ,𝑗𝑗𝑘𝑘+1, 𝑢𝑢𝑖𝑖 ,𝑗𝑗𝑘𝑘+1 < 0

� (18) 

Substituting eqs. (18) and (17) into (16) we obtain a set of linear equations for each time step which are 
solved iteratively. As a first example we take the data from Figure 4 and solve for the glacier thickness. The 
result for the original data is shown in Figure 5, where we compare the original data with the numerical solution 
of eq. (15) at two different cross sections. We find that the original data and the inverse solution agree and 
minor difference can only be found at the steep front of the glacier.  

 

Figure 5: Numerical solution of equation eq. (15) compared to the original glacier thickness at two different cross sections, 

𝐲𝐲 = 𝟏𝟏 and 𝐲𝐲 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏. 

In the reconstruction process, the free surface velocity field (u, v) and the glacier thickness H are now 
known but the bedrock is still unknown. In the following, we derive a methodology to also solve for the glacier 
bedrock zb  and absolute glacier position S. Componentwise, it is clear that the free surface velocity reads 

𝑢𝑢 = −
1
2
𝐴𝐴(𝜌𝜌𝜌𝜌)3𝜕𝜕4|∇⊥𝑆𝑆|2 𝜕𝜕𝑆𝑆

𝜕𝜕𝛼𝛼
 (19) 

𝐻𝐻 = −
1
2
𝐴𝐴(𝜌𝜌𝜌𝜌)3𝜕𝜕4|∇⊥𝑆𝑆|2 𝜕𝜕𝑆𝑆

𝜕𝜕𝑦𝑦
 (20) 

Therefore, it is also clear that 

𝑢𝑢
𝐻𝐻

=
𝜕𝜕𝑆𝑆
𝜕𝜕𝛼𝛼
𝜕𝜕𝑆𝑆
𝜕𝜕𝑦𝑦

 ⟹  
𝜕𝜕𝑆𝑆
𝜕𝜕𝑦𝑦

=
𝐻𝐻
𝑢𝑢
𝜕𝜕𝑆𝑆
𝜕𝜕𝛼𝛼

 (21) 
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Replacing the latter expression in eq. (19) and rearranging leads to 
𝜕𝜕𝑆𝑆
𝜕𝜕𝛼𝛼

= �
−𝑢𝑢

1
2𝐴𝐴(𝜌𝜌𝜌𝜌)3𝜕𝜕4 �1 + �𝐻𝐻𝑢𝑢�

2
�

3  (22) 

Clearly, for a given free surface velocity field and thickness distribution, the ordinary differential equation 
(22) can be integrated to yield the free surface altitude distribution. The integration involves an integration 
constant which can in theory be set by knowing the free surface altitude at one particular location. The 
integration has to be performed in the downstream and upstream direction. It is worth noting that for downslope 
unidirectional flow, i.e. for v = 0, Glen flow law is recovered.  

Continuing with our example above we integrate eq. (22) numerically with the given surface velocity 
(u, v) and the glacier thickness H computed from eq. (15). The solution is shown in Figure 6 where the original 
bedrock data is compared to the inverse solution. The integration constant can be determined at an arbitrary 
position which is set to the point x = 970m in this example. We find a perfect agreement between the original 
data and the reconstructed data. Only at the upper end of the glacier where the solution is known anyway since 
H = 0 the integration shows a difference. We note that in Figure 6 the defective point near x = 0 is a result of 
the discretization of eq. (22) and possibly low values in the denominator lead to high values in eq. (22). 

 

Figure 6: Numerical solution of equation eq. (22) in comparison to the original bedrock. 

3 Numerical tests 

3.1 Example with natural bedrock topography 

The example introduced along with the introduction of the inverse methodology has shown that for a 
simple bedrock topography the reconstruction of the bedrock and the ice thickness distribution based on the 
surface velocity is successful. In the following the goal is to demonstrate the method on an example where the 
topography is more complicated. We use the same shape as in eq. (6) but choose a different shape b(x, y), 
which has smaller scale structures. To maintain the periodic boundary condition in the y-direction the function 
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b(x, y) is also assumed to be periodic. For a higher impact of the bedrock on the glacier surface we reduce the 
scaling factor of the ablation-accumulation function to a0 = 2. The original bedrock shape is shown in Figure 
7(a) whereas the corresponding surface velocity field is shown in Figure 7(b). 

(a) 

 

(b) 

 

Figure 7: Corrugated glacier bedrock (a) and corresponding surface velocity field as a solution of eq. (5), (b). The color in (b) 

indicates the absolute value of the surface velocity. 

In the following, we make use of the inverse algorithm and solve for the local glacier thickness H and the 
bedrock shape based on the data in Figure 7(b). The results of the reconstruction are shown in Figure 8. In (a) 
we compare the original glacier thickness at different cross sections with the inverse solution and find a perfect 
agreement. The same holds also for the absolute glacier position in (b) where the magnification validates that 
both solutions coincide. Again as in the previous example the only deviation can be found at the upper end of 
the glacier where all variables show steep gradients. 

(a) 

 
 

(b) 

 

Figure 8: Results of the reconstruction based on the data from Figure 7(b). (a) shows the glacier thickness at different cross 

sections and (b) the glacier bedrock for different cross sections. The subfigure represents a magnification of the data. 
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3.2 Sensitivity analysis and robustness 

The previous results have demonstrated that the inverse method is capable of reconstructing the bedrock 
topography and the free surface for synthetic topographies with simple bumps but also for a more complicated 
topography where the surface is corrugated. Nevertheless, all previous examples have in common that the data 
on which the reconstruction is based is a solution of the direct problem and hence should match the inverse 
problem. In real applications, the input data in the form of the free surface velocity and the ablation function 
which are needed to solve the inverse problem as well as all input parameters like A and ρ are variables which 
have to be measured first. The quality of the input data hence depends on the measurement quality and is also 
affected by experimental errors and possible noise. Since the knowledge of the ice rheology is crucial for the 
direct problem, and its sensitivity on the solution has already been studied in Martin and Monnier in [30], we 
focus in the following only on the variation of the field variables a and us���⃗  and study the robustness of the 
inverse solution with respect to a variation thereof. In general, the field variables a  and us���⃗  are each 
superimposed with a perturbation of the form 

𝑎𝑎� = 𝑎𝑎 + 𝑅𝑅𝑎𝑎(𝛼𝛼,𝑦𝑦), 

𝑢𝑢�⃗ 𝑠𝑠� = 𝑢𝑢𝑠𝑠����⃗  + 𝑅𝑅�⃗ 𝑢𝑢(𝛼𝛼,𝑦𝑦), 
(23) 

where Ra(x, y) ∈ [amin , amax ] is a perturbation function for the ablation function and R��⃗ u(x, y) is a vector 
valued perturbation for the surface velocity with the first component in the interval [umin  , umax  ] and the 
second component in the interval [vmin  , vmax  ]. Each effect in eq. (23) is studied separately and different 
forms of perturbations are considered. In a first step, perturbations of a short length scale are superimposed 
such that in the discretization scheme, each point of the function values at the grid points Ra(xi, yi) is point 
wise distributed equally within the interval. This simulates the influence of noise on the inverse solution which 
could occur in the presence of experimental measurement errors. In a second step, the perturbation is 
superimposed in the form of a long-scale variation which indicates the influence of systematic measurement 
errors. The typical shape of the perturbations are summarized in Figure 9, where the perturbed ablation function 
and velocity component in the x-direction are shown. We note that the maximum amplitude of the long-scale 
perturbations for the ablation function are reduced compared to the short-scale perturbations since the 
simulations have shown that the solution of the inverse problem is more sensitive to perturbations of the 
ablation function than to the velocity field. The perturbations shown in  Figure 9 are of the order of 10% to 40% 
of the maximum value of the ablation function in (a) and in the order of 15% for the velocity field in (b). 
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(a) 

 

 (b) 

 

Figure 9: Shape of the superimposed errors in a cross section y = 1000m. (a) perturbation of the ablation function and (b) 

perturbation of the velocity. Only the x-component of the velocity is shown. The limits of the perturbations are [𝒂𝒂𝐦𝐦𝐦𝐦𝐦𝐦,𝒂𝒂𝐦𝐦𝐦𝐦𝐦𝐦] =

[−𝟐𝟐,𝟐𝟐] (a), [𝒖𝒖𝐦𝐦𝐦𝐦𝐦𝐦 ,𝒖𝒖𝐦𝐦𝐦𝐦𝐦𝐦 ] = [−𝟏𝟏,𝟏𝟏], [𝒗𝒗𝐦𝐦𝐦𝐦𝐦𝐦 ,𝒗𝒗𝐦𝐦𝐦𝐦𝐦𝐦 ] = [−𝟐𝟐,𝟐𝟐] (b) for the short scale perturbation and [𝒂𝒂𝐦𝐦𝐦𝐦𝐦𝐦,𝒂𝒂𝐦𝐦𝐦𝐦𝐦𝐦] =

[−𝟏𝟏.𝟏𝟏,𝟏𝟏.𝟏𝟏] (a), [𝒖𝒖𝐦𝐦𝐦𝐦𝐦𝐦 ,𝒖𝒖𝐦𝐦𝐦𝐦𝐦𝐦 ] = [−𝟏𝟏,𝟏𝟏], [𝒗𝒗𝐦𝐦𝐦𝐦𝐦𝐦 ,𝒗𝒗𝐦𝐦𝐦𝐦𝐦𝐦 ] = [−𝟐𝟐,𝟐𝟐]  (b) for the long scale perturbation. All other parameters 

are as in the introductive example. 

For the first step, we consider only the influence of perturbations of the ablation function and velocity field 
on the reconstruction of the ice thickness. We therefore take again the synthetic example from eq. (6) and (7), 
solve the direct problem with the given topography and then consider the inverse problem with the perturbed 
data as in eq. (23). The results of the reconstruction of the glacier thickness are shown in Figure 10. We find 
from (a) and (c) that for noisy input data where the noise frequency is of the same magnitude as the numerical 
resolution we can reasonably reconstruct the glacier thickness for most of the cases. The perturbation leads to a 
noisy solution but the solution remains mostly bounded, except for the perturbation of the velocity field in (c) at 
the upper end of the glacier. Nearly the same effect is observed for long-scale perturbations in (b) and (d) where 
deviations only occur at the lower end of the glacier.  

The next step involves the reconstruction of the topography from the glacier thickness computed in Figure 
10 by solving eq. (22) with the perturbed input data and finally identifying the bedrock by evaluating zb = S −
H. The results are shown in Figure 11. We observe that the integration leads to an accumulation of errors and 
hence the deviation between the original solution and the inverse solution increases in the downslope direction. 
The integration constant is determined at x0 = 970m where we assume the glacier bedrock to be known and 
as a consequence of the summation of errors, the solution quality decreases far away from this location. A very 
simple way out to significantly improve the quality 
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(a) 

 

 (b) 

 
(c) 

 

(d) 

 

Figure 10: Influence of the perturbation of the ablation function (a) short scale, (b) long scale and the velocity field (c) short 

scale, (d) long scale for different random data on the glacier thickness. Cross section at 𝒚𝒚 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏. All other parameters are 

as in the introductive example. 

of the reconstruction is to use another integration point where the bedrock is known which is far away from the 
initial point. The integration then leads to a solution which has a much better quality in the downslope region. 
Both solutions are then combined to form a solution over the whole solution domain. It has to be noted that 
adding further integration points could be used to further improve the quality. An example for an additional 
point at x0 = 3000m is added and the combined solution which is obtained by weighting the components is 
shown in Figure 12. We find that the only major deviations occur at the upper and lower end of the glacier 
bedrock. The method with adding further points as integration constants and then combining the weighted 
solution increases the agreement between the original bedrock and the reconstructed bedrock. 
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(a) 

 

 (b) 

 
(c) 

 

(d) 

 

Figure 11: Influence of the perturbation of the ablation function (a) short scale, (b) long scale and the velocity field (c) short 

scale, (b) long scale for different random data on the bedrock shape. Cross section at 𝒚𝒚 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏. All other parameters are as 

in the introductive example. 

4 Conclusions 

This study presents a new numerical technique to infer both the free surface elevation and the location of 
the bedrock from observation of the ice-surface velocity field and the prior knowledge of the surface mass 
balance and basal conditions. The basis of this numerical technique is the shallow-ice approximation and the 
corresponding governing PDE. Consequently, the inherent limitations of this approximation also apply to the 
inverse reconstruction algorithm. The reconstruction algorithm is a two-step process. In the first step, the 
governing PDE is rearranged such that it takes as an input the ice-surface velocity and solves for the ice-
thickness. The second step takes advantage of the explicit relationships between the ice-surface velocity and the 
glacier surface elevation. When rearranged these relationships lead to an integral equation which when 
integrated leads to the reconstruction of the glacier surface height. Compared to other techniques developed to 
solve similar inverse problems, this technique offers the advantage that it delivers the reconstruction through 
the solution of a single PDE. Many other techniques require an iterative process whereby each iteration 
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involves the solution of a PDE which may end up being a costly process from the computational standpoint. 
The numerical technique was tested on synthetic data, i.e. data generated by the 

(a) 

 

(b) 

  
(c) 

 

(d) 

 

Figure 12: Influence of the perturbation of the ablation function (a) short scale, (b) long scale and the velocity field (c) short 

scale, (b) long scale for different random data on the glacier thickness. Cross section at 𝒚𝒚 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏. The solution is  with a 

weighted combination with 𝒙𝒙𝟏𝟏 = 𝟗𝟗𝟕𝟕𝟏𝟏𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝒙𝒙𝟏𝟏  =  𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏. All other parameters are as in the introductive example. 

direct solution of the shallow-ice approximation. A primitive glacier with a bump or a depression and a more 
realistic “rugged” glacier were tested. For an ideal dataset, free of noise or error, the reconstruction of both the 
ice-surface elevation and the bedrock is shown to be excellent, as one would expect since the same PDE is 
solved. Note however that this is not guaranteed when solving such problems using PDE constrained 
optimization. When noise is added to either the ice-velocity field or the surface mass balance, the accuracy of 
the reconstruction naturally degrades, particularly for the ice-surface elevation for which the error accumulates 
due to the integration operator. However, the reconstruction still proves robust with the error in the 
reconstructed fields bounded and the trend well-captured for error in the input data as high as 40% for the 
ablation function and 15% for the ice velocity. It is also found that the accumulation of error resulting from the 
integration can be mitigated by using more than one reference point to fix the integration constant. The true test 
of the success of this algorithm is with real field data, which will be our future endeavor.  
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