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Abstract: Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal 

storage and excess caloric intake cause generalized DNA damage, producing genotoxic and 

mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis 

of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such 

as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, 

generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and 

carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, 

when added to tumor cells, can exert an anticancerous effect. They act, analogously to other 

chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward 

apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important 

role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. 

The pathogenic role of the adducts formed by the products of LPO with biological 

macromolecules in the breaking of immunological tolerance to self antigens and in the development 

of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of 

reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the 

respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to 

aldehyde-modified and native DNA is well documented. In contrast, further investigation is required 
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in order to establish whether the formation of adducts of LPO products with DNA might incite 

substantial immune responsivity and might be instrumental for the spreading of the immunological 

responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or 

structurally analogous self protein antigens, thus leading to autoimmunity.  
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Abbreviations and symbols 

AA: arachidonic acid, 5,8,11,14-eicosatetraenoic acid  ADHs: alcohol dehydrogenases 

ALA: alpha-linolenic acid, 9,12,15-octadecatrienoic acid ALDHs: Aldehyde dehydrogenases 

ANA: antinuclear autoantibodies       APCs: antigen-presenting cells 

AR: aldose reductase          BSA: bovine serum albumin 

1,N6--dAde: 1,N6-etheno-2'-deoxyadenosine    dAde: deoxyadenosine 

DAMPs: damage-associated molecular patterns    DCs: dendritic cells 

dCyt: deoxycytidine          -dCyt: 3,N4-etheno-2'-deoxycytidine 

N2-dGuo: N2-propano-2'-deoxyguanosine     dGuo: deoxyguanosine 

1,N2--dGuo: 1,N2-etheno-2'-deoxyguanosine    dsDNA, double-strand DNA 

N2,3--dGuo: N2,3-etheno-2'-deoxyguanosine    EHN: 2,3-epoxy-4-hydroxy-nonanal 

DHA: 4,7,10,13,16,19-docosahexanoic acid    GPX2: glutathione peroxidase 2 

GAPDH: glyceraldehyde-3-phosphate dehydrogenase   GSTs: glutathione-S-transferases 

HCC: hepatocellular carcinoma       HDAC: histone deacetylase 

HDL3: high-density lipoprotein 3       HHE: 4-hydroxy-2(E)-hexenal 

HNE: 4-hydroxy-2-nonenal        HPHE: 4-hydroperoxy-2(E)-hexenal 

HPNE: 4-hydroperoxy-2(E)-nonenal      HSA: human serum albumin 

HSP60: heat shock 60 kDa protein 1      HY-RNAs: histidine-rich RNAs 

KLH: keyhole limpet hemocyanine      LDLs: low-density lipoproteins 

LA: linoleic acid, 9,12-octadecadienoic acid    LMP1: latent membrane protein-1 

LO·: alkoxyl radical          LOO·: lipoperoxyl radical 

LOX-1: oxidized low-density lipoprotein receptor 1   LOOH: lipid hydroperoxide 

LPO: lipid peroxidation         mAbs: monoclonal antibodies 

MDA: malondialdehyde         MSA: murine serum albumin 

NAFLD: non-alcoholic fatty liver disease     NASH: non-alcoholic steatohepatitis 

Nrf2: NF-E2-related factor 2        NZW: New Zealand White 

8-OHdG: 8-hydroxydeoxyguanosine      ·OH: hydroxyl radical 

OHE: 4-oxo-2(E)-heptenal        ONE: 4-oxo-2(E)-nonenal 

oxLDLs: oxidized low-density lipoproteins     OSEs: oxidation-specific epitopes 

PRRs: pattern recognition receptors      PUFAs: polyunsaturated fatty acids 

RA: rheumatoid arthritis         RLIP76: Ral-interacting protein 

RNPs: ribonucleoprotein particles       ROS: reactive oxygen species 

SCE: sister chromatide exchange       SLE: systemic lupus erythematosus 

SOD2: superoxide dismutase 2       SS: Sjögren syndrome 

-CH3--OH-PdG: -methyl--hydroxy-1,N2-propano-2'-deoxyguanosine 
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HNE-dGuo: 1,N2-propano-2'-deoxyguanosine adduct of HNE 

9(S)-HPODE: 9(S)-hydroperoxy-9,11-octadecadienoic acid 

13(S)-HPODE: 13(S)-hydroperoxy-9,11-octadecadienoic acid 

MAP kinases: mitogen-activated protein kinases 

MCL1: induced myeloid leukemia cell differentiation protein Mcl-1 

M1dA: N6-(3-oxoprenyl)-deoxyadenosine 

M1dC: N4-(3-oxoprenyl)-deoxycytidine       

M1dG: malondialdehyde-2'-deoxyguanosine, or pyrimido[1,2-]purine-10(3H)-one-2'-deoxyribose 

-OH-PdG: -hydroxy-1,N2-propano-2'-deoxyguanosine 

-OH-PdG: -hydroxy-1,N2-propano-2'-deoxyguanosine 

ONE-dAde: 7-(2"-oxoheptyl)-1,N6-etheno-2'-deoxyadenosine 

ONE-dCyt: 7-(2"-oxoheptyl)-3,N4-etheno-2'-deoxycytidine 

ONE-dGuo: 7-(2"-oxoheptyl)-1,N2-etheno-2'-deoxyguanosine 

OPdG: N2-(3-oxoprop-1-enyl)-deoxyguanosine 

8-oxo-dGuo: 8-oxo-hydroxy-7,8-dihydro-2'-deoxyguanosine 

PdG: N2-(3-oxopropyl)-deoxyguanosine      

PEITC: beta-phenylethyl isothiocyanate 

PPAR gamma: peroxisome proliferator-activated receptor gamma 

1. Introduction 

In recent years, it has become evident that lipid peroxidation (LPO) products are involved in the 

intracellular signaling mechanisms that determine the cell’s final fate [1]. LPO arises from the 

oxidation of fatty acids induced by oxidative stress causing agents, e.g., oxidants, heat shock, UV 

and X irradiation, metal storage, excess caloric intake and serum starvation. Oxidative stress imports 

increases of reactive oxygen species (ROS) which, in turn, can affect signaling mechanisms in a 

concentration-dependent manner [2]. However, although increased ROS production has been 

observed in several human diseases, such as cancer and neurodegenerative diseases, an increase of 

LPO products is not always present. This is true in particular for cancer cells, which often display 

high levels of oxidative stress, whereas increased levels of LPO products were present only in some 

cancer types, depending on the lipid composition of cellular membranes, the presence of 

inflammation and the level of aldehyde metabolizing enzymes [3,4]. On the contrary, in 

inflammatory and neurodegenerative diseases the increases of ROS almost always were 

accompanied by increases of LPO and, as a consequence, LPO products. Several studies have been 

performed regarding the biological roles played by aldehydes, since they have a prolonged half-life, 

can diffuse from their sites of formation and react with the surrounding cells. Moreover, the 

aldehydes can be delivered by the bloodstream and secreted in the urine. To the contrary, free 

radicals, produced during LPO, have a very short life and can produce only localized effects. For 

these reasons, the aldehydes have been defined as “second messengers of oxidative stress” [5]. These 

lipid electrophiles have long been studied, due to their potential to react with nucleophilic functional 

groups in lipids, proteins, and DNA [6]. The nucleophilic functional groups include sulfhydryl, 

guanidine, imidazole and amino groups and DNA bases. In particular, the aldehydes often attack the 

free -NH2− groups of DNA bases to form covalent adducts, which are partially responsible for the 

biological consequences of LPO in normal physiology and pathophysiology. In this review we 
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summarize the most recent evidence of DNA damage by LPO products in several diseases, such as 

cancer, inflammation and autoimmunity. 

2. Aldehydes generated from lipid peroxidation  

The first determination of aldehydes formed during LPO was provided by Esterbauer and 

Zollner [7]. These authors described three steps in the LPO process: initiation, propagation and 

termination. Initiation takes place by the free-radical, non-enzymatic peroxidation of lipids, which 

imports the abduction of a H· radical by a radical-initiating species (e.g., the hydroxyl radical ·OH) 

from a lipid, to yield a lipid radical; the formation of lipid radicals from polyunsaturated fatty acids 

(PUFAs) is favored, as they are resonance stabilized. Once formed, a lipid radical can react with 

oxygen to give a lipoperoxyl radical (LOO·) and a lipid hydroperoxide (LOOH). The unstable 

LOOHs generate new LOO· and alkoxyl (LO·) radicals, which can function as initiating species for 

new cycles of LPO and decompose into a complex mixture of more stable compounds, such as 

pyrroles, hydroxyoctadecanoic acids and aldehydes, the end products of LPO [8,9]. Aldehydes have 

received much attention, because they are relatively stable, reactive and toxic [10,11]. Kaway et al., 

by using gas chromatography/electron ionization/mass spectrometry with a selected ion monitoring 

system, detected several products of arachidonic acid, linoleic acid, and docosahexaenoic acid 

peroxidation [12]. These authors identified 33 different aldehydes, which were classified into five 

groups: alkanals, 2-alkenals, 2,4-alkadienals, 2-hydroxyalkanals, 4-hydroxy-2-alkenals, and three 

other compounds, which were not comprised in the previous groups: glyoxal, malondialdehyde, and 

4,5-epoxy-2-decenal. From a quantitative standpoint, the major aldehyde products are 

malondialdehyde (MDA), acrolein, 4-hydroxy-2-nonenal (HNE), and 4-oxo-2(E)-nonenal (ONE). 

 

Figure 1. Representative aldehydes produced in the course of LPO. MDA, 

malondialdehyde; HNE, 4-hydroxy-2-nonenal; HHE, 4-hydroxy-2-heptenal; HPNE, 

4-hydroperoxy-2-nonenal; HPHE, 4-hydroperoxy-2-heptenal; ONE, 

4-oxo-2-nonenal; OHE, 4-oxo-2-heptenal. 
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2.1. MDA 

MDA can be produced by the peroxidation of PUFAs which contain more than two C-C double 

bonds, such as 4,7,10,13,16,19-docosahexaenoic acid (22:6[n-3], DHA) and 

5,8,11,14-eicosatetraenoic acid (20:4[n-6], arachidonic acid, AA). As these represent the majority of 

PUFAs, MDA is the major product of LPO. The peroxidation of n-3 (-3)-PUFAs, such as 

9,12,15-octadecatrienoic acid (18:3[n-3], alpha-linolenic acid, ALA) and DHA, can generate 

4-hydroperoxy-2(E)-hexenal (HPHE) and, thenceforth, 4-hydroxy-2(E)-hexenal (HHE). On the other 

hand, the peroxidation of n-6 (-6)-PUFAs, like 9,12-octadecadienoic acid, (18:2[n-6], linoleic acid, 

LA) and AA, can yield 4-hydroperoxy-2(E)-nonenal (HPNE), and HNE, while 4-hydroxyundecenal 

arises from -9 PUFAs [11]. Because -6 PUFAs are most abundant, the level of HNE formed 

largely exceeds those of HHE and 4-hydroxyundecenal [13]. Figure 1 shows the structures of MDA, 

acrolein and some representative 4-substituted 2-alkenals. 

2.2. 4-Hydroxy-alkenals 

4-Hydroxy-alkenals, such as HHE and HNE, have three chemical functions (the aldehyde group, 

the C2-C3 double bond and the OH group at chiral centre C4), which make them highly reactive. 

The mechanism of formation of HNE via 9-hydroperoxy-linoleic acid or 

11-hydroperoxy-arachidonic acid is depicted in Figure 2. Notice that the positional isomers of the 

latter two compounds, 13-hydroperoxy-linoleic acid and 15-hydroperoxy-arachidonic acid, 

respectively, are also admitted as possible precursors of HNE [14]. 

 

Figure 2. Mechanism of HNE formation by the peroxidation of arachidonic acid. 
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HNE has been identified as a result of auto-oxidation and LPO in liver microsomes [15]. The 

amount of HNE formed is up to 80 fold lower than that of MDA [16], but MDA is much less reactive 

than HNE, ONE or acrolein [17]. The amount of HNE within cells is dependent not only on the rate 

of formation during LPO but also on its metabolism, which is regulated by enzymes such as aldose 

reductase (AR), glutathione-S-transferases (GSTs), aldehyde dehydrogenases (ALDHs), and alcohol 

dehydrogenases (ADHs) [17]. The production of HNE has well proven implications in the 

pathogenesis of human cancer, neurodegenerative and chronic inflammatory diseases, such as 

atherosclerosis [18]. 

4-oxo-2-nonenal (ONE) is the main product of decomposition in vitro of both (S)-regioisomers 

of linolenic acid hydroperoxide, i.e., 13(S)-hydroperoxy-9,11-octadecadienoic acid (13(S)-HPODE), 

and 9(S)-HPODE [19]. ONE is more reactive than HNE, and reacts in different ways with various 

biomolecules [20]. In particular, ONE forms 2"-oxo-heptyl-substituted 

1,N2-etheno-2'-deoxyguanosine [21], 1,N6-etheno-2'-deoxyadenosine [21,22] and 

3,N4-etheno-2'-deoxycytidine [23] (Figure 3). Etheno-type adducts with DNA are formed also by 

4-oxo-2(E)-hexenal (OHE) [24]. 

 

Figure 3. Structures of the 2"-oxo-heptyl-substituted 1,N2-etheno-2'-deoxyguanosine, 

1,N6-etheno-2'-deoxyadenosine and 3,N4-etheno-2'-deoxycytidine ONE adducts. 

2.3. Acrolein 

Acrolein is generated by the oxidation of unsaturated lipids, but unlike the other aldehydes, the 

majority of acrolein found in vivo derived from environmental exposure [25]. Moreover, acrolein is 

also generated by the degradation of polyamines or by myeloperoxidase present in neutrophils [26].  

3. Reactions of LPO-derived aldehydes with DNA and functional consequences 

3.1. MDA 

MDA is mutagenic both in bacteria [27] and in human cells, causing insertions, deletions 

and base pair substitutions, particularly at GC base pairs [28]. Both MDA carbonyls react with 

nitrogen, forming the pyrimido[1,2-]purine-10(3H)-one-2'-deoxyribose, or 

malondialdehyde-2'-deoxyguanosine adduct (M1dG), which is the most abundant MDA adduct, 

while deoxyadenosine and deoxycytidine adducts arise from the addition of one carbonyl with 

exocyclic amino groups to form N6-(3-oxoprenyl)deoxyadenosine (M1dA) and 

N4-(3-oxoprenyl)deoxycytidine (M1dC), respectively (Figure 4a). The former yields about 20% 
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of M1G, whereas M1C is formed only in trace amounts [29]. M1G adducts are detected in tissues 

from healthy humans [30,31], are mutagenic in bacteria and susceptible to nucleotide excision 

repair. Mutations induced by M1dG, using MDA-modified M13 genomes replicated in E. coli, 

included M1dG  A, M1dG  T, and low levels of M1dG  C mutations. However, the 

mutation frequency was only 1% when deoxycytidine (dCyt) was placed opposite the lesion [32]. 

It was observed that M1dG placed opposite dCyt underwent a configurational rearrangement with 

opening of the exocyclic ring to N2-(3-oxoprop-1-enyl)-deoxyguanosine (OPdG) (Figure 4b), via 

a second-order reaction with hydroxide catalyzed by the complementary dCyt, whose reversal in 

acid was very slow [33]. The OPdG propenyl chain is located in the minor DNA groove, thus 

facilitating Watson-Crick H-bonding with dCyt [34], which may explain why M1dG is weakly 

mutagenic [35]. 

 

Figure 4. (a) Adducts of MDA with deoxyguanosine, deoxyadenosine and 

deoxycytidine. M1dG, pyrimido[1,2-]purine-10(3H)-one-2'-deoxyribose; M1dA, 

N6-(3-oxoprenyl)deoxyadenosine; M1dC, N4-(3-oxoprenyl)deoxycytidine. (b) 

Reorganization of M1dG when placed opposite dCyt in duplex DNA. OPdG, 

N2-(3-oxoprop-1-enyl)-deoxyguanosine. 

3.2. Acrolein 

Acrolein displays mutagenic properties in bacteria and mammalian cells [27], as well as 

carcinogenic properties in rats [36]. It is a major cigarette smoke-related lung carcinogen, as the 

pattern of formation of acrolein-DNA adducts closely parallels the mutational pattern of the p53 gene 

in human lung cancer cells [37]. Acrolein-derived adducts have been detected in human and rodent 

DNA [38-41]. Michael addition of acrolein to the N2-amino group of deoxyguanosine, followed by 

ring closure, results in the formation of -hydroxy-1,N2-propano-2'-deoxyguanosine (-OH-PdG) and 

-hydroxy-1,N2-propano-2'-deoxyguanosine (-OH-PdG) (Figure 5). DNA replication across 

-OH-PdG occurs correctly in bacteria and mammalian cells [42,43]. Like M1dG, -OH-PdG also 

undergoes ring opening when placed opposite dCyt, forming N2-(3-oxopropyl)-deoxyguanosine 
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(PdG) (Figure 6a) [44], which facilitates canonical Watson-Crick H-bonding with the complementary 

dCyt. This may explain the weak mutagenic properties of -OH-PdG [35]. Yeast Rev1 DNA 

polymerase incorporates the correct nucleotide dCyt opposite PdG, a model for -OH-PdG, with 

similar efficiency as if it were opposite an undamaged dGuo, but further extension of the 

polynucleotide requires the Pol  polimerase [45]. The crystal structure of the Rev1 polymerase in 

complex with PdG-modified DNA revealed a conformational interconversion of the N-glycosyl bond 

connecting the deoxyribose sugar to the nucleobase. The latter shifts from the anti conformation, (in 

which it is oriented away from deoxyribose and Watson-Crick H-bonding interactions between 

complementary nucleobases are permitted), to the syn conformation, which positions PdG into a small 

hydrophobic cavity, with incoming dCTP interacting with an Arg residue via two H-bonds [45]. In 

contrast, -OH-PdG is stable when placed opposite dCyt and blocks replication in human cells [43]. It 

adopts a syn conformation around the glycosyl bond, forming a non-mutagenic Hoogsteen pair to its 

complementary dCyt [46]. Rev1 and Pol  polymerases mediate accurate replication across 

-OH-PdG, with the latter incorporating dATP and dTTP at low frequencies [47]. 

 

Figure 5. 1,N2-exocyclic propane adducts generated by reaction of acrolein, 

crotonaldehyde and HNE with deoxyguanosine (dGuo) in DNA. -OH-PdG, 

acrolein-derived -hydroxy-1,N2-propano-2'-deoxyguanosine adduct; -OH-PdG, 

-hydroxy-1,N2-propano-2'-deoxyguanosine adduct of acrolein; -CH3--OH-PdG, 

-methyl--hydroxy-1,N2-propano-2'-deoxyguanosine adduct of crotonaldehyde. Four 

diastereomers of the latter are formed, among which those with the trans configuration of 

-OH and -CH3 predominate, with the major and minor epimers at C(8) interconverting 

in single-strand DNA. Also, four diastereomers (1-4) of the 

1,N2-propano-2'-deoxyguanosine adduct of HNE (HNE-dGuo) exist, as a result of the 

trans configuration between the alkyl side chain at C(6) and the hydroxyl group at C(8) 

and the presence of chiral C(11) in the alkyl chain [48]. 
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3.3. Crotonaldehyde 

Addition of crotonaldehyde to dGuo produces four diastereomers of -CH3--OH-PdG, as a 

result of the presence of chiral C(6), among which those with the trans configuration of -OH and 

-CH3 predominate, with the major and minor epimers at C(8) interconverting in single-strand DNA 

(Figure 5). When the crotonaldehyde-derived -OH-PdG is placed opposite deoxythymidine in 

double-strand DNA, the ring-opened species is undetectable, like in single-strand DNA. However, 

when placed opposite dCyt, both (R)- and (S)--CH3--OH-PdG adducts undergo incomplete ring 

opening to N2-dGuo aldehydes and respective N2-dGuo aldehydrols (Figure 6a) [49]. 

3.4. HNE 

Genotoxic effects of HNE, such as DNA fragmentation and sister chromatide exchange (SCE), 

were first detected in CHO cells [50], whereas in V79 Chinese hamster cells mutations of the 

HGPRT gene were induced by HNE in a dose-dependent manner [51]. Primary hepatocytes proved 

to be most sensitive to the genotoxic effects of LPO-derived aldehydes, with HNE exhibiting higher 

SCE-inducing potential than both its analogues lacking either the OH group (2-trans-nonenal) or the 

OH and the CC double bond (nonanal), and aldehydes with lipophilic tails of different lengths, such 

as 4-hydroxyhexenal and 4-hydroxyundecenal [52]. Significant levels of SCE occurred at HNE 

concentrations as low as 0.1 M, like those that can be attained under physiological conditions [53]. 

Genotoxic effects of HNE, such as micronuclei and chromosomal aberrations, were observed also in 

brain endothelial cells at concentrations ≥1 M [54]. 

Various patterns of HNE interaction with DNA have been described [5]. Michael addition of the 

N2-amino group of deoxyguanosine (dGuo) to HNE, followed by ring closure of N1 onto the 

aldehyde, results in four diastereomeric cyclic -hydroxy-1,N2-propano-2'-deoxyguanosine 

(-OH-PdG) adducts (Figure 5) [48]. These were detected as endogenous lesions in tissues of 

untreated rats and humans, particularly in the liver, and their levels greatly increased in liver DNA of 

F344 rats treated with CCl4, indicating LPO as their probable source [48,55]. In cultured human 

monocytes incubated with HNE, the 1,N2-propano-2'-deoxyguanosine adduct of HNE (HNE-dGuo) 

largely predominated, with respect to the MDA-2'-dGuo adduct (M1G) cited above and the 

1,N6-etheno-deoxyadenosine and 1,N2-etheno-deoxyguanosine adducts, with their 

1",2"-dihydroxyheptyl-substituted derivatives discussed below, all of which were detected in much 

lower yields [56]. It was suggested that they might have a pathogenetic role in hepatic carcinogenesis, 

as HNE preferentially formed adducts with DNA at codon 249 of the human p53 gene, which is a 

mutational hotspot in hepatocellular carcinoma [57]. Site-specific mutagenesis studies revealed that 

the (6S,8R,11S)- and (6R,8S,11R)-1,N2-HNE-dGuo adducts are mutagenic, as they are able to induce 

low levels of G  T transversions and G  T transitions. Moreover, when 1,N2-HNE-dGuo adducts 

are placed opposite dCyt in duplex DNA, the exocyclic ring opens (Figure 6a), permitting the correct 

Watson-Crick base pairing for the adducted deoxyguanosine [58]. However, when mismatched with 

dAde in DNA, (6S,8R,11S)-1,N2-HNE-dGuo maintains its exocyclic ring, a situation mimicking the 

incorrect incorporation of dATP (G  T transversion) [59]. The adduct conformation is in 

equilibrium between the syn- and the anti- conformation around the glycosyl bond. In the syn- 

conformation, which is favored at acidic pH, the HNE moiety is located in the major groove, dAde is 

protonated and the (6S,8R,11S)-1,N2-HNE-dGuo (syn):dAde
+
 (anti) base pair is stabilized by 

Hoogsteen type H-bonding. 
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The 1,N2-dGuo enal adducts formed by acrolein, crotonaldehyde and HNE (Figure 5) are 

capable of forming interstrand N2-dGuo:N2-dGuo cross-links (Figure 6b). Interstrand cross-links 

represent one of the worst kinds of DNA damage, as they impede the separation of 

complementary strands, which is required both for DNA replication and transcription. The 

formation of interstrand cross-links can be induced by enals in the 5'-CpG-3' sequence, but not in 

the 5'-GpC-3' sequence [60-62] and requires the rearrangement of the -OH-PdG adducts to the 

ring-opened N2-dGuo aldehydes (Figure 6a). In duplex DNA, the N2-dGuo:N2-dGuo linkages 

are found predominantly as carbinolamines, with the carbinolamine linkage maintaining the 

canonical Watson-Crick base pairing [63,64]. The HNE-derived -OH-PdG adduct is fully converted to 

cross-link [62] and is extremely stable, whereas less than 50% of the -OH-PdG adducts deriving from 

acrolein and crotonaldehyde are converted to cross-links [60,61]. The configuration of the -OH-PdG 

adducts influences interstrand cross-linking. The crotonaldehyde-derived (R)-CH3--OH-PdG adduct 

induces cross-linking more efficiently than the (S)-CH3--OH-PdG adduct [61]. Of the four 

stereoisomers of HNE-derived -OH-PdG adducts, only the (6S,8R,11S)-configurated one induces 

interchain cross-linking [62]. 

 

Figure 6. (a) Reorganization of N2-propane adducts of acrolein, crotonaldehyde and 

HNE with deoxyguanosine when placed opposite dCyt in duplex DNA. PdG, 

N2-(3-oxopropyl)-deoxyguanosine. (b) Formation of N2-dGuo:N2-dGuo cross-links. 
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Still more adducts are formed by reaction of mutagenic 2,3-epoxy-4-hydroxy-nonanal (EHN) 

with nucleobases. EHN is generated by incubation of HNE with fatty acid hydroperoxides (e.g., 9- or 

13-linoleic acid hydroperoxide) or hydrogen peroxide at 37 °C for 24 h, in 13% and 21.5% yields, 

respectively [65]. It is more reactive towards DNA then the parent aldehyde HNE, forming 

1,N6-etheno-deoxyadenosine and 1,N2-etheno-deoxyguanosine [66]. The formation of the adenosine 

etheno-bases from 2,3-epoxy-4-hydroxy-nonanal is depicted in Figure 7. Exocyclic etheno adducts 

formed upon reaction of 2,3-epoxy-4-hydroxy-nonanal with DNA include 

1,N2-etheno-2'-deoxyguanosine, N2,3-etheno-2'-deoxyguanosine and 3,N4-etheno-deoxycytidine [38,39], 

which are shown in Figure 8. In the liver, EHN may be formed by the action of cytochrome P-450 [65] 

and is not a substrate of epoxide hydrolase [67]. Both propano- and etheno-type adducts of HNE 

have been detected as endogenous lesions in the liver and other tissues of humans and rodents [38].  

 

Figure 7. Exocyclic etheno adducts formed by the reaction of 

2,3-epoxy-4-hydroxynonanal (epoxy-HNE, EHN) with deoxyadenosine (dAde) in 

DNA. EHN is formed from HNE by incubation in the presence of a fatty acid 

hydroperoxide (linoleic acid hydroperoxide in the example) or hydrogen peroxide at 

37 °C for 24 h [65]. Upon addition of EHN at the exocyclic N6 amino group of dAde, an 

intermediate is formed, which may either undergo cyclization by ring closure at position 

N1 and dehydration, yielding 7-(1',2'-dihydroxyheptyl)-1,N6-etheno-deoxyadenosine 

(7-(1',2'-dihydroxyheptyl)-1,N6--dAde), or dehydration into an imine, followed by 

cyclization and loss of the alkyl side chain by a retroaldol reaction, yielding 

1,N6-etheno-deoxyadenosine (1,N6--dAde). 
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Figure 8. Exocyclic etheno adducts formed by the reaction of 

2,3-epoxy-4-hydroxynonanal (epoxy-HNE, EHN) with deoxyguanosine (dGuo) and 

deoxycytidine (dCyt) in DNA. Two kinds of etheno-deoxyguanosine adducts, 

1,N2-etheno-2'-deoxyguanosine (1,N2--dGuo) and N2,3-etheno-2'-deoxyguanosine 

(N2,3--dGuo), are presented. As with the reaction of EHN with dAde depicted in Figure 

7, all three reactions shown here proceed via ethano intermediates (not shown), from 

which alkyl-substituted etheno adducts are formed by cyclization and dehydration, while 

unsubstituted etheno adducts are formed by base-catalyzed dehydration, cyclization and 

alkyl chain loss. Notice that two diastereomers exist of each of the 

7-(1",2"-dihydroheptyl)-substituted etheno adducts. In addition, a bicyclic derivative 

(cyclic 7-(1",2"-dihydroheptyl)-1,N2--dGuo), of which four diastereomers exist, is 

uniquely derived from the reaction of HEN with dGuo, by trapping of the cyclic imine by 

the side chain hydroxyl group. -dCyt, 3,N4-etheno-deoxycytidine. 
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4. Aldehydes and DNA damage in cancer 

4.1. Effects of aldehydes in inducing malignant transformation of normal cells. 

DNA damage has been implicated in the development of cancer, and LPO products play a role 

in the induction of mutations responsible for DNA modifications which can induce carcinogenesis. 

As previously described, reactive oxidants can induce DNA base modifications and are a potential 

source of exocyclic adducts, most of which are mutagenic [6]. Although the main reactions of enals 

are with deoxyguanosine (dGuo) [68], Kowalczyk et al. demonstrated that all four DNA bases are 

targets for HNE, but they display different reactivities: dG > dC > dA ≈ dT [69]. As seen above, 

HNE is also able to form interchain cross-links in the 5′-CpG-3′ sequence (Figure 6b), which might 

interfere with DNA replication and transcription, thereby contributing to the etiology of human 

disease [70]. Moreover, both the G→T transversion at codon 249 of the p53 gene and the HNE-dGuo 

adduct at the same codon have been considered a mutational hotspot in human hepatocellular 

carcinoma and in cigarette smoke-related lung cancer [57,71,72]. The formation of aldehyde-DNA 

adducts has been demonstrated in vivo, after LPO stimulation in Fisher rats by exposure to CCl4. 

Wacker et al. found a significant amount of HNE-dGuo adducts (>100 nmol/mol, a 37-fold increase) 

in rat liver, which was associated with a high incidence of liver cancer [55]. Further mechanistic 

insight into the pro-carcinogenic action of HNE comes from the demonstration that HNE increases 

the number of unrepaired single-strand breaks in cells treated with oxidizing or methylating agents, 

by increasing the rate of AP-site incision and blocking the re-ligation step after gap-filling by DNA 

polymerases, thus compromising the base excision repair pathway [73]. This inhibitory action on 

DNA repair has also been reported for acrolein, which represents a major lung and bladder 

carcinogen, and whose carcinogenic potential depends not only on the induction of DNA damage, 

but also on the inhibition of DNA repair [74].  

MDA reacts with DNA to form adducts with deoxyguanosine and deoxyadenosine (Figure 4). 

The carcinogenic effect of MDA is supported by the detection of M1dG, the major adduct of MDA 

with DNA, in human tissues from larynx cancer [75] and breast cancer [76].  

ONE is another well studied product of LPO, which can form alkylated etheno-DNA adducts 

(Figure 3). These were found in a colorectal cancer mouse model, together with increased 

cyclooxigenase -2 levels [77], and in samples of gastric mucosa from gastric cancer biopsies [78]. 

Finally, acrolein-DNA adducts were found in human bladder cancer [79] and in lung cancer of 

cigarette smokers [37]. 

Another aspect of the pro-carcinogenic effect displayed by aldehydes, and in particular by HNE, 

was highlighted by the observation that HNE may act as a proliferative factor in normal cell lines. In 

human hepatic stellate cells, HNE increased proliferation by targeting the p46 and p54 isoforms of 

c-Jun [80]. Moreover, in human B lymphocytes infected with EBV, a physiological concentration of 

HNE induced cell proliferation and latent membrane protein-1 (LMP1) expression [81]. Other data 

suggest that HNE can evoke signaling for defense mechanisms, including NF-E2-related factor 2 (Nrf2) 

signaling, thus self-regulating its own toxicity [82]. The stimulation of the Nrf2 pathway induces the 

expression of a wide variety of genes: antioxidant enzymes, including thioredoxine, thioredoxine 

reductase and heme-oxigenase, and enzymes related to the synthesis and conjugation of GSH, such as 

glutamate-cysteine ligase and glutathione-S-transferases (GSTs) [83]. Thus, the activation of this pathway 

can results in a more rapid extrusion or inactivation of electrophilic compounds, including aldehydes. 
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Since the production of ROS and the consequent induction of LPO can be involved in 

carcinogenesis, the use of antioxidants has been proposed as a potential therapeutic intervention, due 

to their ability to oppose oxidative stress in fibrosis and cancer development [84]. However, not all 

antioxidant supplements displayed protective effects against cancer development, as reported by 

Poljšak and Fink, in a comprehensive review [85]. 

4.2. Effects of aldehydes on cancer cells  

It has been convincingly demonstrated that the alterations provoked by aldehydes can be 

responsible for carcinogenic effects in normal cells. However, in cancer cells the aldehydes can 

exert anticancerous effects as well. As it occurs in normal tissues, the production of LPO-derived 

aldehydes in cancer cells depends on the presence of reactive oxygen species (ROS). In recent 

years, it has become evident that many types of cancers, including hematological and solid tumors, 

produce large amounts of ROS, compared to their normal counterparts, due to an aberrant 

metabolism, mitochondrial dysfunction, the activation of oncogenes and the presence of 

inflammatory cells, such as granulocytes, which are a source of ROS [86]. The large amount of 

ROS can increase the formation of LPO products. An increased level of oxidatively damaged 

products, such as the oxidized DNA base 8-hydroxydeoxyguanosine (8-OHdG), has been 

demonstrated in solid tumors, including thyroid neoplasia [87], squamous cell carcinoma [88], 

non-small cell lung cancer [89], and prostate cancer [90]. This characteristic makes cancer cells 

more vulnerable to damage by further ROS production induced by exogenous agents [86]. In this 

context, ROS may exert a cytotoxic effect, leading to the death of malignant cells and thus limiting 

cancer progression [91].  

However, while increases of oxidative stress have been demonstrated in the majority of cancer 

types, the concentration of LPO products in cancer cells may vary, in relation to several biological 

characteristics of tumor cells, such as the pattern of aldehyde metabolizing enzymes, the 

concentration of lipid peroxidable substrates, such as PUFAs, in cell membranes, and the presence of 

inflammatory cells, which can increase the level of diffusible aldehydes from the tumor-surrounding 

tissues [92]. Aldehyde metabolism is sustained by three major enzymes: alcohol dehydrogenases; 

aldehyde dehydrogenase; and glutathione-S-transferases (GSTs) [93], whose activity can differ, 

depending on the tumor type. For example, it has been shown that, during rat liver carcinogenesis, 

the activities of the enzymes metabolizing aldehydes was increased, thus rendering cancer cells more 

protected against the cytotoxic effect of aldehydes [4]. Moreover, tumor cells can export 

aldehyde-GSH conjugates, in an ATP-dependent manner or by the action of Ral-interacting protein 

(RLIP76), a GTPase-activating membrane protein, which has been found at increased levels in the 

majority of malignant tumors and is important for the acquisition of drug resistance [94,95]. For 

example, in hepatoma cells, most HNE was converted to the HNE-GSH conjugate, which was 

rapidly and efficiently exported out of the cells [96]. 

The exogenous addition of LPO-derived aldehydes can affect cancer cell proliferation. The 

effects of HNE on cancer growth have been recently reviewed by Gasparovic et al. [97]. As reported, 

HNE seems to act as a biphasic factor: it stimulates proliferation at low doses and causes 

suppressive/cytotoxic effects at high doses [98]. Several reports have highlighted the effects of high 

HNE doses in inhibiting proliferation and inducing apoptosis of cancer cells. HNE inhibited the 

proliferation of human colon tumor cells, through regulation of the MAP kinases pathway [99], or 
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through the PPAR gamma pathway [100]. In human leukemic cells, HNE inhibited c-myc [101], G1 

cyclin expression [102] and telomerase activity [103]. Moreover, the inhibition of cell proliferation 

and the activation of p53 were also reported in breast cancer cells (MCF7) treated with conjugated 

linoleic acid (CLA), which increases the endogenous levels of HNE [104]. In human osteosarcoma 

cells treated with HNE, the induction of apoptosis was also evidenced [105]. In PC3 prostate 

carcinoma cells, HNE significantly potentiated the antitumor effects of the histone deacetylase 

(HDAC) inhibitor panobinostat (LBH589). Cell cycle analysis revealed that each of the two agents 

and, to a greater extent, the combined treatment with panobinostat and HNE induced G2/M arrest. 

Furthermore, the combination of panobinostat and HNE induced significant DNA damage, 

concomitant with the mitotic arrest [106]. Similarly, a G2/M cell cycle arrest accompanied by DNA 

damage has been reported in hepatocellular carcinoma HepG2 (p53 wild type) and Hep3B (p53 null) 

cells treated with HNE [107]. The mechanism involved in apoptosis induction has been deeply 

investigated. Ji et al. demonstrated that HNE treatment induced cell death in MG63 human 

osteosarcoma cells, through the activation of caspase-3, due to the inhibition of the activity of AKT 

and of the downstream factors p70S6K [108]. In prostate cancer cells, HNE promoted apoptosis 

through the p53 signaling pathway [109]. Moreover, it has been recently reported that HNE induced 

apoptosis in a wide variety of tumor cells expressing NADPH oxidase 1 (NOX1), a ROS-producing 

enzyme, by inactivating their membrane-associated catalase. HNE appeared to act by reactivating 

subsequent intercellular signaling through the NO/peroxynitrite and HOCl pathways, followed by the 

activation of the mitochondrial pathway of apoptosis [110]. 

In addition to these specific effects for the different types of cancer cells, it has to be considered 

that LPO-derived aldehydes are able to form adducts with DNA in cancer cells. This characteristic 

makes their action similar to the action of some chemotherapeutic drugs, such as cisplatin or 

doxorubicin, which act by altering DNA structure and interfering with DNA repair mechanisms. 

Indeed, cisplatin acts by: (1) covalently binding to the purine bases in DNA, thus causing DNA 

damage, and (2) interfering with DNA repair mechanisms, an effect which is followed by the 

induction of apoptosis [111]. Doxorubicin binds to nucleic acids, presumably by specific 

intercalation of the planar anthracycline nucleus within the DNA double helix, and thus poisons 

topoisomerase II. In this way, doxorubicin interferes with DNA repair and induces apoptosis [112]. 

Moreover, both these drugs determine increases of oxidative stress, which can contribute to DNA 

damage and LPO induction. The latter, in turn, can cause increases in the production of reactive 

aldehydes, thus enhancing the toxic effect of the drugs [113].  

Another similarity between chemotherapeutic drugs and HNE is highlighted by the observation 

that cells can develop resistance after continuous exposure to both kinds of compounds. Indeed, 

Cipak et al. reported that a strain of yeast, which was able to produce up to 15% peroxidable PUFA, 

thereby enhancing the production of HNE, was initially more sensitive to oxidative stress than the 

wild-type strain, but could be rendered more resistant to the stimulation of LPO upon exposure to 

H2O2, by increasing the culture timelenght. This adaptation to oxidative stress was linked to an 

increase in catalase activity [114]. Moreover, it has been demonstrated that HNE production plays a 

key role in the adaptation to stress [115]. Analogously, cancer cells, particularly in advanced stages 

of the neoplastic disease, become highly adapted to intrinsic or drug-induced oxidative stress, by 

up-regulating their antioxidant systems [116]. This occurs via the activation of redox-sensitive 

transcription factors, such as nuclear factor kappa B (NF-B) and Nrf2, causing increased expression 

of ROS-scavenging enzymes and compounds, such as superoxide dismutase and glutathione, 
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elevation of survival factors, such as apoptosis regulator Bcl-2 (BCL2) and induced myeloid 

leukemia cell differentiation protein Mcl-1 (MCL1), and inhibition of cell death effectors, such as 

caspases [117,118]. Thus, in order to overcome the drug resistance associated with redox adaptation, it is 

important to design strategies which may disable redox adaptation mechanisms in cancer cells. It was 

shown that the depletion of GSH, obtained by the use of the natural compound beta-phenylethyl 

isothiocyanate (PEITC), could preferentially kill Ras-transformed ovarian cells [119]. The same result 

was obtained in leukemic cells from patients with fludarabine-resistant chronic lymphocytic leukemia, in 

which the use of PEITC effectively eliminated the drug-resistant cell populations [120,121]. 

4.3. LPO-derived aldehydes and their adducts with DNA as cancer biomarkers 

The different rates of production, metabolism and extrusion make the concentrations of 

LPO-derived aldehydes and their adducts very variable in tumor cells. In patients with different types 

of kidney tumors, HNE-protein adducts were detected both in normal and tumor cells, although 

immunomorphologic analyses revealed smaller amounts of HNE-protein adducts in tumor cells [122]. 

In vivo studies on human colon adenocarcinomas at different TNM stages and grades showed that 

the concentration of HNE was lower in cancer colon biopsies, with respect to normal surrounding 

tissues [99]. On the contrary, other experimental results indicated that the concentrations of 

malondialdehyde and HNE were increased in colorectal cancer tissues [123]. In thyroid tumors 

with a high level of oxidative stress, the contents of HNE and of the DNA lesion 8-OHdG were 

significantly higher than in normal tissue [87]. Analogously, increased LPO seemed to be a common 

pathological aspect in astrocytic and ependymal glial tumors, in which the incidence of 

HNE-immunopositive tumor cells increased with increasing grades of malignancy [124]. In breast 

cancers at different degrees of malignancy, 8-OHdG levels were diminished significantly in invasive 

breast carcinomas, compared to non-invasive lesions; conversely, HNE immunostaining was 

strongest in invasive breast carcinomas [125]. These contrasting data indicate that HNE 

concentration is strongly dependent on tumor type and stage. Finally, Peluso et al. found significantly 

higher levels of M1dG, the MDA adduct with dGuo, in breast fine-needle aspirates from 22 breast 

cancer patients, compared to 13 healthy controls (mean ratio 5.26), and suggested that increased 

M1dG formation over normal baseline levels may contribute to breast cancer development [76]. 

5. Aldehydes and DNA damage in inflammation 

5.1. LPO-derived aldehydes and their adducts promoting and modulating inflammation 

It is widely accepted that biologically active aldehydes are produced by membrane LPO, in the 

course of inflammation, which can accumulate in certain tissues up to concentrations of 10 μM or 

more [126,127]. In several experimental models of inflammation, increased concentrations of 

LPO-derived aldehydes or aldehyde-protein adducts have been demonstrated. It was shown that the 

hyperproduction of HNE in the adipose tissue of obese patients helped the release of 

pro-inflammatory cytokines, thus contributing to adipose tissue inflammation [128]. In C57BL/6 

mice fed a high-fat diet, body weight gains were associated with increases of HNE-protein adducts in 

adipose tissue [129]. Increases of LPO-derived aldehydes, acting as cell signal messengers, have 

been implicated also in atherosclerosis [130]. We have reviewed elsewhere the contribution of 

LPO-derived aldehydes and oxidized low-density lipoprotein (oxLDL) constituents, including 
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acrolein-lysine, MDA-lysine and HNE-histidine adducts in apolipoproteins B and E, as well as 

oxidized phosphocholine derivatives and their adducts with proteins, to the pathogenesis of 

atherosclerosis. These compounds all contributed to endothelial stress, subendothelial monocyte 

infiltration, endocytosis of oxLDLs by macrophages, conversion of the latter into foam cells, 

atheroma formation and maturation of vascular-associated DCs [18]. We identified HNE adducts 

with heat shock 60 kDa protein 1 (HSP60) in human promyelocytic HL-60 and monocytic THP-1 

cell lines exposed to HNE in vitro [131]. Because HSP60 is well known as a vehicle of the 

presentation of endogenous peptides to T cells [132] and as a target of autoimmune responses in 

atherosclerosis [133], we proposed that the modification of HSP60 with HNE may both contribute to 

the oxidative stress-driven inflammation of arterial intima and act as a switchover to immunity-driven 

chronic inflammation in atherosclerosis [131]. The proatherogenic effects of HNE have been further 

reviewed recently [134,135]. Other inflammation-related diseases associated with the presence of 

aldehyde-protein adducts are alcoholic liver disorders [136] and chronic alcoholic pancreatitis, in which 

an increased production of HNE-protein adducts was evidenced in acinar cells adjacent to interlobular 

connective tissue [137]. We will not discuss further these aspects, as the present review focuses mainly on 

LPO-dependent modifications of DNA and their implications in human diseases. 

Even though most of the literature data, with regard to inflammation, concern the reaction of 

aldehydes with proteins, it has recently been demonstrated that aldehyde-DNA adducts generated in the 

course of inflammation play an important role in inducing epigenetic changes which, in turn, can 

modulate the inflammatory process. Certain oxidation products and adducts of the aldehydes produced 

by LPO in the course of inflammation with dCyt, dAde and dGuo in DNA can affect the methylation of 

gene promoters, which are inactive when methylated, but more actively transcribed upon demethylation. 

Examples include the increase in DNA methylation reported by Turk et al. in association with the 

formation of 8-OHdG [138], and the perturbation of DNA methylation associated with the formation of 

3,N4-etheno-5-methyl-2'-deoxycytidine which was observed by Nair et al. [139]. Moreover, by exposing 

Caco-2/15 cells to the iron-ascorbate oxygen radical-generating system, Yara et al. found that the 

up-regulation of the inflammatory process, as revealed by the activation of NF-κB, was accompanied 

by increases of LPO and MDA concentration. Interestingly, the assessment of the promoter 

methylation status revealed decreased levels for the superoxide dismutase 2 (SOD2) gene and 

increased levels for the glutathione peroxidase 2 (GPX2) gene, which could be reversed by the 

treatment with antioxidants, suggesting that LPO products might be implicated in the epigenetic 

modifications cited [140]. 

5.2. Adducts of LPO-derived aldehydes with DNA as biomarkers of cancer-prone inflammatory 

diseases 

It was suggested that promutagenic etheno-DNA adducts generated in the course of chronic 

inflammation might act as a driving force for malignant transformation in cancer-prone inflammatory 

diseases. Increased levels of 1,N6-etheno-deoxyadenosine (-dAde) and 3,N4-etheno-deoxycytidine 

(-dCyt) were detected in the inflamed pancreatic tissues of patients with chronic pancreatitis, in 

comparison with non-inflamed tissues, and increased levels of -dCyt were detected also in the 

affected colonic mucosa of patients with Crohn’s disease and ulcerative colitis [141]. Moreover, 

highly increased levels of -dAde were excreted in the urine of patients with inflammatory 

cancer-prone liver diseases (chronic hepatitis, liver cirrhosis), as well as hepatocellular carcinoma 

(HCC) caused by HBV or HCV infection or alcohol abuse. On this base, it was suggested that 
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massive LPO-mediated DNA damage in vivo might contribute to the development of HCC. 

Moreover, it was proposed that -dAde levels in urine and target tissues should be further explored as 

a putative risk marker for the malignant progression of inflammatory liver diseases and may serve as 

biomarkers to assess the efficacy of preventive and therapeutic interventions [142]. 

6. Adducts of reactive aldehydes with DNA and proteins in autoimmunity 

The formation of the adducts of reactive aldehydes produced by LPO with DNA and proteins deeply 

affects both innate and adaptive immune responses, possibly triggering autoimmunity [18,143,144]. 

Various oxidation-specific epitopes (OSEs) are recognized as endogenous damage-associate molecular 

patterns (DAMPs) by innate pattern recognition receptors (PRRs). Moreover, the covalent 

modification of DNA and proteins with LPO products might result in the alteration of self antigens 

and the generation of neo-epitopes which, in turn, might be instrumental in overcoming the 

immunological tolerance of autoreactive T and B cells towards self antigens. In fact, it was 

consistently reported that the modification of macromolecular self antigens with reactive aldehydes 

not only incited immunological responses to modified antigens, but was accompanied also by the 

breaking of immunological tolerance to their native counterparts, as discussed below. The latter 

effect seems to entail the intramolecular spreading of immunological responses from 

aldehyde-modified to other unmodified epitopes of the same macromolecular antigens and may be 

viewed as a reflection of the multivalent character of the latter, i.e., the presence within them of 

multiple antigenic determinants. Moreover, the intermolecular epitope spreading between 

aldehyde-modified protein antigens and other proteins and/or DNA, either in native or in 

aldehyde-modified form, was also observed. Such an effect, which appears to be a reflection of the 

pleiotropic ability of aldehydes to react with many different targets, might result both from the 

cross-reactivity to aldehydes as shared epitopes in multiple antigens and the molecular mimicry 

between aldehyde-containing and structurally related self antigenic determinants. The following 

paragraphs provide an overview of the studies supporting these mechanisms. 

6.1. Adducts of LPO-derived aldehydes with biological macromolecules as damage-associated 

molecular patterns 

OSEs recognized as DAMPs by PRRs include the oxidation products of membrane phospholipids 

and PUFAs in LDLs and their adducts. The PRRs involved include scavenger receptors CD36 and 

SR-B1, Toll-like receptors, C-reactive protein and complement factor H [145]. The adducts of MDA and 

HNE with LDLs are recognized also by the the so-called “natural” IgM antibodies detected in the sera of 

immunodeficient rag1-/- mice after reconstitution with B-1 cells [146]. The recognition of 

HNE-modified self antigens, i.e., HNE-histidine adducts in oxLDLs as tissue damage signals, upon the 

binding of oxLDL to human lectin-like, oxidized low-density lipoprotein receptor 1 (LOX-1) [147] at the 

surface of DCs, resulted in: a) the activation of DCs, i.e., the upregulation of scavenger receptors and b) 

the maturation of the DC’s presenting capabilities, associated with the enhanced expression of 

costimulatory molecules [148]. 
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6.2. Aldehyde adducts inciting autoimmunity via modification of self antigens and intramolecular 

epitope spreading 

Numerous observations indicate that the modification of self antigens with the products of LPO 

might favour the breaking of immunological tolerance. Murine serum albumin (MSA), modified in 

vitro with several unsaturated (MDA, HNE, heptadienal) and saturated aldehydes (butanal, nonanal), 

induced strong T-cell-dependent antibody responses, unlike native MSA. Even though certain T-cell 

hybridomas established from immunized mice recognized MDA- and HNE-modified MSA, but not 

native MSA, the sensitization of T cells to HNE-MSA favoured the intramolecular spreading of the 

immune response to formerly tolerated epitopes of the native self antigen. In fact, HNE-MSA and 

nonanal-MSA induced antibody responses to unmodified MSA almost as intense as to 

aldehyde-modified MSA [149]. Similarly, an autoimmune response to the SS-A2/Ro60 antigen was 

established faster and more strongly in rabbits immunized with HNE-modified SS-A2/Ro60, as 

compared with the native antigen [150,151]. The SS-A1/Ro52, SS-A2/Ro60 and SS-B/La antigens 

are the targets of certain antinuclear autoantibodies (ANA) characteristically detected in Sjögren 

syndrome (SS) and systemic lupus erythematosus (SLE) [154]. SS is an immunity-driven chronic 

inflammatory disorder, characterized by keratoconjunctivitis with dry eyes and xerostomia, caused 

by the infiltration and destruction of lacrimal and salivary glands by effector CD4
+
 and CD8

+
 T cells 

and activated macrophages. It has a prevalence of 1%, with affected females outnumbering males by 

9:1. SLE is a multisystemic disease marked by a polyclonal B cell activation, with plasma cells 

producing ANA towards a broad range of autoantigens, including double stranded DNA, histones, 

and a number of ribonucleoprotein particles (RNPs), such as the Smith antigen (i.e., the common 

core proteins of spliceosomal small nuclear RNPs), and the SS-A/Ro and SS-B/La antigens. Immune 

complexes and complement depositing in the wall of small arteries, at the dermo-epithelial junction 

and in the glomerular basal membrane are responsible, respectively, for the vasculitis, the 

erythematous, bullous and ulcerative skin lesions and the nephritis accompanying SLE. SS-A2/Ro60 

(TROVE2) is involved in cell responses to UV damage; SS-A1/Ro52 (TRIM21) is a E3 

ubiquitin-protein ligase involved in the regulation of innate immunity, inflammation in response to 

IFN-, and autophagy; the 48-kDa SS-B/La antigen, instead, is a transcription termination factor for 

RNA polymerase III. All three are components of RNPs, in which they are associated with short, 

non-coding, histidine-rich RNAs (HY-RNAs). Autoantibodies to SS-A2/Ro60 are found in more than 

60% of SS patients and 25–40% of SLE patients, as well as in patients affected by other autoimmune 

diseases [152]. SS-Ro and SS-La antigens become exposed in apoptotic bodies and blebs at the 

surface of apoptotic cells [153], where they are accessible to the binding by autoantibodies [154]. It 

was suggested [155] that, in SS and SLE, the triggering of autoimmunity might be favoured both by 

an intrinsic susceptibility of leukocytes to apoptosis [156-159], possibly due to the overexpression of 

the E3 ubiquitin ligase SS-A1/Ro52 [160], and by an impaired efferocytosis of apoptotic cells by 

macrophages [158-161]. The presentation of self antigens by thymocytes was shown to be enhanced 

in late apoptosis, but the production of autoantibodies was shown to require the modification of self 

antigens, with the formation of neo-epitopes [162]. Therefore, it was proposed that LPO-mediated 

oxidative modifications occurring as a consequence of the enhanced oxidative stress that 

accompanies apoptosis might help overcome the immunological tolerance to self antigens [153]. 

Furthermore, Kurien et al. reported that anti-SS-A2/Ro60 and anti-SS-B/La antibodies were 

produced in response to HNE-modified SS-A2/Ro60. The response was faster and stronger when the 
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immunogen had been modified with 0.4 mM and even more so with 2 mM HNE, in which case 

anti-double-strand DNA (dsDNA) antibodies also were formed. The antibodies produced by mice 

immunized with HNE-modified, but not with unmodified SS-A2/Ro60, included added subpopulations 

which recognized HNE or HNE-SS-A2/Ro60 and dsDNA, but not the native antigen [163]. The 

occurrence of anti-SS-B/La and anti-dsDNA antibodies, after immunization with unmodified or 

HNE-modified SS-A2/Ro60, illustrates the concept of intermolecular epitope spreading, which will be 

discussed further below. The immunogenicity of human serum albumin (HSA) in female NZW 

rabbits was also markedly enhanced by HSA modification with HNE and appeared to entail the 

extension of the antibody response to DNA. Although anti-HNE-HSA antibodies were highly 

specific for the immunogen, they also recognized unmodified HSA, suggesting that sensitization to 

HNE-dependent epitopes was accompanied by intramolecular spreading to shared native HSA 

epitopes [164]. They also exhibited cross-reactivities with HNE-modified forms of bovine serum albumin 

(BSA), N-acetyl-L-lysine, N-acetylhistidine, cysteine and - most relevant for the present discussion - 

native and HNE-modified calf thymus DNA [165]. However, serum antibodies from 27 of 40 patients 

with SLE preferentially bound to HNE-HSA, with respect to DNA and native HSA [164]. 

The mechanism by which the formation of aldehyde adducts might promote immunological 

responses to formerly tolerated self antigens likely reflects a combination of the effects of LPO 

products on antigen-presenting cells (APCs) and of the formation of neo-epitopes by the 

modification of self antigens. As already mentioned, the recognition of HNE-containing neo-epitopes, 

such as HNE-histidine adducts in oxLDLs, by PRRs produced two effects in DCs: (1) the 

upregulation of scavenger receptors, such as LOX-1, facilitating the uptake of HNE-modified 

antigens, and (2) the enhanced expression of costimulatory molecules, permitting the sensitization of 

neo-epitope-recognizing CD4
+
 T cells [148]. Neo-epitope-recognizing CD4

+
 T cells are selected 

outside the repertoire of autoreactive T cells, which were either clonally deleted or put under 

regulatory control during T cell development. Once sensitized, neo-epitope-specific effector TH2 

cells might cooperate with neo-epitope-specific B cells, recognizing HNE-related neo-epitopes with 

their BCRs, so to induce their differentiation into memory B cells and plasma cells producing 

neo-epitope-specific antibodies. It may be worth considering that, due to the multivalent 

character of protein antigens, B cells internalizing HNE-modified proteins via BCRs which 

recognize native self epitopes actually are able to present two kinds of antigenic determinants to T cells 

simultaneously: (1) unmodified self epitopes to autoreactive, resting CD4
+
 T cells; (2) HNE-containing 

epitopes to neo-epitope-specific, effector TH2 cells. In this way, autoreactive B cells might gain access to 

the cooperation provided by neo-epitope-specific TH2 cells and might differentiate into 

autoantibody-producing plasma cells and memory B cells. To the same extent, APCs which uptake and 

process HNE-modified proteins might present at the same time: (3) HNE-containing neo-epitopes to 

neo-epitope-specific CD4
+
 T cells; (4) unmodified self epitopes to autoreactive, resting CD4

+
 T cells. 

Added stimulation to express costimulatory signals might come to these APCs from OSEs binding to 

PRRs and from CD4
+
 T cells recognizing HNE-containing neo-epitopes, helping them overcome the 

immunological tolerance of autoreactive, resting CD4
+
 T cells. The latter might thus differentiate into 

autoreactive effector TH2 cells, which, in turn, might promote the differentiation of 

autoantibody-producing plasma cells [18,144]. 
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6.3. Aldehyde-containing neo-epitopes as shared or structurally related determinants, favoring the 

intermolecular spreading of autoimmunity between proteins and from proteins to DNA 

The ability of HNE to form adducts with multiple macromolecules, i.e., a broad array of 

conjugates sharing the HNE moiety as a common epitope, might partly explain the wide range of 

autoantibody responses occurring in SLE and SS. The latter might rely on crossed reactions, partly 

based upon the sharing of the HNE group as a common antigenic determinant and partly on the epitopic 

mimicry between HNE-containing and structurally related epitopes. The HNE moiety was recognized as 

the common antigenic determinant targeted by the antibodies raised against a number of HNE-protein 

adducts. Anti-HNE-LDL antibodies raised in rabbits recognized also HNE-albumin and 

HNE-high-density lipoprotein 3 (HDL3), in addition to HNE-LDL, but non MDA-LDL, which indicated 

antibody specificity towards HNE-containing epitopes, irrespective of the carrier protein [166]. 

Furthermore, HNE-specific antibodies raised in NZW rabbits against a HNE-keyhole limpet 

hemocyanine (KLH) conjugate recognized glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) 

modified with HNE in an immunoblot assay, with an intensity which was proportional to the number of 

HNE-histidine adducts in GAPDH. Antibody binding was fully inhibited by HNE-acetyl-L-lysine, 

HNE-N-acetylhistidine and HNE-glutathione [167]. 

 

Figure 9. Molecular mimicry between the R-HNE-histidine and the 

7-(2-oxo-heptyl)-1,N2-etheno-type ONE-2'-deoxyguanosine (ONE-2'-dGuo) adducts. 

Shared or closely resembling functional groups implicated as the components of a shared 

epitope, responsible for the molecular mimicry between the two adducts and required for 

the recognition by bispecific antibodies, are highlighted by shades of grey. Color-code: 

light grey, 2'-deoxyribose-like tetrahydrofuran rings; dark grey, hydroxyl groups; dotted 

grey, nitrogen-containing heterocyclic groups (histidine and guanine). The shared pentyl 

groups of the HNE-histidine and ONE-2'-deoxynucleoside adducts (indicated by bold 

lines) are probably also involved in the recognition by antibodies. 

Interesting studies were conducted on the molecular mimicry between proteins modified with 

HNE and its analogs and DNA, in native or modified form, as a possible mechanism for the 

appearance of anti-DNA autoantibodies in response to HNE-modified self protein antigens. The 

sequence determined for an anti-HNE monoclonal antibody (anti-R mAb 310), selectively 

recognizing the R enantiomer of HNE-histidine Michael adducts [168], strictly resembled the 

sequences of various clonally related anti-DNA antibodies. Despite this similarity, the 

cross-reactivity of mAb R310 with native dsDNA was limited, but strongly enhanced by the 
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treatment of DNA with 4-oxo-2-nonenal (ONE) (Figure 1). Within the context of ONE-modified 

DNA, ONE-2'-deoxynucleoside adducts were identified as alternative epitopes of mAb R310. The 

constituent chemical groups of a common epitope, possibly responsible for the molecular mimicry 

between the R-HNE-histidine and the 1,N2-etheno-type ONE-2'-deoxyguanosine adducts, and 

required for the recognition by bispecific antibodies, were delineated (Figure 9). It was proposed that 

endogenous electrophilic molecular species like HNE may trigger autoimmune disease [169]. 

Furthermore, upon repeated immunization of mice with HNE-modified KLH, a distinct 

population developed of B cell clones, which recognized native DNA, and, to a greater extent, 

ONE-modifed DNA, but not HNE-BSA. Anti-DNA mAbs, in turn, cross-reacted with ONE-modified 

BSA. It was suggested that HNE-specific epitopes of HNE-modified proteins might act as sensitizing 

antigenic determinants for the production of bispecific antibodies recognizing native and 

ONE-modified DNA, on one hand, and ONE-modified proteins, on the other hand [170] (Figure 10). 

Moreover, it was reported that IgG antibodies, raised in rabbits against HNE-modified HSA, 

recognized HSA from SLE patients and cross-reacted with native and oxidized goat liver chromatin. 

In turn, anti-native/oxidized chromatin antibodies from 41 of 74 SLE patients specifically recognized 

HNE-HSA [171]. 

 

Figure 10. HNE-specific epitopes as endogenous triggers of anti-DNA antibody 

responses. Immunization with HNE-modified KLH resulted in the production of 

monoclonal bispecific antibodies recognizing both native and ONE-modified DNA, on 

one hand, and ONE-modified BSA, on the other hand [170]. mAbs, monoclonal 

antibodies. 

On the whole, the findings reported above strongly support the pathogenic role of the adducts 

formed by the products of LPO with biological macromolecules in the breaking of immunological 

tolerance to self antigens and in autoimmunity. However, the instrumental role of the adducts of reactive 

LPO products with self protein antigens in the sensitization to the corresponding unmodified proteins and 

in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA 

seems better documented than the reverse flow of immunological activation from aldehyde-modified 

DNA to protein antigens. Investigation in the occurrence and circumstances of the immunological 
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responses to the adducts of DNA with the products of LPO and in their possible role in the spreading of 

the immunological response to similarly modified, unmodified or structurally analogous self protein 

antigens is warranted. Table 1 contains a list of commonly hypothesized mechanisms for breaking 

immunological tolerance to self antigens, in the context both of infection and of oxidative stress, 

emphasizing the possible role of the adducts of LPO-derived reactive compounds. 

Table 1. Possible mechanisms for breaking immunological tolerance to self antigens, 

underlining the role of: (a) infection; (b) the formation of adducts of LPO-derived 

aldehydes with self antigens. 

General mechanism mechanism according to disease context 

(a) infection (b) oxidative stress/LPO 

APC activation recognition of PAMPs by APCs 

presenting self antigens 

recognition of DAMPs/OSEs by 

APCs presenting self antigens 

Modification of self/ 

neo-epitope formation 

binding of microbial components 

to self antigens 

oxidative modification of self 

antigens, including adduct 

formation with LPO products 

Intramolecular spreading 

 

activation of T helper function 
(1)

 

by the microbial component of 

microbial-self antigen complexes  

activation of T helper function 
(2)

 by 

the LPO-derived component of 

aldehyde adducts with self antigens 

Intermolecular spreading: 

a) by epitope mimicry 

molecular mimicry between 

microbial and structurally related 

self epitopes 

molecular mimicry between 

aldehyde-modified and structurally 

related self epitopes 

Intermolecular spreading: 

b) by cross-reaction 

cross-reactivity to microbial 

components as shared antigenic 

determinants in multiple antigens 

cross-reactivity to LPO-derived 

components as shared antigenic 

determinants in multiple antigens 

Bystander activation cytokine-mediated activation of 

autoreactive T cells during a 

response to microbial antigens 

cytokine-mediated activation of 

autoreactive CD4
+
 T cells during a 

response to LPO-modified antigens 

Destruction of anatomical 

barriers 

permitting naïve T and B cells to 

access segregated antigens within 

immunologically privileged sites 

 

Exposure to 

superantigens 

polyclonal activation of 

autoreactive T and B cells 

 

(1) Recruitment of effector TH2 cells sensitized by microbial antigenic determinants in microbial-self antigen complexes, 

in aid of: (a) APCs presenting self epitopes from microbial-self antigen complexes to autoreactive, resting CD4+ T 

cells: (b) autoreactive B cells. 
(2) Recruitment of effector TH2 cells sensitized by aldehyde-related epitopes of aldehyde adducts with self antigens, in aid 

of: (a) APCs presenting self epitopes deriving from aldehyde adducts with self antigens to autoreactive, resting CD4+ T 

cells: (b) autoreactive B cells. 
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6.4. Aldehyde adducts with DNA as biomarkers of immunity-driven inflammation and autoimmunity 

Non-alcoholic fatty liver disease (NAFLD) spans a spectrum of disease, from relatively benign 

lipid accumulation (simple steatosis, fatty liver), which is devoid of long-term adverse effects, to 

progressive non-alcoholic steatohepatitis (NASH), which is associated with necrosis, chronic 

inflammation and fibrosis, leading to liver cirrhosis. Immunity-driven inflammation seems to be 

involved in the progression of NAFLD from steatosis to NASH, as hepatic oxidative stress markers, 

such as HNE and 8-OHdG, correlated with the severity of hepatic necrosis, inflammation and 

fibrosis [172,173] and antibody responses to MDA-modified antigens were associated with increased 

severity of lobular inflammation or fibrosis [174]. Moreover, high levels of the carcinogenic 

etheno-DNA adduct 1,N6-etheno-2'-deoxyadenosine (ε-dAde) were detected in 17 of 21 liver 

biopsies from young NASH patients, suggesting that LPO-mediated DNA lesions might be 

implicated in the pathogenesis of NASH. However, whether these adducts may serve as predictive 

risk markers for the development of hepatocellular carcinoma remains to be investigated [175]. 

Furthermore, in patients with rheumatoid arthritis (RA), the levels of 

heptanone-etheno-2'-deoxycytidine, i.e., 7-(2"-oxoheptyl)-3,N4-etheno-2'-deoxycytidine (ONE-dCyt) 

in DNA from whole blood cells were significantly higher and age-dependent, compared with controls, 

whereas there were no significant differences in 8-oxo-hydroxy-7,8-dihydro-2'-deoxyguanosine 

(8-oxo-dGuo) and ε-dAde levels. ONE-dCyt levels correlated well with the number of swollen joints 

and weakly with the number of tender joints of RA patients, indicating that ONE-dCyt may have 

some influence on RA development [176]. 

Although we focus here on the adducts of LPO products with DNA, it is worth mentioning that 

Toyoda et al., while investigating the role of HNE-modified proteins as a possible source of 

anti-DNA antibodies, detected antibodies against HNE-modified BSA in the sera of patients with 

SLE, SS, RA, systemic sclerosis and idiopathic inflammatory miopathies, and HNE-specific epitopes 

in the epidermis and dermis of patients with SLE, pemphigus vulgaris and contact dermatitis [170]. 

Moreover, Wang et al. reported data which underscore the pathogenic role of LPO in SLE and the 

potential usefulness of anti-DNA and anti-HNE antibody titers in predicting its progression. Their 

study showed that the prevalence and serum levels of MDA- and HNE-protein adducts, on one hand, 

and of MDA- and HNE-specific antibodies, on the other hand, were: (1) interrelated; (2) significantly 

higher in SLE patients than in healthy controls and (3) in correlation also with the SLE Disease 

Activity Index [177]. 

7. Conclusions  

The interaction of LPO-derived aldehydes with DNA and cellular proteins is undoubtedly at the 

base of most diseases related to LPO induction. As reported in this review, besides the mutagenic 

role, a pro-apototic role displayed by aldehyde-DNA adducts in neoplastic cells has been described, 

as well as the induction of DNA methylation at specific sites, which can favor the inflammatory 

process. Moreover, strong support can be found in the scientific literature for the pathogenic role of 

the aldehyde adducts with biological macromolecules in the breaking of immunological tolerance to 

self antigens and autoimmunity. 

Despite the abundance of studies, the complexities of the reactions between reactive aldehydes 

and DNA still leave room for further investigation.  
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