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Abstract: In females, X chromosome inactivation (XCI) ensures transcriptional silencing of one of 
the two Xs (either in a random or imprinted fashion) in somatic cells. Comparing this silencing 
between species has offered insight into different mechanisms of X inactivation, providing clues into 
the evolution of this epigenetic process in mammals. Long-noncoding RNAs have emerged as a 
common theme in XCI of therian mammals (eutherian and marsupial). Eutherian X inactivation is 
regulated by the noncoding RNA product of XIST, within a cis-acting master control region called 
the X inactivation center (XIC). Marsupials XCI is XIST independent. Instead, XCI is controlled by 
the long-noncoding RNA Rsx, which appears to be a functional analog of the eutherian XIST gene, 
insofar that its transcript coats the inactive X and represses activity of genes in cis. In this review we 
discuss XCI in eutherians, and contrast imprinted X inactivation in mouse and marsupials. We 
provide particular focus on the evolution of genomic elements that confer the unique epigenetic 
features that characterize the inactive X chromosome. 
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MSY: Male specific region of the Y  
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MSCI: Meiotic sex chromosome inactivation 
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Xp: Paternally inherited X chromosome 
Xi: Inactive X chromosome 
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XIC: X Inactivation Center   
RepA: Repeat A  
Rsx: RNA on the silent X 
 

The class Mammalia (mammals) is divided in to two subclasses: Prototheria (monotremes) and 
Theria (marsupials and eutherians). All therian mammals have male heterogamety, with an XX 
female: XY male sex chromosome system (Figure 1), or some simple variant. This sex chromosome 
system arose before the marsupial/eutherian split, ~ 180 million years ago (MYA) [1], from an 
ordinary pair of autosomes after a mutation in the Sox3 gene resulted in the birth of the 
testis-determining gene Sry [2]. 

Genes advantageous to males accumulated on the proto Y near Sry either by transposition from 
autosomal sites or by mutation of existing genes. Recombination with the X was suppressed across 
this region so that the male advantageous genes were only inherited with the testis-determining gene, 
giving rise to the male specific region of the Y (MSY). Lack of recombination led to progressive 
gene loss on, and degradation of, the MSY [3]. Thus, in all therian species the X and Y are 
morphologically distinct. 

1. Mammal sex chromosomes 

The marsupial X chromosome is ~ 2/3 the size of the eutherian X, and is homologous to the 
long arm (Xq) and proximal short arm (Xp) of human X chromosome (called the X conserved region; 
XCR). In contrast, the short arm of the human X chromosome (distal to Xp11.22) is orthologues to 
marsupial autosomes, so was added to the eutherian X before the radiation of eutherians (~ 105 
MYA), but after their divergence from marsupials [4] (Figure 1).  

Monotremes, which diverged from therian mammals ~ 200 MYA, comprise one extant platypus 
and four extant echidna species, all with a complex of serially translocated sex chromosomes. In the 
model monotreme, platypus (Ornithorhychus anatinus), males have five X and five Y chromosomes, 
and females have 5 pairs of X chromosomes [5]. These sex chromosomes do not bear the Sry gene or 
share homology with the sex chromosome of therian mammals [6] (Figure 1). Instead, they share 
extensive homology with the independently evolved bird ZW sex chromosome system [6,7]. Thus, 
sex chromosomes have evolved multiple times throughout amniote evolution [1] (Figure 1). 

2. Mammal sex chromosome dosage compensation 

In spite of the lethal effect whole chromosome monosomy has for any autosome [8], such grand 
sex chromosome imbalances are present in many distantly related species. Ohno [9] suggested that 
copy number imbalance of the X with the autosomes (1X: 2A) in males resulted in the almost 
twofold upregulation of the X. This led to overexpression from the two Xs in females, which resulted 
in down-regulation of one X in that sex [10]. 

Upregulation of expression from the single X in male is observed in marsupials, where average 
transcriptional output is near diploid expression levels [11]. However, whether or not the single X is 
upregulated in male eutherian mammals has remained controversial as a result of inconsistent 
processing, filtering and analysis methods of transcriptome data [12]. The debate surrounding Ohno’s 
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hypothesis [13,14,15,16,17,18] has spawned a novel view that eutherian dosage compensation 
evolved to restore balance of X genes, which function in protein complexes or protein networks, with 
their autosomal partners [12]. In some instances expression of X genes were increased to match the 
original autosomal level (as proposed by Ohno), and in other instances expression of the autosomal 
genes was decreased to match the new reduced X level This suggests that hyper-expression evolved 
on a gene-by-gene basis and affected only a subset of X genes. 

 

Figure 1. Sex chromosome systems in amniote vertebrates. Eutherian and 
marsupial mammals both have XY male: XX female sex chromosome systems that 
share considerable homology (blue). A region that is autosomal in marsupials (red) 
was added to the X in the eutherian ancestor. Both conserved (blue) and added (red) 
regions are autosomal in birds and monotremes. In the model monotreme (platypus) 
males have five X chromosomes and five Y chromosomes, whereas females have five 
pairs of Xs. Birds have a ZZ male: ZW female sex chromosome system. The bird Z 
shares homology with platypus X5 (green). The position of Xist and its orthologue 
(Lnx3) are shown in each lineage. The marsupial specific Rsx is also shown. 

In female eutherians and marsupials, down-regulation of X genes to restore parity with the 
autosomes is achieved by X-chromosome inactivation (XCI); an epigenetic mechanism by which one 
of the two X chromosomes is silenced in somatic cells. Once silencing has occurred, it is stably 
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maintained throughout all ensuing cell divisions [19]. Although some features that characterize the 
inactive X (Xi) chromosome are shared between the two lineages, lineage-specific genetic, and 
epigenetic differences exist [20,21,22,23,24,25]. These similarities and differences provide insight 
into the evolution of mammal XCI. 

3. XCI in therian mammals 

In the male germline of both eutherians and marsupials, sex chromosomes are inactivated 
during meiosis in a process called meiotic sex chromosome inactivation (MSCI) [26,27,28,29,30]. 
All X-borne genes tested in opossum round spermatids were reactivated and expressed [28]. In 
mouse reactivation is only observed for some genes after spermatogenesis, so the paternally inherited 
X chromosome (Xp) is delivered to the ovum in a partially pre-inactivated state [31,32]. After 
fertilization, transcription of repetitive elements on the Xp is suppressed [33], but biallelic expression 
is observed for X-borne genes at the two-cell stage [33,34,35,36]. 

During eutherian mammal XCI, the choice of which X is to be inactivated can be either random 
with regard to the parent of origin, or imprinted, where the paternal X is inactivated in all cells. 
These two forms of XCI are species specific, but can also occur in different cell types within the 
same species. During mouse pre-implantation development, exclusive silencing of the Xp leads to 
establishment of imprinted-XCI [37,38,39] through to the blastocyst stage. Beyond this, imprinted 
XCI is maintained only in the trophectodermal extra-embryonic cell lineages that give rise to placental 
tissue, and the primitive endoderm that gives rise to the visceral endoderm and yolk sac [40]. In 
contrast, in the developing inner cell mass, which gives rise to the embryo proper, the inactive Xp is 
reactivated, which is then followed by random XCI [40,41,42]. Imprinted XCI was also observed in 
extra-embryonic cell lineages of rat [43] and cow [44,45]. However, in human, monkey, horse, pig, 
mule and rabbit random XCI was observed in both embryonic and extra-embryonic cells [46,47].  

One of the marked differences between marsupial and eutherian XCI is the choice of X to be 
inactivated in the embryo proper. XCI in marsupial extra-embryonic, fetal, and adult tissues is 
imprinted, with the paternally derived X always silenced [24,25,48]. The reason and cause for this 
difference in choice during X inactivation is not understood.  

Although the marsupial inactive X shares some similarities with the eutherian Xi at the 
cytogenetic level, such as late replication at S phase and heterochromatinization [49,50,51,52,53,54], 
it differs at the molecular level [22,25]. There are considerable differences in the histone profile of 
the inactive X between eutherians and marsupials [21] (Table 1), but in general at the onset of XCI, 
the inactive X loses epigenetic modifications associated with active transcription (e.g. H3K9ac, 
H4Kac and H3K4me2) and sequentially acquires repressive marks characteristics of silenced 
chromatin (e.g. H4K20me1 and H3K27me3). In addition, the eutherian Xi exhibits enrichment of 
histone variants such as macro-H2A, and hypermethylation of promoter sequences stabilizes 
inactivation once repression has occurred [55] (Table 1). The Xi in marsupial female possum and 
potoroo metaphase appears hypomethylated [23], in addition promoter DNA methylation appears 
absent on the Xi for loci tested in opossum [25,56]. 
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Table 1. Comparison of repressive and active epigenetic marks on the inactive X chromosome 
in eutherian (mouse, human) and marsupials (Opossum). 

 
Eutherian Xi Marsupial Xi

Mouse Human Opossum 

   

Somatic cells, 
or embryonic 

stem cells 

Extra-embryonic 
cells 

Somatic cells, 
or embryonic 

stem cells 
Somatic cells

 
Random 

XCI 
Imprinted 

XCI 
Random XCI 

Imprinted 
XCI 

Active 
marks 

H3ac    

H4ac    
H3K4me2    

Repressive 
marks 

H3K9me2 ★ ★ ★ ★1
H3K9me3  ★ ★ ★

H3K27me3 ★ ★ ★ ★2
H4K20me1 ★ ★ ?  
H4K20me3  ★ ★ ★
Macro-H2A ★ ★ ★ ? 

Promoter CpG 
hyper-methylation 

� � � �

★ = enriched on Xi, = excluded from Xi, �= present, �= absent, ? = not determined, 1 = cell cycle specific, 2 = tissue specific;  

 = late event 

4. Genes that escape inactivation 

The final outcome of these modifications is silencing of transcription from most genes on the Xi. 
However, some genes escape inactivation, and as a result are expressed from both active and inactive 
X chromosomes [57]. The chromatin state of these genes more closely resembles that of expressed 
genes on the active X and autosomes, than that of silent Xi loci. The number and identity of genes 
that escape inactivation is different between species. In human somatic cells 15% of genes on the X 
escape inactivation [58,59,60], with a higher frequency on the short arm (orthologues to marsupial 
autosomes) than on the long arm of the human X (homologous to the marsupial X). Furthermore, 
about 10% of human X-borne genes have variable inactivation status between tissues and/or 
individuals [60,61]. In mouse somatic cells, almost all X-borne genes are inactivated; only 3% 
escape [59,62]. 

In female mouse trophoblast stem cells [63] and extra-embryonic endoderm [64], both of which 
are subject to imprinted XCI, a larger number of X-borne genes (13% and 15%) are expressed from 
both X chromosomes. However, different subsets of genes in these extra-embryonic cell lineages are 
subject to XCI. The inactive Xp in mouse extra-embryonic tissues globally accumulates the same 
repressive histone marks as the Xi in other somatic cell types [36,64,65]. However, the order in 
which these modifications appear on the Xi is different. In random XCI enrichment of macro-H2A is 
a late stage event. In contrast, during imprinted XCI enrichment of H3K27me3 and macro-H2A 
appear early on the Xi, whereas H3K9me2 accumulation is detected later [42,66]. Similar to Xi in 
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somatic cells, X-borne promoters are hypermethylated on the inactive X chromosome [67]. 
In marsupials, a large proportion of X-borne genes escape XCI [20,25], as in the mouse 

extra-embryonic membranes. Genes on the marsupial Xi exhibit variable levels of incomplete 
silencing across species, tissue and developmental stage [68,69]. Approximately 15% of genes on the 
American grey short-tailed opossum X escape inactivation [25]. As such imprinted XCI in 
marsupials and mouse extra-embryonic tissues is not as complete as random XCI in eutherian 
somatic tissue. Interestingly, the marsupial Xi lacks the repressive H4K20me1 mark [21], which 
accumulates on Xi during both imprinted and random XCI in mouse [70] (Table 1). Localization of 
macro-H2A to the marsupial Xi is unknown. 

5. X Inactivation Center (XIC) 

The silencing achieved during XCI is triggered by long-noncoding (lnc) RNAs that interact with 
chromatin regulatory complexes to alter chromosome conformation. Yet despite the central role of 
RNA-chromatin interactions during XCI, they are not fully understood.  

 

Figure 2. Comparative maps of the X inactivation center (XIC) in mouse and orthologous 
region in chicken. The mouse XIC spans 8cM (10‒20 Mb) and bears several non-coding 
RNAs as well as protein-coding genes. Only elements around Xist are shown. Arrows 
identify direction of each transcription unit. Protein coding genes are indicated in white 
and genes producing lncRNAs are blue. Genes with imprinted expression in mouse 
extra-embryonic tissues are marked by an asterisk, and the expressed allele is indicated 
(i.e. p = paternally expressed, m = maternally expressed). Putative positive regulators of 
Xist (Jpx, Ftx, Rnf12) are labeled in green, and putative negative regulators (Linx, Xite, 
Tsix) are labeled in red. Lines identify homologous genes in chicken. 

A region on the eutherian X chromosome called the X Inactivation Centre (XIC) is of key 
importance in coordinating XCI. The XIC contains several pseudogenes (e.g. Fxyd6) and 
protein-coding genes (e.g. CDX4, CHIC1, SLC16A2) [71], along with the key non-coding RNA 
genes (e.g. XIST, TSIX, FTX, JPX and others) (Figure 2). The XIC lncRNAs are poorly conserved 
between eutherian species, with the master regulator (XIST) the most conserved element between 
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sequenced eutherian genomes [72,73,74]. However, there is no ortholog of XIST in the marsupial or 
monotreme genomes, in which the XIC locus has been disrupted [72,75]. Interestingly, in chicken the 
locus remains intact with protein coding genes that share homology to XIST and the mouse Tsx gene [73]. 

6. Evolution of the master regulator—XIST 

Several exons of the chicken protein-coding gene Lnx3 share homology with the XIST 
gene [73,76,77] (Figure 3). These homologies reveal that the XIST promoter evolved from exons 1 
and 2 of the Lnx3 gene, which is among the most conserved regions of the XIST gene between 
different eutherian species [73,76,77]. The remaining XIST exons (that share no homology with Lnx3) 
are likely to have originated via transposition of various mobile elements, presumably endogenous 
retroviruses, fragments of which were amplified to generate several simple tandem repeats [76,78]. 
The lack of XIST in marsupials, along with it being in all eutherian genomes, means that XIST 
evolved as a key player in XCI in the eutherian ancestor. 

 

Figure 3. Homology between the eutherian Xist, and the protein coding Lnx3 gene in chicken. 
Human and mouse Xist both have eight exons. Functional domains of Xist include the 
tandem repeats (labeled A to F). The Xist promoter (P) originates from exons 1 and 2 of Lnx3. 
Colors shared between chicken Lnx3 and human/mouse Xist, identify homologies and, 
therefore, origin of Xist exons. Yellow Xist exons originated from mobile elements. Human 
exons are numbed h1‒h8, and mouse exons m1‒m8. Homology with exon 3 of Lnx3 is 
detectable in the human and mouse genome, but gives rise to pseudo-exons (not shown). 
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The ancestral XIST gene presumably consisted of ten exons [74,76]. Two large exons (1 and 8) 
together constitute about 90% of XIST and contain tandem repeats (denoted A to H) [74] (Figure 3). 
Tandem repeat A is conserved in all eutherian species [75,76,78,79,80,81,82,83,84], whereas 
presence, absence, or amplification of the other repeats is species specific [76,83]. Six of the 
ancestral exons are conserved across Eutheria [73,76,77,78], with the remaining four (2, 6, 9, 10) 
either functional- or pseudo-exons depending on species [74,85]. Thus, human XIST encodes a 19kb 
transcript [86], whereas the mouse Xist transcript is 17kb [87]. Despite variable intron-exon 
structures between species, XIST exons are GC dinucleotide rich compared to the introns. The 
proportion of GC richness is constant between species (39.8–42.2%) and similar to the whole XIC 
locus. 

7. The role of Xist 

In mouse, Xist is transcribed only in females by RNA polymerase II, solely from the Xi. 
Analysis of the CpG dinucleotide methylation patterns in the promoter region has shown that the 
active Xist allele (on the inactive X) is completely unmethylated [88]. In contrast, the silent maternal 
Xist allele is fully methylated [88]. Although Xist RNA is spliced and polyadenylated, it is absent 
from polysomes [80,89] and remains in the nucleus where it coats and forms a “Xist cloud” on the X 
to be inactivated [80,90], the spreading of Xist RNA along one X chromosome in cis initiates the 
chromosome-wide silencing.  

LINE1 retrotransposons are enriched on the X (mouse X ~ 28.5%, autosomes ~ 14.6%) [91], so 
were proposed to be anchor points for Xist to ensure efficient spreading of the machinery responsible 
for silencing [92]. A significant decrease in LINE1 density at regions containing genes that escape 
inactivation [93] supports this hypothesis, although a less direct role for LINEs in the spreading 
process seems more probable [94]. Accordingly, LINEs were proposed to moderate spatial 
organization of the transcriptionally silent nuclear territory of the inactive X chromosome, into which 
X-borne genes are recruited as they are silenced [95,96].  

Xist expression is followed by the formation of a repressive chromatin state that excludes 
transcriptional machinery from the inactive X [95]. Repeat A (RepA), at the 5' end of Xist, recruits 
the polycomb repressive complexes PRC1 and PRC2 to the Xi. Polycomb repressive complexes 
decorate the Xi and catalyze the characteristic repressive histone modifications of Xi. A number of 
other proteins are also localized to the Xi, potentially trafficked via Xist RNA, including nuclear 
scaffolding factors such as SAF-A [97] and the histone variant macro-H2A [98,99,100,101]. 

8. Activators and repressors of XIST 

During the morula/blastocyst stage in mice, a few days after initiation of imprinted XCI, Tsix is 
expressed exclusively from the maternally derived X chromosome to inhibit expression from the 
maternally derived Xist [102,103,104]. However, during random XCI Tsix demarcates whichever X 
remains active (Xa) [105,106,107] and its expression prevents in cis transcription of Xist and, 
ultimately, inactivation of that X [104]. Tsix in rodents spans more than a 40 kb region that 
encompasses the entire transcription unit of Xist [108]. In primates, cow and dog there are many 
species-specific repeat-element insertions, and large deletions, that disrupt the overall structure of 
TSIX [109]. In human, TSIX appear to be an expressed pseudogene unable to repress XIST, and 
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overlaps only with the last two exons of XIST [109,110]. In contrast to mouse Tsix, the human TSIX 
is expressed with XIST from the Xi in the fetal cells, throughout gestation, but cease transcription 
shortly after birth [110]. Thus, Tsix function seems limited to rodents.  

Ftx and Jpx potentially upregulate Xist, and are conserved in mouse, human, and cow [71,111], 
evolving from the protein coding genes Wave4 and Uspl, respectively [76]. Both genes escape imprinted 
XCI and are expressed predominantly from the paternal allele at the pre-implantation stage [112]. 
Deletion of the Ftx promoter leads to decreased Xist expression in male embryonic stem (ES) cells [111], 
indicating that it is a positive regulator of Xist. However a recent study shows that Ftx disruption did 
not affect embryo survival, or expression of Xist and other X-borne genes during pre-implantation, 
thus is dispensable for imprinted inactivation [113]. Whether Ftx is involved in random XCI in 
post-implantation embryos is yet to be determined.  

Jpx is located just downstream of the Ftx locus, and approximately 10 kb upstream of 
Xist [71,114,115]. Jpx escapes XCI and can upregulate Xist expression on the Xi [71,115,116] by 
evicting CTCF from the Xist promoter [117]. Deletion of a single Jpx allele in XX female ES cells 
results in failed accumulation of Xist on either X, and inactivation is prevented [116]. 

Although the function of XIST may be well conserved in eutherians, other elements of the XIC 
(even those with sequence conservation) may not have conserved function (Table 2). However, poor 
sequence conservation of noncoding RNAs in the XIC does not necessarily indicate a lack of 
function [118,119], as maintaining secondary structure (and therefore function) of lncRNA molecules 
may only require short stretches of sequence preservation. This poor conservation might indicate 
their adaptation to function in specific genomic environments, suggesting that regulation of XCI is at 
least partially species-specific. For instance, the recently evolved lncRNA gene XACT is only present 
in human and chimpanzee, but not in macaques or more distantly related species [120]. XACT is 
expressed from and coats the active X in female human embryonic stem cells and early 
differentiating cells, and may contribute to protecting the Xa from inactivation [120]. 

Table 2. Sequence conservation of different genes involved in XCI between 
eutherian (mouse and human) and marsupials (Opossum).  

  Eutherian Marsupial 

  Mouse Human Opossum 

lncRNAs 

Xist √  √  × 

Ftx √  √  × 

Jpx √  √  × 

Tsix √  * × 

XACT ×  √ × 

Rsx ×  ×  √ 

√!= presence, ×!= absence, * = pseudogene. 
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9. A marsupial XIST like gene: Rsx 

The marsupial Lnx3 (the precursor of XIST) gene has a native open reading frame that is 
expressed in both males and females. The eutherian XIC locus is disrupted in marsupials, and Lnx3 
presumably functions as a PDZ domain containing ring finger protein rather than an untranslated 
nuclear RNA similar to XIST. Consequently, the X inactivation process in marsupials involves 
neither XIST nor the XIC.  

The marsupial X chromosome has multiple large-scale internal rearrangements with respect to 
both the human X, and between Australian and American representative species [121]. This is 
contrary to the generally conserved gene order on the eutherian X [122,123], presumably due to 
purifying selection against rearrangements that perturb interactions between XIST and regions of the 
X intended for inactivation [93]. Extensive rearrangement of the marsupial X chromosome was taken 
as support for the lack of a XIST equivalent [121]. However, Rsx (RNA on the silent X) was 
identified in opossum (and two Australian marsupials), and appears to fulfill some of the functions of 
XIST [22]. As such, the epigenetic mechanisms that silence the inactive X in the somatic cells of 
marsupials and eutherians share a remarkable degree of convergence.  

The mature Rsx in opossum is a 27-kb non-coding RNA with several XIST-like characteristics, 
such as a high GC content and enrichment of conserved 5’ tandem repeats that may be involved in 
the formation of stem-loop structures [22]. These are potentially important functional domains 
necessary for directing protein complexes responsible for chromatin modification that repress 
transcription. However, further studies are needed to determine the candidate functional domains of 
Rsx. 

Rsx is located adjacent to Hprt on the marsupial X in a different genomic context to—and 
shares no sequence homology with—XIST. Yet, like XIST, Rsx is expressed exclusively in female 
somatic cells [22] and extra embryonic membranes [25], but not in germ cells where both X 
chromosomes are active [22]. Rsx is expressed in cis from Xi, around which it forms a “Rsx-cloud” 
that results in repressed gene activity. Moreover, after introduction of Rsx into mouse ES cells, Rsx 
RNA coated the transgenic chromosome and resulted in its inactivation in more than half the cells 
examined [22]. 

Monoallelic expression from the paternally derived allele of Rsx, in both fetal brain and extra 
embryonic membranes, was shown to be due to different epigenetic characteristics of the active and 
inactive alleles. Rsx, similar to Xist, is differentially methylated at its promoter. There is ~ 100% 
methylation of the maternally derived allele, and virtually no methylation of the paternally derived 
allele [25]. Furthermore, H3K27me3 repressive mark was absent from the Rsx gene body, 
demonstrating that similar epigenetic mechanisms regulate the independently evolved Rsx and XIST 
genes [25]. 

10. Conclusion 

Although independently evolved, there appear to be remarkable functional similarities shared by 
Xist and Rsx. However, it remains unknown if Rsx can perform all functions attributed to Xist, or if it 
traffics the epigenetic machinery as Xist is proposed to do. Since overlapping, but different, suites of 
repressive chromatin modifications are used to silence the X in eutherians and marsupials, many of 
these epigenetic tools were likely utilized in the therian ancestor to achieve X chromosome 
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inactivation. However, it is yet to be determined if Rsx was an XCI switch in the therian mammal 
ancestor that was retained in marsupials, and then replaced by Xist in the eutherian ancestor; or if 
they evolved simultaneously in the two lineages. Perhaps the epigenetic differences observed 
between eutherian and marsupial XCI merely reflect that these two lncRNAs direct protein 
complexes that are responsible for different chromatin modification. Finally, the potential existence 
of a marsupial X inactivation center close to Rsx, which bears lncRNAs that may regulate Rsx 
expression, remains a fascinating possibility. 
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