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Abstract: Monitoring of river water quality data is crucial to prevent river water pollution. With 

limited sampling data, the statistical method of kriging interpolation is indispensable. This method can 

predict unsampled values based on interconnected surrounding values. Two types of kriging methods 

that can be applied are Machine Learning (ML) kriging and topological kriging (top-kriging). ML 

kriging is an extension of ordinary kriging by adding a Super Learning (SL) component. Here, we used 

SL type Support Vector Regression (SVR). Ordinary Kriging and ML Kriging are based on point values. 

Top-Kriging is defined as the estimation of streamflow-related variables in ungauged catchments and 

is based on a non-zero catchment area, not a point value. The three methods were applied in Chemical 

Oxygen Demand (COD) as water river quality in the Special Region of Yogyakarta (DIY), Indonesia. 

Based on the Mean Square Error (MSE) and Mean Absolute Error (MAE) comparison, Top kriging 

provided better accuracy that produced the smallest MSE and MAE. This showed that top kriging is 

suitable for interpolating data with river flow cases. The interpolation result was that the COD value 

in the upstream area was low, meaning that the level of organic pollution was minimal. Further 

downstream, after passing through densely populated residential and industrial areas, the COD values 

were higher. 
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1. Introduction  

Water is a pivotal need for humans and other living things, so it is very necessary to maintain its 

quality. However, water pollution greatly affects the quality of water. Water pollution has become a 

serious problem threatening the survival of various ecosystems and people. Industrial and agricultural 

waste, plastic debris, and hazardous chemicals carelessly dumped into rivers, lakes, and oceans cause 

severe environmental damage. Polluted water not only destroys the natural habitat of many species but 

also threatens the quality of water used for daily needs such as drinking, irrigation, and sanitation. This 

growing water pollution requires concrete action and global cooperation to prevent even greater 

disasters in the future. 

Access to clean water is one of the major goals of the Sustainable Development Agenda (SDGs), 

particularly Goal 6, which aims to ensure the availability and management of clean water and adequate 

sanitation. By providing fair and equitable access to safe sanitation and ensuring quality-assured clean 

water, the SDGs aim to reduce waterborne diseases and improve the quality of life, especially for 

communities that still lack basic infrastructure. Achieving these goals improves health and supports 

economic prosperity and a better environment for future generations. 

Several water quality parameters can be measured to indicate the good or bad condition of water, 

each of which provides information about the water’s physical, chemical, and biological condition. 

One parameter often used to evaluate water quality is Chemical Oxygen Demand (COD). The COD 

level is one of the parameters to determine the quality of river water and its pollution. COD is the need 

for chemical oxygen to break down all organic matter contained in water. COD shows how much 

organic matter in water or waste that can be broken down by chemical reactions with strong oxidizers 

under acidic conditions. Another aspect is that COD is an important parameter in water quality 

management because it indicates the level of organic pollution [1]. The higher the COD value, the greater 

the amount of organic matter present and, typically, the higher the potential pollution the sample poses. 

Several studies have shown potential risks to health, such as digestive system disorders, hormonal 

disorders, and immune disorders. Next, Aboyitungiye and Gravitiani [2] found that river pollution in 

Indonesia significantly impacts human health. Based on data from the Ministry of Environment and 

Forestry, 73.24% of rivers in 34 provinces are polluted. Using polluted rivers and well water can lead 

to health problems such as skin disorders, dermatitis, and diarrhea. These are the reasons why 

monitoring the water quality of rivers is necessary as they continue to experience pollution.  

Various qualitative and quantitative methods are used to monitor river water quality. Quantitative 

methods may use mathematical and statistical approaches. Suphawan and Chaisee [3] predicted water 

quality indices in the Ping River Basin, Thailand using Gaussian process regression. Moreover, 

Novianta et al. [4] have used backpropagation artificial neural networks to predict several river water 

quality parameters to monitor river water quality in the Special Region of Yogyakarta (DIY), Indonesia. 

Information on water quality will be explored through mapping, namely knowing the distribution 

pattern of river water quality based on its parameters to know the pollution points from upstream to 

downstream. Rosyida et al. [5] have created a Web-based Geographic Information System (GIS) for 

mapping in order to monitor river water quality only at limited points. Additionally, Aneesh and 

Thomas [6] have mapped the water quality of the Periyar River, Kerala, India using GIS but with 

limited sample points. 

Although there have been many studies on water pollution and its mapping, the data cannot 

provide information on the entire river because sampling is done only at specific points. This does not 

describe the water quality of the river as a whole. River water quality data obtained from primary data 

is generally only at specific points that do not necessarily represent the population of the entire river 
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flow. This is termed unsampled data. Therefore, the spatial interpolation method is applied to fill in 

the unsampled data. Spatial interpolation is a method or model to estimate the value of unknown or 

unmeasured attributes at specific points based on measurements taken at surrounding locations as 

known sample point values.  

Various spatial interpolation models have been developed, with non-geostatistical and 

geostatistical types, and a combination of both. Raman et al. [7] found that geostatistics has an 

important role in river water quality analysis. Results are beneficial for researchers and policymakers 

for sustainable management in downstream areas. The kriging method is a geostatistical method useful 

for predicting an unmeasured variable. The prediction is based on a weighted average of the region. 

Types of kriging are ordinary kriging, co-kriging, robust kriging, and universal kriging. Ordinary 

kriging is the simplest type of kriging, as part of geostatistical methods, and was introduced by 

Matheron [8]. Chen et al. [9] used it to predict river pollution index numbers in tidal streams. Bekti et 

al. [10] have also used ordinary kriging to interpolate Peak Ground Analysis data in Banda Aceh. 

Furthermore, Khan et al. [11] have used universal kriging on spatial interpolation of water quality index 

data in river and lake water samples. Other researchers that have used ordinary kriging [12–14].  

In the developing methods, the kriging algorithm will perform well if it applies machine learning. 

Machine learning is very effective for handling spatial data and has the potential for broad application 

in the big data era, especially in interpolating environmental variables [15]. Machine learning 

modifications to ordinary kriging have been carried out by Erten et al. [16]. The use of machine 

learning models provides valuable tools for data interpolation. However, they have disadvantages, such 

as ignoring the samples’ spatial proximity and not reproducing the data at their locations. Therefore, 

machine learning combined with the kriging algorithm through a weighting function based on a kriging 

variance [16] shows that the combined model yields more accurate estimates than only kriging or 

machine learning. To prove this, we also applied a combination of both methods. 

On the other hand, water quality data in streams is very complex because it relates to the stream’s 

area or length and time [17, 18]. This makes ordinary and universal kriging methods less appropriate 

to use. One alternative method is the topological kriging (top kriging) method. Top kriging can 

interpolate variables related to river flow in the catchment area that are not measured. Other advantages 

of top kriging include that it is the best linear unbiased estimator (BLUE) adapted for the case of flow 

networks without any additional assumptions. Researchers have applied it to spatially interpolate 

various variables related to river flow, such as mean annual discharge, flood characteristics, low flow 

characteristics, concentration, turbidity, and river temperature. Obaid and Mohammed [19] also state 

that top kriging can predict values over large, irregular areas. Spatial interpolation of river water quality 

data in Indonesia has not utilized the top kriging method.  

The three methods, ordinary kriging, ML kriging, and top-kriging, are applied to interpolate river 

water quality data in DIY. The water quality parameter used is COD. Our research objective is to obtain 

the accuracy of the interpolation results of each method. Furthermore, the best interpolation results are 

presented in a mapping that provides information for monitoring river water quality in DIY. 

Our results describe how ordinary kriging, ML kriging, and top kriging work. We also present 

their similarities and differences and their advantages and disadvantages in the application of data. 

Providing many alternative methods will contribute to developing kriging methods and illustrate what 

can be done for the increasingly urgent water pollution problem. 
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2. Materials and methods 

2.1. Data and location 

We employed COD as one of the river water quality parameters. COD measures the amount of 

oxygen required to oxidize organic and inorganic materials in water, making it an important indicator 

in determining the level of water pollution by chemicals. Secondary data were obtained from the 

Environment and Forestry Agency, Special Region of Yogyakarta (DIY), Indonesia, in October 2023. 

The location of the study is about the COD level in DIY. The data location is shown in Figure 1. There 

were 20 sampling points representing each river area. The detailed data are presented in Table 1.  

 

Figure 1. Sample location. 

Table 1. River location. 

Name code of 

river 
Longitude Latitude 

Name code of 

river 
Longitude Latitude 

OY-04 110.379 -7.953 W-05 110.375 -7.81 

BLS-02 110.366 -7.935 W-04 110.372 -7.804 

BLK-03 110.385 -7.898 W-03 110.37 -7.795 

T-04 110.414 -7.869 T-03 110.428 -7.827 

OP-02 110.444 -7.842 BLS-01* 110.366 -7.892 

KUN-04 110.436 -7.836 G-06 110.355 -7.839 

BLK-02 110.388 -7.848 G-05* 110.351 -7.835 

W-08 110.383 -7.883 G-04 110.355 -7.799 

W-07 110.379 -7.863 G-03 110.356 -7.783 

W-06* 110.375 -7.833 KUN-03 110.439 -7.804 

*Note: * Testing data. 
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In the calculation of ordinary kriging and ML kriging methods, the data was divided into 2, 

namely 17 training data and 3 testing data. The test data was used to evaluate the comparison between 

the actual and interpolated values through the Mean Square Error (MSE) and Mean Absolute Error (MAE) 

values. Moreover, Top Kriging utilized 10 streams, which were splits of the streams that pass through 

the 20 sample points. A more detailed explanation of this is given in the results section. 

2.2. Interpolation method 

The interpolation methods used were ordinary kriging, ML ordinary Kriging, and topological 

kriging. Kriging is a geostatistical method used to estimate the magnitude of the characteristic value 

at an unsampled location point based on the surrounding sampled point data by considering the spatial 

correlation. The kriging method is carried out in two stages: The first stage of calculating the value of 

the variogram or semivariogram and covariance function. Semivariograms include experimental and 

theoretical semivariograms. The second stage is to estimate the unsampled locations. The steps of 

interpolation and analysis are shown in Figure 2. 

 

Figure 2. Flowchart of the methodology. 

Various types of kriging have been applied. Based on the mean characteristics, kriging can be 

divided into simple kriging, ordinary kriging, and universal kriging. We used the ordinary kriging 

type, which assumes that the population mean is unknown, the data is stationary, and does not contain 

a trend. 
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Estimator ordinary kriging used formula 1 [20]: 

ZKR
∗ (u) = Ẑ(X0) = ∑ ωiZ(Xi)

n

i=1

 (1) 

where ∑ ωi = 1n
i=1  , Ẑ(X0)  is the interpolation value at location (u), and ωi  is a weight that 

determines the size of the distance between points. Observation i = 1, 2, ... n, where n is the number of 

observations that have been sampled or the X variable is known. Value Z(Xi) is the i-th Actual value 

of variable X. 

The value of 𝜔𝑖 obtained from multiplying the covariance matrix as in Eq 2: 

𝜔 = 𝐶−1𝐷 (2)  

where C is the Covariance Matrix between actual or sampled observations and D is the Covariance 

Matrix between Actual and interpolated observations. The C matrix elements are obtained from 

experimental and theoretical semivariograms. One of the theoretical semivariograms used is the 

Gaussian model with Eq 3. 

γ(ℎ) = 𝐶𝑜 + 𝐶 [1 − 𝑒𝑥𝑝 (
−(3ℎ)2

𝑎2
)] (3)  

We used the combination of Machine Learning and kriging based on the formula in the research of 

Erten et al. [16], which also applied the Super Learner (SL) model. Super Learner is an ensemble 

method that combines prediction models to produce more accurate predictions than individual 

models. Some types of SL that can be applied include Support Vector Regressor (SVR), gradient 

boosting regressor (GBM), k-neighbors regressor (KNN), Random Forest regressor (RF), and neural 

network (NN). Here, we used SVR. 

The SVR algorithm was introduced as a supervised learning technique [21]. It investigates the 

relationship between one or more input variables and a target or dependent variable. For a set of 

training points (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑖, 𝑦𝑖), where 𝑥𝑖 ∈ 𝑅𝑛 are input values and 𝑦𝑖 ∈ 𝑅 are target 

variable, the SVR function is expressed by [22]. 

𝑓(𝑥𝑖) = 𝑤𝑇(𝑥𝑖) + 𝑏 (4)  

where w and b are coefficients that denote the weight and bias vectors, respectively. To adapt to this 

research method, this research, the input variables are latitude and longitude coordinates, and the target 

variable is COD.  

The combined ML and kriging algorithm combines the estimates generated by the SL model and 

estimates obtained from kriging through a weighting function based on a kriging variance. The 

interpolation result at location u is expressed by ZCombined
∗ (u). The interpolation result with SVR at 

the u location, as one of the SL methods, is denoted by ZSL
∗ (u)  obtained from the function f(xi) 

Moreover, the interpolation result of ordinary kriging is denoted by ZKR
∗ (u) . The calculation of 

ZCombined
∗ (u) is presented in the following equation: 

𝑍𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑
∗ (𝑢) = 𝑤(𝑢). 𝑍𝑆𝐿

∗ (𝑢) + (1 − 𝑤(𝑢)). 𝑍𝐾𝑅
∗ (𝑢) (5) 

𝑤(𝑢) = (𝜎𝐾𝑅
2 (𝑢))

𝑏
 (6) 

𝑏 = 𝑏0 + 𝑏1. 𝑍𝐾
∗ 𝑅(𝑢) (7) 
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where 𝑤(𝑢) is the weight of the SL model, and (1 − 𝑤(𝑢)) is the weight of the kriging. 

The equations have the rule that when kriging produces an inaccurate estimate of the variance, 

σKR
2 (u) = 1, then ZCombined

∗ (u) = ZSL
∗ (u). Conversely, if kriging gives accurate results, σKR

2 (u) = 0, 

then ZCombined
∗ (u) = ZKR

∗ (u). 

The parameter of b is a linear equation with bo and b1, and ZK
∗ R(u) is the exponential parameter 

of the weight. The parameter b must be optimized according to the known data ZSL
∗ (u), ZK

∗ R(u), and 

σKR
2 (u). 

The topological kriging (top-kriging) algorithm in this study refers to the research algorithms [17,18]. 

Unlike ordinary and ML kriging, the measurements in Top-Kriging are not point values but are defined 

over a non-zero catchment area A. In geostatistical terminology, A is the support. As in Formula 1, A 

point variable z(x) is averaged over an area A. The results of interpolation z̅(A) are in Eq 8. 

𝑧̅(𝐴) =
1

𝐴
∫ ω(𝑥)𝑧(𝑥)𝑑𝑥

𝐴

 (8) 

where z(x) is the value of a point in area A and ω(x) is the weighting. 

The detailed steps are as follows: 

1) Determine the location of river data as training data and testing data. 

2) Calculate the inter-area semivariogram value of the training data. 

3) Assuming the existence of a point variogram γp , the value or the semivariance between two 

measurements with catchment areas A1 and 𝐴2 is symbolized as γ12 as in Eq 9, with x1 and 𝑥2 

as position vectors within each catchment used for the integration: 

γ12 = 0.5𝑉𝑎𝑟(𝑧(𝐴1) − 𝑧(𝐴2)) 

(9) 
=

1

𝐴1𝐴2
∫ ∫ γ𝑝(|𝑥1 − 𝑥2|)𝑑𝑥1𝑑𝑥2

𝐴2𝐴1

− 0.5 [
1

𝐴1
2 ∫ ∫ 𝛾𝑝|𝑥1 − 𝑥2|𝑑𝑥1

𝐴1

𝑑𝑥2
𝐴1

] 

+0.5 [
1

𝐴2
2 ∫ ∫ γ𝑝|𝑥1 − 𝑥2|𝑑𝑥1

𝐴1

𝑑𝑥2
𝐴1

] 

Moreover, the estimation of the point variogram between two catchments of a pair is 

γ𝑜𝑏𝑠(𝐴1, 𝐴2, ℎ) =
1

2𝑛(𝐴1, 𝐴2, ℎ)
( ∑ [𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)]2

𝑛(𝐴1,𝐴2,ℎ)

𝑖=1

) (10) 

where h = |h|  is the distance between the centroids of the catchments, and n(A1, A2, h)  is the 

number of catchment pairs with areas 𝐴1 and 𝐴2. 

A point variogram with the effect of parameter (sill, range, and nugget) is: 

γ𝑝(ℎ) = 𝑎ℎ𝑏 (1 − 𝑒−(ℎ/𝑐)𝑑
) + 𝐶0𝑝 (11) 

The parameter a is related to the sill of the variogram, c is a correlation length, and b and d 

define the long and short distance slope of the variogram in a log-log plot, respectively. C0pis a nugget 

effect. The nugget is calculated by 

𝐶0(𝐴1, 𝐴2) = 0.5 (
𝐶0𝑝

𝐴1

𝐶0𝑝

𝐴2
) − 0.5 (−

2𝐶0𝑝𝑀𝑒𝑎𝑠(𝐴1 ∩ 𝐴2)

𝐴1𝐴2
) (12) 
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4) Calculate the interpolation of the location of the testing data with Eq 8. 

Comparison of the interpolation results of the three types of kriging interpolation is done by 

calculating the Mean Square Error (MSE) and Mean Absolute Error (MAE) accuracy of the testing data,  

𝑀𝑆𝐸 =
∑ (𝑧̂(𝑥𝑖) − 𝑧(𝑥𝑖))

2𝑛
𝑖=1

𝑛
 (13) 

𝑀𝐴𝐸 =
∑ |𝑧̂(𝑥𝑖) − 𝑧(𝑥𝑖)|𝑛

𝑖=1

𝑛
 (14) 

where ẑ(x) is the interpolation results and z(𝑥) the testing data. 

3. Results and discussion 

The characteristics of COD at the sample points are presented in Figure 3. The minimum value 

of COD was 3 mg/L, which was owned by 7 sample points and spread across the Winongo, Kuning, 

and Gadjahwong Rivers. These sample points were located in the northern part of the river or close to 

the upper reaches of the river on the slopes of Mount Merapi. The highest COD value was 25 mg/L, 

which was a sample point in the Opak River (No. 5). Furthermore, there was another sample point 

with COD 21 mg/L in the Tambakbayan River (No. 14). The location with the highest COD levels was 

in the Opak River, which was polluted. Pollution is caused by the flow of water containing waste that 

crosses the industry. In addition, pollution can also come from agricultural and household waste. 

 

Figure 3. Spatial pattern of COD. 

3.1. Interpolation results based on ordinary Kriging 

The semivariogram of Ordinary Kriging is presented in Figure 4 and the value is presented in 

Table 2. The plot shows 14 groups in the interpolation semivariogram plot. Group one consisted of 

two pairs of points with a distance of 0.006182529 with a semivariance value of 1. Group 14 consisted 
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of 6 pairs of points that were close to each other with a distance of 0.062022970 with a semivariance 

value of 50.42. The semivariogram that followed this Gaussian model contained Eq 3. 

γ(ℎ) = 20 + 2 [1 − 𝑒𝑥𝑝 (
−(3ℎ)2

0.004972
)] (15) 

 

Figure 4. Ordinary kriging semivariogram. 

Table 2. Semivariance of ordinary kriging. 

No Number 

of points 

Average 

distance 

between points 

Semi-

variance 

No Number 

of 

points 

Average 

distance 

between points 

Semi-

variance 

1 2 0.006182529 1 8 9 0.036286627 24.33 

2 3 0.01042038 135.33 9 11 0.040269201 16 

3 4 0.015624882 10.63 10 5 0.04540757 32.2 

4 8 0.019242295 9.69 11 4 0.049849159 4.75 

5 6 0.023256504 19.75 12 12 0.053872448 37.54 

6 2 0.027777759 5 13 7 0.058161632 34.43 

7 8 0.032848012 11.13 14 6 0.06202297 50.42 

The semivaroigram plot also shows the corresponding model parameters such as sill, range, and 

nugget. The sill value in the Gaussian model was 20, meaning that the variance value in the Gaussian 

model will be constant at 20. The range value in the Gaussian model was 0.00497, meaning the distance 

of the variogram value in the Gaussian model when it reached a sill of 0.00497. 

Based on the sill, range, and Gaussian nugget parameters, ordinary kriging produced an 

interpolation on the test data that gave an MSE of 0.530 and an MAE of 0.696. Interpolation was also 

performed at 10 other locations, and the results are shown in Table 3. 
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Table 3. Ordinary kriging interpolation. 

No Lat Long COD 

inter-

polation 

Variance No Lat Long COD 

inter-

polation 

Variance 

1 -7.942 110.371 20.891 1.655 6 -7.849 110.388 7.7678 0.305 

2 -7.899 110.384 10.058 0.430 7 -7.832 110.375 3.077 0.308 

3 -7.892 110.366 11.000 8.88 x 10-6 8 -7.828 110.355 2.964 1.755 

4 -7.883 110.383 3.000 8.88 x 10-6 9 -7.827 110.428 21.100 0.001 

5 -7.859 110.426 12.263 2.731 10 -7.813 110.438 11.102 1.837 

3.2. Interpolation result based on machine learning Kriging 

The interpolation calculation in this discussion used Eqs 1–3. 𝑍𝑆𝐿
∗ (𝑢) was obtained from the 

Support Vector Regression function. Moreover, 𝑍𝐾𝑅
∗ (𝑢) is shown in Table 3. The values of 𝑏0 and 

𝑏1 are very important in determining the weights 𝑤(𝑢). In this research, the values of 𝑏0 and 𝑏1 

were determined from 0.00007 to 0.00002, respectively, and then selected based on the smallest MSE 

value. The following Figure 5 shows the comparison of MSE values between actual data and 

𝑍𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑
∗  at different values of 𝑏0 and 𝑏1. It can be seen that the smaller the values of 𝑏0 and 𝑏1, 

the smaller the MSE value. Furthermore, if the value is zero, the interpolation result is the same as 

ordinary kriging, or 𝑍𝑆𝐿
∗ (𝑢) = 𝑍𝐾𝑅

∗ (𝑢). This discussion displays the results of COD interpolation with 

Machine Learning Ordinary Kriging when 𝑏0  = 𝑏1 = 0.00007. 

 

Figure 5. Comparison of 𝑏0 and 𝑏1 against MSE in ML kriging. 

ML kriging produces an interpolation on the test data that gives an MSE of 0.581 and an MAE 

of 0.746. Interpolation was also performed at 10 other locations, and the results are shown in Table 4. 

Table 4. ML kriging interpolation. 

No Lat Long 𝑍𝑆𝐿
∗ (𝑢) 𝑍𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑

∗  No Lat Long 𝑍𝑆𝐿
∗ (𝑢) 𝑍𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑

∗  

1 -7.942 110.371 9.508 9.508 6 -7.849 110.388 8.044 8.041 

2 -7.899 110.384 10.321 10.321 7 -7.832 110.375 3.037 3.037 

3 -7.892 110.366 10.937 10.936 8 -7.828 110.355 1.469 1.465 

4 -7.883 110.383 3.064 3.064 9 -7.827 110.428 20.936 21.000 

5 -7.859 110.426 4.670 3.059 10 -7.813 110.438 6.147 6.151 
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3.3. Interpolation result based on topological kriging 

The topological kriging (top-kriging) included interpolating data based on a non-zero catchment 

area. Of course, this is different from ordinary and ML kriging. The interpolation step in top kriging is 

the same as in ordinary kriging, which begins with compiling a semivariogram, determining the 

parameters of sill, range, and nugget, up to the interpolation. Figure 6 shows an illustration of the area 

used in top kriging. The training data were 20 river flow areas taken from the sample points in the 

ordinary kriging method. The 20 areas were also used to interpolate 10 areas. The points in the 

interpolated area indicate the center point of the area. This data formation references the rtop package 

in R software. 

The area of the data training

 

The area of the data interpolation

 

Figure 6. The area used in top kriging. 

Semivariograms of topological kriging are presented in Figure 7. This figure shows the point 

variograms and ordered variograms displayed for different catchment sizes. For example, the solid 

green line shows the semivariogram for a river area of (8.4𝑥103) with (3.36𝑥103)𝑚2. Based on 

this identification, the variogram model used was Exponential, with Nugget 0, Sill 496.41, and Range 

12.68 parameters. This model produced a Sum of Squared Errors (SSErr) of 15.301, which indicates 

the suitability of the model to the data. It also produced an AIC of 0.287.  

The interpolation results of Top Kriging are presented in Table 5. The interpolated COD in each 

area was compared to the average of the training data in each of the corresponding areas. This 

comparison resulted in an MSE of 0.520 and an MAE of 0.601. 
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Figure 7. Point variogram and ordered variogram with different catchment sizes. 

Table 5. Top kriging interpolation. 

Area Center (Lat, 

Long) 

COD 

interpolation 

Area Center (Lat, 

Long) 

COD 

interpolation 

1 -7.942, 110.371 21.203 6 -7.849, 110.388 3.150 

2 -7.899, 110.384 10.033 7 -7.832, 110.375 10.893 

3 -7.892, 110.366 14.587 8 -7.828, 110.355 3.412 

4 -7.883, 110.383 7.945 9 -7.827, 110.428 21.088 

5 -7.859, 110.426 3.023 10 -7.813, 110.438 5.977 

3.4. Comparison of the results 

A comparison of the interpolation results of the three methods was done based on the MSE value 

as shown in Table 6. The MSE and MAE of the ordinary kriging and the ML kriging are based on the 

location of three points of the test data. Ordinary kriging still provides better performance than ML 

kriging because ordinary kriging produces smaller MSE and MAE. However, the difference between 

ordinary and ML kriging is relatively small.  

Table 6. The comparison of MSE and MAE. 

No Method MSE MAE 

1 Ordinary kriging 0.530 0.696 

2 ML kriging 0.581 0.746 

3 Top kriging 0.520 0.601 

Figure 8 shows an illustration of the comparison of ordinary kriging and ML kriging interpolation 

at 10 other sample points, as shown in Tables 3 and 5. The map also shows 20 training data points. In 

ordinary kriging, a total of 2 points are predicted to have high COD compared to 8 other points, namely 



132 

AIMS Environmental Science  Volume 12, Issue 1, 120–136. 

point 1 at 20.891 mg/L and point 9 at 21.100 mg/L. Both points have COD levels that are relatively 

the same as those of the nearest training data points. This shows the nature of spatial patterns, where 

adjacent areas influence each other or have similar characteristics. These characteristics are also 

present in ML kriging.  

However, ML kriging provides different prediction results at some points. For example, point 1 

has a COD of 9.08 mg/L, and point 9 has a COD of 21 mg/L, which are lower than the interpolated 

results of ordinary kriging. However, the interpolated values are nearly equal to the values of the 

nearest training data points. 

On the other hand, MSE and MAE of top kriging are based on ten area locations. The topological 

kriging method produces a smaller MSE dan MAE value than ordinary kriging and ML kriging, which 

are 0.520 and 0.601. Area 1 in Oya River with 21,203 mg/L and area 9 in Tambakbayan River with 

21,088 mg/L are the areas with the highest COD interpolation results. In comparison with the ordinary 

and ML kriging results, the COD in region 1 has a value that is relatively the same as the interpolation 

of the ordinary kriging results at point 1, which is 20,891 mg/L. In other regions, for example, region 8 

has an interpolated COD of 3,412 mg/L, which is also relatively equal to the interpolated ordinary and 

ML kriging results at point 8 and the training data at points 16, 17, 18, and 19, which are located in 

region 8. 

Ordinary kriging 

 

ML kriging 

 

Figure 8. Ordinary and ML kriging interpolation result map. 

The visualization of the interpolation results from Figures 8 and 9 show the different forms of 

interpolation results, where ordinary and ML kriging provide interpolation in the form of point data, 

while top kriging provides interpolation in the form of river flow areas. The disadvantage of ordinary 

kriging is that it does not take into account the structure of the river network or the stratified nature of 

the watershed. As a result, the uncertainty estimates tend to be uniform and do not reflect the intuitive 

distribution of estimation errors. Top kriging has the advantage of taking into account the information 

shared by measured and unmeasured watersheds, as well as the stratified structure of the watershed. It 

provides more accurate and reasonable estimates compared to ordinary kriging. Moreover, ML kriging 
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has a chance to interpolate well, but it needs to make some modifications. Some things that can be 

done are choosing the type of Super Learning and optimizing the selection of bo and b1. 

The results of the interpolation in Figure 9 show that areas with low COD levels (green color) 

were seen in the north or the upper reaches of the rivers (areas 4, 6, 8, and 10). This identifies that 

COD levels are good with minimal levels of organic pollution. Furthermore, the southern or 

downstream part of the river (areas 3, 2, and 1) tends to have high COD levels. In this stream, water 

quality is predicted to experience a very significant decline, indicating that there is a high level of 

organic pollution.  

For COD interpolation in this study, we did not consider external factors such as river conditions, 

temperature, water flow, and aquatic biota. However, some other secondary data can describe the 

things that affect the high and low COD at the same location. Based on the correlation analysis of the 

training data, COD has a strong relationship with Total Suspended Solid (TSS), pH, Biochemical 

oxygen demand (BOD), total phosphorus, ammonia, and water discharge. COD will increase as TSS, 

pH, BOD, Total Phosphorus, and Ammonia increase. Moreover, COD decreases when water flow is 

high. This can also be explored in future research to see how interpolation can be achieved by 

considering other factors that may affect COD. 

 

Figure 9. Top kriging interpolation result map. 

The prediction that areas 1 and 9 have high COD is also in accordance with the water quality 

index reported by the concerned agencies. In 2020, the water quality index of the Oya River was 35 

and that of the Tambakbayan River was 37.5, which is considered moderately polluted. By 2023, the 

index was in the same range. River pollution can occur from upstream to downstream. In addition, the 

dense settlements along the riverbanks also carry domestic waste. 

These interpolated results can provide information for pollution prevention in the form of 

collaboration between the public and government to improve and maintain water quality. Several 

researchers have also identified the causes of pollution and some remedial strategies. Several causes 

of river water pollution have also been identified, including waste from slums, settlements, industries, 

and households. Rohmadi et al. [23] have stated that there is a high correlation between slum areas and 
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COD in Winongo, Code, and Gajahwong River. This indicates that with the high slum area, the COD 

levels will be high. However, some efforts have been made to reduce it, namely by development during 

slum upgrading and improvements in WWTP, drainage channels, and construction of embankments. 

The results in research of Brontowiyono et al. [24] are that wastewater incredibly contributes to the 

increase of COD values at Opak River, typically in organic matter from settlement point sources. 

4. Conclusions 

The three methods were applied in Chemical Oxygen Demand (COD) as water river quality in 

the Special Region of Yogyakarta (DIY). Ordinary Kriging and ML kriging, whose interpolation basis 

is data points, provided MSE accuracy of 0.530 and 0.581 and MAE accuracy of 0.696 and 0.746, 

respectively. This result is different from that in the research of Erten et al. [16], stating that the 

combined model of ordinary kriging and SL gives more accurate estimates than ordinary kriging. ML 

kriging will have a chance to interpolate well, but it needs to make some modifications. Some things 

that can be done are choosing the type of Super Learning and optimizing the selection of bo and b1. 

Top kriging provided better accuracy, with an MSE of 0.520 and MAE of 0.601. This shows that 

top kriging is suitable for interpolating data in the case of river flow. However, it should be noted that 

the data used between ordinary and ML kriging are different. Top kriging has the advantage of taking 

into account the information shared by measured and unmeasured watersheds, as well as the stratified 

structure of the watershed. 

The interpolation result of top kriging is that the COD value in the upstream area of the river is 

low, meaning that the level of organic pollution is minimal. The upper reaches of the river are close to 

the peak of Mount Merapi. Further downstream, after passing through densely populated residential 

and industrial areas, the COD value is higher. This result has the same characteristics as the results of 

point interpolation by ordinary and ML kriging. These results have the same characteristics as the 

results of point interpolation by ordinary and ML kriging, i.e., COD will be high at sample points 1 

and 9, which are in areas with high COD also in Top Kriging. 

Top-kriging also has the advantage of taking into account the area and integrated nature of the 

catchment. This method not only provides an estimate of the variable of interest in the unmeasured 

catchment but also provides an estimate of its uncertainty. This is different from ordinary kriging, 

which depends only on the centroid distance of the measured and unmeasured catchments. Future 

research can apply the Top-Kriging method in interpolating various cases. Obaid et al. [19] applied it 

to risky diseases in Iraq, concluded that top kriging is also better than area-to-point kriging. Then, 

Archfield et al. [25] did flood prediction and proved that top-kriging is better than Regression kriging. 

This can also be explored in future research to see how interpolation can be achieved by considering 

other factors that may affect COD. Thus, combining the concepts of machine learning and top kriging is 

another possible development. 
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