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Abstract: The extent of glaciation in alpine valleys often gives clues to past climates, plate 

movement, mountain landforms, bedrock geology and more. However, without field investigation, 

the degree to which a valley was affected by a glacier has been difficult to assess. We developed a 

model that uses quantitative parameters derived from digital elevations model (DEM) data to predict 

whether a glacier was likely present in an alpine valley. The model’s inputs are mainly derived from 

the basin hypsometry, and a new parameter termed the Hypothetical Basin Equilibrium Elevation 

(HBEE), which is based on the equilibrium elevation altitude (ELA) of a glacier. We used data 

mining techniques that comb through large data sets to find patterns for classification and prediction 

as the basis for the model. Four classifiers were utilized, and each was tested with two different 

training set/test data ratios of nearly 150 basins that were previously delineated as fully- or 

non-glaciated. The classifiers had a predictive accuracy of up to 90% with none falling below 72%. 

Two of the classifiers, classification tree and naïve-Bayes, have graphical outputs that visually 

describe the classification process, predictive results, and in the naïve-Bayes case, the relative 

effectiveness towards the model of each attribute. In all scenarios, the HBEE was found to be an 

accurate predictor for the model. The model can be applied to any area where glaciation may have 

occurred, but is particularly useful in areas where the valley is inaccessible for detailed field 

investigation. 
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1. Introduction  

The study of alpine valleys and glacial landscapes requires interdisciplinary knowledge, including 

geology, geography, tectonics, and geomorphology [1–6] Understanding them helps give clues to past 
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climates, plate movement, mountain landforms, bedrock geology and more. Those alpine valleys have 

been created by a combination of tectonic and erosional processes. The erosive capability of fluvial and 

glacial systems has been an area of intense research [7–12]. Alpine regions dominated by fluvial 

activity typically have concave long profiles and V-shaped cross-sections through the valley. The 

comparatively steady flow of a river down-cuts the valley at its lowest point, leaving a cross-section 

with near constant slopes [13] or possibly terraces where substantial changes in stream flow have 

occurred at times to modify the valley [14]. On the other hand, alpine areas that have been subject to 

glacial activity also have concave upward long profiles, but those occur at the lower reach of the valley 

and exhibit a more knobby profile at the headwaters [15]. This occurs because glaciers generally 

develop in cirques at the upper reach of a valley until they break through or flow over the barrier walls. 

The ice then travels down the valley and forms moraines at possibly several termini. Glacial valleys 

also typically have a U-shaped cross section [13]. In a temperate glacial system where the ice moves 

down the valley on a thin layer of water, it primarily erodes the bed of the valley. However, because of 

the size, relative amount, and internal flow of the ice, the sides of the valley are also eroded [16]. The 

river systems are generally considered to be less erosive than glacial ice; however, some evidence 

indicates the fluvial systems are at least as erosive, if not more in some cases [11].  

Historically, the influence of glaciers on valley formation, if present at all, has been primarily 

determined by field investigations searching for residual evidence, and by analysis of geologic and 

topographic maps [17]. Quantitatively representing them, however, has been a large struggle and has 

been the focus of research in the recent past [13,18,19–22]. Swanson [18] attempted to quantitatively 

study the morphology of a glaciated valley by investigating the slope, curvature, and elevation 

distribution of both glaciated and non-glaciated basins. He used these quantitative measures in 

developing various plots (e.g. frequency distribution or box and whisker) to illustrate the differences 

between glaciated, partially glaciated and fluvial landscapes. Swanson also graphed the area 

distribution compared to the elevation, which explores how land mass is distributed through a basin. 

Swanson’s work presented several quantitative parameters of basins to compare glaciated and 

non-glaciated landscapes, highlighting their differences. But those comparisons were only based on 

the graphs and their shapes, and he did not present a method or model to predict whether a separate, 

unknown basin would have been modified by glacial erosion. Bonk [20] also utilized measurable 

parameters of mountain valleys, including slope angle, slope aspect and curvature, but used them to 

identify and define terrain-form objects.  

Similarly, Amerson et al. [19] compared the morphometry of glaciated and fluvial valleys by 

studying their valley relief, width and cross-sectional area, and relating those to the drainage basins 

of each valley. They developed power-law regression equations for the three parameters based on the 

basin areas and concluded that the valley relief, width, and cross-sectional area in fact scale with the 

drainage areas differently between glacial and fluvial basins. The authors compared the glacial and 

fluvial valleys and quantitatively proved a difference. However, they also did not offer a model or 

algorithm for glaciation prediction. 

Sternai et al. [13] used the hypsometric curve (i.e. frequency distribution of elevations) to 

describe how glacial erosion influences elevation distributions in alpine valleys and to help 

characterize fluvial and glaciated landscapes. They defined a new parameter called the hypsokyrtome 

that compares the gradient of the hypsometric curve to a reference value. They found that the 

hypsokyrtome and the hypsometric integral (area under the curve) are useful parameters to indicate 

geographic areas where glacial erosion was present. 
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To the best of our knowledge, a method that has not been explored with or linked to the 

quantitative morphological studies of glacial valleys is data mining, or knowledge discovery from 

data (KDD). This is a relatively new technique that combs through large data sets to find patterns in 

the data that can be used for associations or correlations, classification or prediction, and a host of 

other analyses [23,24]. Closely related to data mining is machine learning, of which the goal is to 

generalize a set of observed data for use with new, unobserved data [25]. Of importance to this 

project is the classification of data, a technique for predicting a group or category for some event 

based on a set of attributes and an input model [26].  

The specific goal of this research is to develop and test a quantitative model that depicts the 

extent to which alpine valleys have been glaciated based on previously studied basins that have been 

categorized as glacial or non-glacial (i.e. whether glaciers have significantly modified the basin). The 

model will be based primarily on the form and statistics of the hypsometric curve (area-elevation 

curve, details below) for each valley and will be created by using various data mining techniques. 

The model will ultimately be utilized to predict the extent to which a valley was glaciated based on 

the same attributes, which can be easily obtained from digital elevation model (DEM) data. 

2. Study area, data, and basin delineation  

2.1. Study area 

The study area consists of 6 mountainous regions where the extent of glaciation have previously 

been studied and published. The first region included is from the eastern Sierra Nevada range in 

east-central California. The area consists mainly of homogenous Cretaceous granodiorites and quartz 

monzonites and has a uniform uplift rate of approximately 0.2mm/yr predominantly due to strike/slip 

motion in the Owen’s Valley Fault to the east [8]. Also included is a portion of the Sangre de Cristo 

Range in southern Colorado with Paleozoic sedimentary units and Precambrian metamorphic rocks 

and faulting slip rates of approximately 0.1–0.2mm/yr [17]. The third region is along the eastern side 

of the Ben Ohau Range in New Zealand. It is predominantly composed of greywacke and 

argillaceous metasediments with some schist and localized volcanic rock; uplift rates are near 

0.8mm/yr [17]. The degree of glaciation ranges from non- to fully-glaciated with varying intermediate 

designations and was determined by investigating geologic maps, aerial photographs, topographic 

maps and independent field observations [17]. The Bitterroot Mountains in western Montana have a 

metamorphic core complex with metasedimentary rocks to the north and granite to the south (54) and 

the uplift from the fault slip rate is approximately 0.14mm/yr [27]. In northwest Washington State, the 

Olympic mountain complex consists mainly of clastic sediments in three units, primarily composed of 

turbidite sandstones with pillow basalts [1,28]. The range has basins that were previously classified 

from analysis of geologic maps as glaciated, partially glaciated or unglaciated [29]. Lastly, a portion of 

the Sawtooth Mountains in south-central Idaho were included as study sites, which had been classified 

as either glaciated or fluvial based on analysis of geologic maps, digital elevation models (DEMs) and 

aerial photographs along with field reconnaissance studies [19]. The area consists mostly of Cretaceous 

biotite granodiorite, biotite granite, and rhyolitic to andesitic dikes [19]. 

Given that the focus of this research was mainly methodological in terms of defining a 

classification model, the focus was not on the climate or tectonics of each of the study areas, 

although they were noted. In gathering the data, the study areas were collected from varying 
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geographic regions in order to establish a more robust model. And it is believed that the varying 

climate and tectonics of the areas should actually make the model more powerful in that it is based 

on data from different regions and settings. Furthermore, these sites were selected because in most of 

the selected ranges, the degree of glaciation was spatially variable, there is no pattern of glaciation 

through the range that is immediately apparent. The two exceptions are the Bitteroot site where the 

north and south facing slopes are either glaciated or non-glaciated, respectively, and the Sawtooth 

Mountains where the glaciation is longitudinally variable with the glaciated basins falling entirely to 

the east of the non-glaciated basins. The spatially variable arrangement is useful because it eliminates 

the necessity for geographically weighted variables, possibly making the hypsometric parameters 

included herein more apparent. Another reason for selecting the sites used in this study is that none of 

them were dominated by either glaciated or non-glaciated basins, the count for each type is 

approximately equal. This makes for a larger bank of basins of both types to base the classification 

model on. 

2.2. Data and basin delineation 

Morphometric analysis for this study was performed using ArcGIS and MATLAB software, and 

was based on 30-meter DEMs obtained from the United States Geologic Survey (USGS) National 

Elevation Dataset and EarthExplorer databases. The basins were defined using the projected DEMs 

by first filling any anomalous low points with the “Fill” function in ArcGIS. The flow direction and 

flow accumulation grids were calculated using their respective functions. In order to create basins at 

the correct size, all cells above some threshold were selected from the flow accumulation grid to 

define streams and the cells flowing into numerous streams were grouped to form different 

watersheds. For the purposes of this research, the flow accumulation threshold was chosen so that the 

derived watersheds closely matched the basins previously defined. To further assure that the 

delineated watersheds closely match those from previous studies, outlet points and, in some cases, 

manual editing were used.  

There were a total of 190 basins described above and 75 of them have been designated as 

Fully-glaciated (“full”), 46 with minor, moderate, or significant glaciation (“intermediate”), and 69 

as Non-glaciated (“none”). For this study we concentrated on the extreme cases, i.e., the “full” and 

“none” cases, giving a sample size of 144 basins to consider. 

3. Quantitative parameters 

3.1. Hypsometric attributes 

Hypsometric analysis is the comparison between elevation and area encapsulated by that 

elevation [30]. The curve takes the form of a cumulative graph with elevation on the vertical axis and 

area on the horizontal. Both of these are normalized by dividing the measured values by the 

maximum of the basin, making the range of possible values of the elevation and area 0 to 1. This 

allows the different basins from different regions to be compared easily [31]. The curve can be 

described as a cumulative probability distribution based on the elevation and area of the basin, 

resulting in an s-shaped curved that can be represented by a polynomial function [32,33].  
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The area under the curve is the hypsometric integral (HI). It is a quantitative measure of the 

development stage or age of a drainage basin in terms of the drainage maturity and ranges between 0 

and 1 on the normalized graph. For example, an HI near 1 is indicative of a youthful stage and the 

curve is commonly convex in shape [33]. This implies that the HI is at least partially representative 

of the stage of development and that it can be utilized to compare landscapes of varying origin or 

modification. HI can be calculated as (1) where x is the relative area and f(x) is related to the relative 

height.  

However, curves with very different shapes could have similar HI values [34,35]. Harlin [34] 

developed 4 other parameters to supplement the HI that are derived by treating the hypsometric 

curve as a cumulative probability distribution and calculating the statistical moments. These 

parameters are the skewness (SK), kurtosis (KU), density skewness (DSK), and density kurtosis 

(DKU) (refer to [34] for complete derivation). In statistics, skewness is representative of the 

asymmetry of a distribution about the mean, being either positive (skew to the right) or negative 

(skew to the left) [25]. Kurtosis is a measure of the “flatness” or “peakedness” of a function 

compared to the normal distribution [25].  

The density skewness and density kurtosis are the skewness and kurtosis of hypsometric density 

function, being the first derivative of the hypsometric curve [36]. The attributes defined (HI, SK, KU, 

DSK, DKU) describe different aspects of the shape of the curve, and they also portray certain 

properties of the basin. For example, the HI is indicative of the amount of material remaining after 

surface erosion [30], the skewness represents the amount of headward erosion in the upper reach, 

density skewness is indicative of slope change, kurtosis reflects the erosion in the upper and lower 

reaches and density kurtosis signifies the amount of midbasin slope [34]. For this study, the derived 

watershed boundaries as described above were used to clip the DEM for deriving each basin’s 

hypsometric curve and related attributes using the GIS extension CalHypso [33]. 

3.2. Hypsometrical basin equilibrium elevation (HBEE) 

In addition to the hypsometric attributes attained with the CalHypso tool, a fifth parameter is 

herein introduced that is theoretically based on the equilibrium line altitude (ELA) of a valley glacier 

and is termed the hypothetical basin equilibrium elevation (HBEE). The ELA is the elevation within 

the valley where the deposition of glacier-forming snow is equal to the ablation [21]. Above the ELA 

there is a net gain of snow and below it there is a net loss of snow. The ELA is directly related to the 

temperature, topography and climate of the region [21] and is therefore dynamic both seasonally and 

over longer time periods. In the valley, the region at or near the ELA is also the area where 

maximum erosion occurs. Here, the ice is thickest, leading to increased sliding velocity, and 

increasing the potential to scour or pluck more material from the valley floor [37]. Current and 

reconstructed glaciers typically have more accumulation area than ablation area, and ratio of 

accumulation area to the total glacial area (accumulation area ratio, AAR) has a typical range of 

0.5–0.8 [15,38]. 

The concept of ELA is defined relative to the surface of glacial ice, which is difficult to obtain 

for past glaciers. Our HBEE is conceptually similar to ELA but defined relative to present day 

topography, which is readily available. Since present day topography is a result of erosion from past 

erosional processes, including glaciers, the HBEE offers a quantitative measure to link present 

topography to possible past glacial activities. The HBEE can be derived automatically using a 
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program. The program (written in MatLab) starts with an initial elevation at the bottom of the basin 

and finds the ratio of the area of the watershed that lies above this initial elevation to the total area of 

the watershed (i.e., the AAR). It then examines if the AAR is at the desired value (e.g., 0.57, [39]). If 

not, the elevation is increased a small increment and the process is repeated. The process stops when 

the AAR is at or just above the desired value; the elevation at which the ratio is satisfied (i.e., the 

desired AAR) is the HBEE for that watershed. One example is shown in Figure 1. The program is 

automated to process all the watersheds in this study, one watershed at a time. 

 

Figure 1. HBEE definition of a sample alpine basin. Figure 1a shows the elevations 

distribution (blue being lowest elevation and red being highest). Figure 1b is the 

same basin with the area above the HBEE shaded in brown. 

Similar to the ELA, the HBEE will not only vary between basins, but also from region to region 

because it is affected and dictated by the climate and environment.  This makes it impractical to use 

the measured HBEE elevation directly in any analysis. To make it comparable between regions, we 

normalize the HBEE by creating a ratio of the calculated HBEE for each basin of a region to the 

median HBEE for that region. This creates a standardized HBEE for each basin that can be compared 

with other basins. This is useful because the HBEE of each basin in a particular range can be 

compared against that in other, separate regions that show varying degrees of glaciation. We also 

considered creating a ratio with the minimum, maximum and average values over each range but 

excluded them because they were not as effective as predictors or the possible range of values was 

too large and not comparable with the other regions. 

4. Data mining analysis 

We use a popular data mining software, Orange, developed by the Bioinformatics Laboratory at 

the University of Ljubljana, Slovenia, as our tool for the data mining analysis.  It has a visual 

programming component that allows for easy data-input and manipulation through widgets that can 

be assembled to create and test several classifier routines and models concurrently [23,40]. 

For this research, we compiled four separate classifiers that simultaneously create separate 

functions to predict the extent of a basin’s glaciation based on the hypsometric variables and HBEE. 

Those classifiers are classification trees (CT), random forest (RF), naïve Bayes (NB), and k-nearest 

neighbors (kNN). 

Classification tree: This type of classifier algorithm works by recursively splitting 

independent variables into branches through several iterations until a data sub-set is accomplished 

that includes only instances of the same class and another split is either not possible or it is not 

b) a) 
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beneficial to the model [41]. A “tree” is formed in that the model starts with a root variable and splits 

it into 2 subsets, and the process is repeated with other independent variables, creating “branches” 

and “leaves” with the optimum outcome. The optimum split and pruning rules are controlled by 

heuristics to create small but accurate trees that don’t over-fit the data [41]. 

Random Forest: As the name implies, the random forest classifier is a collection of 

classification trees classifiers that are constructed from independent but identically distributed 

random vectors and then each tree casts a vote for the most popular classification of the dependent 

variable [42]. This approach aims to correct the problems of over-fitting the training data to make a 

tree too complex and pruning a fully grown tree that may increase the generalizations on the training 

data [43]. 

Naïve Bayes: The Naïve Bayes classifier uses conditional and unconditional probabilities 

based on the training dataset to predict the class a sample would belong to. It is one of the most basic 

and accurate predictive methods available. The unconditional probability comes from the number of 

instances for each class in the training set divided by the total number training samples [41,44]. The 

conditional probability is created by multiplying the prior unconditional probability by the 

probabilities of the attributes to some outcome (i.e. the probability of an outcome is based on the 

product of the prior probability and the probability that an attribute contributes to the outcome) [41]. 

K-Nearest Neighbor: the kNN approach predicts the outcome of an unknown dataset based on 

similar instances from a training set with the same parameters and uses the trainer’s most prominent 

classification to assign a predictive class for the unknown [41]. In other words, the reference points 

from the training set are plotted in a d-dimensional space and a point to be classified (or query point) 

is located. The distances from the query point to the reference points are calculated and the class of 

the k-nearest ones are used to classify the query point (Figure 2) [45]. 

 

Figure 2: Illustration of the kNN search strategy (from [45]). The red cross indicates 

the point to be classified (query point). Blue dots represents reference points. The 

query is classified based on k nearest reference points. 

5. Results 

Using the ArcGIS software and CalHypso extension, we obtained the values of HI, SK, KU, 

DSK, and DKU for the 144 basins. We expected the average values related to each of the parameters 

to be significantly different between fully-glaciated and non-glaciated basins; however, the averages 
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for some of the groups are surprisingly similar. For example, the average HI value for the 

non-glaciated basins is 0.506 while the value for the fully-glaciated basins is 0.497, and the results 

are similar for the kurtosis and density kurtosis. 

Since some of the averages were similar, we ran regression analysis on the assigned glaciation 

designation against all of the hypsometric attributes and the HBEE to help identify the parameters that 

contribute more to the model. The result showed that, based on the t-statistics (overall R
2
 = 0.43), the 

HI, SK, KU, and HBEE are all statistically significant at a 95% confidence level, whereas the DSK and 

DKU were not. In other words, the model is significantly influenced by 4 of the 6 parameters. 

With the Orange software, we can specify which variables should be used to build the model, 

how many samples are to be used to train the model and how many samples are to be used to test the 

model result and derive accuracy. For variables, we used all of the hypsometric attributes (HI, SK, 

KU, DSK, DKU, & HBEE) and during a second version of the model only those that were found to 

be significant in regression analysis (HI, SK, KU & HBEE). For samples, three scenarios were 

presented. First, all 144 samples were used to train and build the model and the resultant model was 

applied back to classify the samples and derive accuracy. This approach usually results in overfitting 

of the model and overestimate of accuracy [25], with kNN method producing 100% accuracy (Table 1). 

Second, 80% of the samples (115 basins) were used to train the classifiers and the resultant model was 

applied to test the separate, remaining 20% of the samples (29 basins), which did not participate in 

the training, and were used to derive the model accuracy. This approach usually produces more 

reliable accuracy estimate [25] and as shown in Table 1, the model correctly classifies up to 90% of 

the testing subset, with the kNN analysis being the most successful. The dual-set training and testing 

model building method (using 80% and 20% in our case) is an accepted way to create a classification 

model. A similar 3-way approach (using training, calibration and testing) was not implemented 

because the Orange software we chose to use does not explicitly allow for a calibration step and 

seems to handle that internally with the training step. Third, a cross-validation approach is used, in 

which all but one sample were used to train the model and that one sample used for validation. This 

process is repeated, each time with a different sample left out [46]. This approach also produces a 

reasonable accuracy estimate, comparable to that of the second scenario (Table 1). Ultimately, the 

results show that kNN model is the best, with overall accuracy reaching 90%, a conclusion that is 

further supported by the user and producer accuracies of the model (Table 2).  

Table 1: Overall classification accuracy of the predictor model for 4 classifiers 

 100% training, 100%test 80% training, 20% test Cross-validation 

 HI, SK, KU, 

HBEE, DSK, DKU 

HI, SK, KU, 

HBEE 

HI, SK, KU, 

HBEE, DSK, DKU 

HI, SK, KU, 

HBEE 

HI, SK, KU, 

HBEE 

NB 76% 78% 76% 76% 72% 

RF 92% 92% 86% 83% 78% 

CT 96% 97% 72% 69% 76% 

kNN 100% 99% 90% 86% 81% 

(NB=Naïve Bayes, RF=Random Forest, CT=Classification Tree, kNN=k-nearest neighbors). Values 

represent percentage of test data accurately classified with prediction model 
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Table 2: User and producer accuracy of the predictor model for 4 classifiers 

 HI, SK, KU, HBEE, DSK, DKU 

 100% training, 100% Test 80% training, 20% Test 

 User Producer User Producer 

 None Full None Full None Full None Full 

NB 73% 79% 84% 67% 79% 73% 73% 79% 

RF 93% 91% 92% 93% 87% 86% 87% 86% 

CT 95% 92% 96% 90% 82% 67% 60% 86% 

KNN 100% 100% 100% 100% 93% 87% 87% 93% 

 HI, SK, KU, HBEE, DSK, DKU 

 100% training, 100% Test 80% training, 20% Test 

 User Producer User Producer 

 None Full None Full None Full None Full 

NB 76% 80% 84% 71% 72% 82% 87% 79% 

RF 93% 91% 92% 93% 78% 91% 93% 86% 

CT 96% 97% 97% 96% 69% 69% 73% 86% 

KNN 100% 99% 99% 100% 87% 86% 87% 93% 

6. Discussion 

The results presented above show that the hypsometric attributes and the derived HBEE can 

reliably predict the existence of glaciation in a mountain valley with up to 90% accuracy. In all cases, 

the kNN model performed the best, showing that a predictive model that works on a case-by-case 

basis outperforms the ones that try to generalize the data and create a set of equations of if-then 

scenarios to guide the user towards a prediction. However, that is also one of the disadvantages of 

the kNN model, there is no output for the user to follow or apply to other datasets. On the other hand, 

the other three classifier methods have a visual or methodical output to follow. For example, the 

classification tree and random forest classifier can be graphically depicted as a set of nodes and 

edges, or leaves and branches (Figure 3). The classifier systematically splits the variables at a natural 

break point of the independent variables (HI, SK, KU, DSK, DKU and HBEE for this model) and 

classifies them as glacial or non-glacial. From Figure 3, the top node (or the root) initially uses the 

SK variable and splits it at 0.325 so that those basins with a value less than or equal to 0.325 are 

classified as fully-glaciated and those greater than that value are non-glaciated; this is the most basic 

classification. The nodes or variables continue to be split until a reasonable solution is no longer 

possible or the maximum number of branches is reached [26]. At the twelfth and final node, the class 

decision is: 

If the SK is greater than 0.325 and DKU greater than 1.390, and SK less than or equal to 0.611, 

and DSK less than or equal to 0.373, and HBEE between 0.932 and 1.069, and DKU greater than 

1.553, and SK less than or equal to 0.481, and DSK less than ﹣0.212 and less than ﹣0.386, then 

the basin falls under the non-glaciated class. 

This example may be a case of the data being overfit, especially given the small range listed for 

the HBEE [42,47,48]. In any case, there are several possible splits, nodes and solutions to the class 
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prediction between the first and seventh node, and the classification tree gives the user an easy 

interface and simple solution for the prediction. 

Like the classification tree, a nomogram is another method to visually represent the class 

solution. Associated with the naïve Bayes classifier, nomogroms graphically depict the quantitative 

relationships of two or more parameters and were originally designed for physicians to use as a 

diagnosis probability tool [49]. The nomogram for this basin classification is shown in Figure 4. The 

range of possible values for each attribute are plotted on the y-axes. The attributes share an x-axis, 

designated by a scale ranging from ﹣100 to ﹢100 along the top of the graph, which reports a point 

value that measures the contribution of each attribute to the model. The light dotted line which 

extends through all of the single graphs is aligned at 0 and only signifies where the points break 

between positive and negative. As the user selects a value for one of the attributes by moving along 

the y-axis, the point value corresponding to that value is reported from the x-axis. The points move 

independently for the separate attributes, and are summed in the bottom scale with the same range. 

This means that as one attribute increases the total points with a positive move, another attribute 

could decrease the total with negative points. The summed points are linked to the probability scale, 

which ranges from 0 to 1.0. It indicates the likelihood of the measured feature being a member of a 

selected group or target class (e.g., non-glaciated in this case) (see [49] for a detailed discussion of 

the algorithm relating the points and probability). The nomogram in Figure 4 (i.e. the probability 

scale at the bottom) reports the likelihood of a basin belonging to the non-glacial class. In some cases, 

there is not a constant or direct relationship between the attribute value and the point value (i.e., as 

the attribute value moves from the minimum to maximum, the associated points may vary in a 

non-linear fashion, or even switch between positive and negative). For example, for the SK variable, 

based on Figure 4, from approximately 0.22 to 0.44, the points increase with the SK, but above 0.44, 

the probability begins to decrease. The nomogram from Figure 4 is also sorted in the order of 

variable influence with the most influential (HBEE) at the top and having the greatest width. 

Therefore, a small change in the value of the HBEE causes a large change in the points and 

probability whereas the opposite is true for the HI. While it’s not expected that the HI be the least 

influential in the model, it is a reasonable conclusion because it has been shown that the HI as a 

single variable has given mixed results as a predictor [35].
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Figure 3: Classification tree model output to predict non-glaciated basins. Shaded nodes indicate the majority class probability 

(blue=non-glaciated, red=glaciated) for the remaining number of instances or basins. Pie-charts at each node indicate distribution of 

glaciated and non-glaciated basins after the split. 
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Figure 4: Nomogram for non-glaciated predication based on the Naïve Bayes 

predictor. See text for details. 

Regarding the SK, as the value is increased, the likelihood that the basin is non-glacial also 

increases. (This is generally true, although at the highest values of SK the probability actually 
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decreases, but not by a significant amount.) This is further exhibited by comparing the SK values of 

two typical hypsometric graphs shown in Figure 5; the non-glaciated graph has a very different shape 

and a considerably larger SK value. Recall that SK shows the asymmetry of the graph, and it is 

apparent that the graph of a non-glaciated basin is more skewed than the glaciated graph. The same 

amount of change in relative elevation near the top (y-axis) corresponds to a smaller change in relative 

area (x-axis) for the non-glacial basin than that for a glaciated basin. The area-elevation or slope 

comparison for non-glaciated basin in Figure 5 is consistent with a typical basin with fluvial origins, 

the slope at the top of the basin is fairly large and then gradually decreases towards the bottom as the 

size of the stream increases and stabilizes (Horton 1945) [50]. The red highlighted contour lines in 

Figure 6 correspond to approximate breakpoints on the hypsometric graph. In the non-glaciated basin, 

the contours are 3750and 2850, which correspond to 0.8 and 0.2 elevation ratios, respectively. The 

contours between the highlighted lines show a gradually decrease in steepness with a decrease in 

elevation, similar to the slope of the hypsometric graph. In the glaciated basin highlighted the contours 

are 3700 and 3050, which correspond to 0.8 and 0.5, respectively. There is no significant change in the 

steepness of the basin as depicted by the spacing of the contours between the highlighted contours. 

However, the change in the area between the highlighted contours is evident, showing the relationship 

between the area and elevation. 

 

Figure 5: DEM with 50m interval contours, hypsometric graphs and attributes for 

both glaciated and non-glaciated basins. The Cold basin is part of the Sangre de 

Cristo Range (California range and the Lone Pine basin is located in the Sierra 

Nevada (California) range[17]. 

The shape of the hypsometric graph from the glaciated basin reflects a process of mass removed  
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from the top of the basin (possibly via cirque formation), and the mass being transported towards the 

bottom of the basin, with an extreme amount of erosion occurring with the glacier. That mass is 

probably not completely transported out of the basin though, as it may be deposited as moraines 

mid-basin, where the glacier ceased moving further down. The result is steeper slopes at higher 

elevations of the basin and gentler slopes at mid-basin elevations. This phenomenon is reflected in the 

large values of SK, which signify more erosion at the upper reaches of the basin [34,35]. 

The KU is a more difficult parameter to use as a predictive variable and is less significant to the 

model than the HBEE and SK, as indicated in the nomogram of Figure 4. The kurtosis of a graph 

measures its "peakedness", at least for a normal bell curve. Therefore, if the hypsometric graph is 

viewed as only one half of said normal graph, we might expect and actually see that the KU value is 

larger for the non-glaciated basin because the graph is generally steeper (i.e. a sharp peak) (see graphs 

of Figure 5). On the other hand, for the glaciated case the graph has only a very small “peak” towards 

the top and has a convex shape otherwise. The shape of the curve is characterized by a larger change in 

relative area for each unit change in relative height in the mid-basin region. This is consistent with the 

fact that a large amount of mass is eroded and moved from the top of the basin during glaciation, and 

possibly being deposited as moraines downstream. This is also a reflection of the relatively less erosive 

power of a stream at lower elevations than that of a glacier at higher elevations.  

The AAR remains one of the best estimators of the ELA. However, it is sometimes difficult to 

determine where the ablation area is. It is possible to determine the AAR from oblique or aerial photos 

[52]. By locating the short term location of the snowline during the ablation season, Meier and Post [52] 

were able to determine the final AAR of a mountain range. However, in order to do that, knowledge of 

the approximate ablation period is necessary, along with an estimate of the snowline retreat rate and 

apparent snowpack thickness. These measures may require field study and/or first hand knowledge of 

the region that may only come with prolonged study. Furthermore, like the ELA, the AAR is extremely 

variable, both seasonally and over long periods of time. And because of continued geomorphological 

processes, the present day ELA is not consistent with that from the last glacial maximum. Some 

research has even found that the AAR is dependent on the valley shape and size. Kern and László [53] 

suggest that a range of AAR be utilized, either 0.44, 0.54, or 0.64, based on whether a glacier is less 

than 1 km
2
, 1-4 km

2
, or greater than 4 km

2
, respectively. The average area of the basins utilized in this 

study ranged from approximately 1 km
2
 (Bitterroot) to approximately 17 km

2
 (eastern Sierra Nevada). 

Our global estimate of 0.57 is therefore reasonable since that value falls within the presented ranges.  

One of the limitations to using the HBEE is that it is only similar to and not exactly analogous to 

the ELA. The ELA is relative to the surface of glacial ice, comparing the accumulation and ablation 

area. Since our study includes basins that were non-glaciated, no ELA would be calculated for them. 

The HBEE on the other hand, is calculated based on the topography of the entire basin. Therefore, the 

HBEE of a glaciated basin would not match the ELA. However, the HBEE can be calculated for both 

glaciated and non-glaciated basins and does appear to be a satisfactory determinant for differentiating 

between glacial and non-glacial basins. 

Because the hypsometry is a function of both the elevation and the area of the basin, the 

calculated hypsometric attributes are quite sensitive to the basin shape. For example, many of the 

basins used for this research are valleys along mountain ridges that empty into common, larger valleys. 

And depending on the ridge configuration, the individual basins may have a drainage system that 

creates a long “tail” to the valley. That “tail” can affect the hypsometry of the individual basin because 
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it generally has a slope that is comparatively much smaller than the rest of the basin above it, which 

adds undue area to the lower elevations considered in the hypsometric calculations and possibly 

altering the results. We have mitigated these undesirable effect by having the watersheds automatically 

delineated by the GIS software and for the small number of resulting basins with long “tails”, by 

specifying the outlet point of the watershed which allows the routine to correctly delineate proper basin 

boundaries consistent with previous work [17] for our hypsometric analysis. 

This research focuses on the ideal cases at the extremes of valley erosion, being shaped by either a 

glacier flowing down valley or a river cutting it down. However, it is recognized that an interplay 

exists between the two mechanisms. A valley where the initial incision is caused by water and later 

occupied with glaciers is exactly the case the model should detect, given that the valley should have 

clear evidence of glacial erosion. Yet, given the elapsed time since glaciation of some of the ranges 

included in the study, we must account for the opposite where a glaciated valley has been subject to 

fluvial erosion since it was carved out. In that case, the glacial valley would most likely have been 

partially infilled with regolith or sediment. Once the up-valley meltwater or precipitation fed river 

began to flow through, it would most likely cut a small v-shaped incision into the sediment or basal 

rock. During times of large flow such as floods, the valley may fill, spreading fluvial sediment over the 

valley. When the process of down-cutting and flooding in repeated, benches or steps are created across 

the valley.  

The model presented should be unaffected by this post-glacial, fluvial scenario since the model is 

based primarily on mass removal rather than basin shape. Unless the basin was completely filled after 

the glacier retreated, the volume of mass moved by the glacier would probably still be more than what 

the fluvial system could move. Also, the sediment that remains after the glacier is gone would be less 

condensed and more easily transported than the bedrock that the river might otherwise be cutting into. 

7. Conclusion 

Alpine glacial processes are important for understanding past climates, plate movement, mountain 

landforms, bedrock geology and more. The study of alpine glacial processes starts with identifying glacial 

landforms. This has traditionally been accomplished by conducting field work and analyzing topographic 

maps, which is time consuming and impractical for hard to access areas. With ready availability of digital 

geospatial data and advancement of data mining techniques, it is possible and desirable to identify glacial 

landforms automatically and quantitatively.  

This paper represents such an attempt. The point of this research is to create statistical models based on 

measured geospatial data. Furthermore, to quantify the morphology of alpine valleys at watershed basin scale, 

we utilized six parameters derived from digital elevation model (DEM) data, including five hypsometric 

attributes of the basins calculated from the elevation-area plots and one other variable, termed the HBEE, 

which is based on the ELA of a glaciated basin. These quantitative parameters were obtained for 144 glaciated 

and non-glaciated basins, whose origin have been determined from previous studies, in various regions. Based 

on these sample data, four classification algorithms from data mining were then used to build a model using 

the Orange software and various scenarios of training and test samples. The model is capable of predicting the 

outcome of either a glaciated or non-glaciated valley with up to a 90% accuracy based on the kNN classifying 

method, although other methods have lower predictive accuracies. The model can be applied to determine the 

extent of glaciation in places that is difficult to access for field work, but where DEMs can be obtained 

remotely, including extra-terrestrial locations such as Mars [51]. Additionally, users of these methods 
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should understand the advantages of hypsometric data, the importance of a basin’s ELA (herein 

modelled by the HBEE) and the robust modelling power of data mining techniques to tease out patterns 

within data. 

This work is different from previous studies in that it offers a model that is based on measured, 

quantifiable attributes of an alpine basin. The model is also intended to predict where glaciers were 

present. Previous research [13,15,18] has been influential by outlining aspects of alpine basins that can 

be used as predictive attributes, thereby laying a base for a model such as the one presented in this 

research. Some of those aspects were considered or included in this model, but our model takes the 

next step towards being able to investigate regions or landscapes that have limited or no accessibility. 

This model offers a tool for researchers struggling to understand Earth’s past environment, especially 

amid intense climate change discussions.  
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