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Abstract: Proper water resource management is essential for maintaining a sustainable supply chain 
and meeting water demand. The urgent need to preserve river ecosystems by sustaining environmental 
flow (EF) in the realm of environmental management has been highlighted by the drastic changes to 
river ecosystems and upstream flow dynamics brought about by careless river exploitation in the last 
few decades. To optimize EF in river basin management, we present an integrated modeling approach. 
We focused on the Pir Khezran River basin. Our objective was to estimate EF and generalize the 
findings to adjacent rivers using modeling techniques, thus providing valuable insights for 
environmental management applications. The assessment and optimization of EF under uncertain 
conditions was achieved by combining physical habitat simulation (PHABSIM) modeling with 
advanced techniques like Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Multilayer 
Perceptron (MLP) neural networks. This integrated modeling approach contributes to sustainable 
solutions for river basin management and environmental conservation by effectively optimizing EF, 
as demonstrated by the results. This research, therefore, makes valuable contributions to environmental 
management in various areas such as ecological preservation, modeling and optimizing environmental 
systems, and policy considerations. 
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1. Introduction 

Water resource management is a crucial component of the water supply chain, ensuring the 
sustainable distribution and availability of water resources for various ecological and/or human needs. 
In today's world, environmental management is critical because it aims to maintain natural resource 
availability and durability while also promoting human progress. Population growth, urbanization, and 
industrialization have increased the water demand [1], emphasizing the importance of effective 
management strategies. Protecting river basins is a significant challenge because they are critical for a 
variety of reasons, including biodiversity, water supply, and the maintenance of ecosystem 
services [2]. In countries where freshwater resources are limited and cannot meet the needs, a balance 
must be struck between water extracted for human activities and water stored for managing the river 
or watershed system [3–5]. In many developing countries, due to the lack of minimum required 
information about rivers, there are no comprehensive and flexible methods available to determine the 
environmental flow (EF) [6,7]. It is a challenging task to manage and preserve the ecosystems of these 
rivers [8].  

The EF's mission, as Arthington et al. [9] explain, is to protect the biodiversity of rivers, lakes, 
and estuaries by managing river basins and implementing environmental conservation measures. A 
specific quantity, frequency, and quality of water flow, commonly referred to as EF, is required for the 
survival of freshwater and estuarine ecosystems, as well as the preservation of human lifestyles [10]. 
EF refers to the water regime that is implemented to protect the ecosystems and their associated 
benefits in river, wetland, or coastal area [11,12]. The flow regime, according to the IFC definition, 
refers to the hydrological characteristics of a river, which encompass four flow levels, including the 
life flow of a period of drought [13], basal flow as a natural flow to maintain river habitat in healthy 
conditions [14,15], high flow that removes sediment in the environment [16], and overflow bank that 
connects the main river to the floodplain, which has significant morphological significance [17]. The 
EF is higher than the waterways’ minimum water level; this involves managing water regimes to mimic 
natural flow patterns as closely as possible [18]. The migration and spawning of fish are dictated by 
these patterns; and understanding ecosystem needs, water flow, ecological health, and socioeconomic 
interdependence is the first step toward achieving proper ecological functioning. By maintaining 
environmental flows, we aim to achieve a sustainable balance that supports ecosystems while 
accommodating human uses (i.e., agriculture, industry, and recreation). As a matter of fact, this balance 
is crucial for preserving biodiversity, ensuring water quality, and sustaining the services provided by 
aquatic ecosystems to communities and economies. As a result, by striking a balance between 
ecological preservation and human water needs, this article emphasizes the importance of 
interdisciplinary collaboration in environmental problem-solving; this emphasizes the importance of 
long-term solutions that benefit the environment and people. 

The purpose of methods designed to preserve river ecosystems is to maintain one or more parts 
of the mentioned flow regimes [19,20]. The compromise between the economic benefits of rivers such 
as hydropower potential and environmental protection must be considered in estimating the                    
EF [21–23]. There are different divisions to determine the EF of rivers. The numerical method of 
habitat simulation modeling was used to study how water flow affects the conditions of the 
environment for aquatic life [24]. The United States Wildlife Service developed the Physical Habitat 
Simulation (PHABSIM) model during the 1970s (https://www.usgs.gov/node/279289). This model 
consists of a range of tools that can be used to simulate the appropriateness of hydraulic habitats for 
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aquatic species [25]. The simulation model for aquatic habitats gauges the standard of the habitat by 
taking into account physical alterations, like the depth, flow velocity, and channel conditions [26,27]. 
The process of simulating a habitat involves two stages, namely habitat simulation and hydraulic 
simulation [28,29]. The PHABSIM model was used for suitable ecological water demand [30,31], 
quantifying the hydrological requirements for fish [32], and modeling fish habitat conditions in ice-
affected rivers [33]. Nikghalb et al. [28] conducted a comparison of two hydrologic techniques, namely 
Tennant and Q95, with a PHABSIM. The comparison was conducted under conditions of data 
shortage. The results showed that the PHABSIM model was able to provide valid outcomes even when 
the input data was imprecise. Peng and Sun [34] utilized the PHABSIM models to prevent the river 
ecosystem from hydroelectric exploitation. They clarified that the PHABSIM models establish a 
relationship between habitat and flow that maximizes instream flow releases while reducing ecological 
disturbances. The outcome of the research indicates that the PHABSIM model is effective in 
optimizing the flow release schemes of hydropower stations in the southwestern region of China. 
Gholami et al. [35] estimated the EF for the wetland's river system using various models, including the 
PHABSIM model, the Tenant model, the Wetted-Perimeter method, and the flow duration curve. The 
study concluded that the Wetted-Perimeter and the PHABSIM model were the most effective in 
estimating the EF for the rivers in the wetland, considering the river's seasonality and hydro-climatic 
condition of the study area. Using the PHABSIM model, Miao et al. [30] showed that land use change 
can decrease the urban water supply and the quality of fish habitat. The PHABSIM model necessitates 
extensive hydrological and ecological data over an extended period. Obtaining such data is both time-
consuming and expensive. However, accurate employment of the model for estimating EF allows for 
the generalization of data obtained for one river to surrounding rivers with similar ecological 
conditions. Therefore, utilizing the appropriate model reduces the time and cost involved in estimating 
EF for rivers. Im et al. [36] utilized fuzzy neural network models to create habitat-suitable indexes 
(HSI) which were then used as input data for the PHABSIM model. They showed that fuzzy neural 
network models can consider uncertainties in complex ecosystems. Recently, the Adaptive Neuro-
Fuzzy Inference System (ANFIS) was used in environmental studies [37–39] and it seems it can 
accurately predict the environmental variables [40,41]. Therefore, it seems that the ANFIS model can 
predict the EF using HSI data. Thus, our purpose is to simulate the PHABSIM model to determine the 
EF of a river and predict the EF of the other rivers using a linear model, Multilayer Perceptron neural 
network (MLP), as a nonlinear model, and ANFIS as a hybrid model. By using the mentioned models, 
the impact of changes in river flow on the ecosystem will be evaluated, and the discharge needed to 
maintain the river's potential biodiversity will be determined. 

2. Materials and methods 

2.1. Study area   

The Pir Khezran River, which is in the western part of Kurdistan province, is the subject of this 
research. It is one of the sub-basins of the Azad River (Figure. 1) and covers an area of 4.70220 hectares 
with 632 mm rainfall. The basin is of significant importance to Azad Dam and is one of the sub-basins 
of the Sirvan River in western Iran. 
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Figure 1. Geographical location of Pir Khezran river. 

2.2. Data  

The required data for the study was collected in January 2018, with measurements taken across 
the river's cross-section. The processes of sampling, transporting, storing, and receiving samples were 
carried out according to the international standards of American Public Health Association (APHA). 
The hydrology team recorded water velocity, depth, and discharge [42], while the fisheries team 
gathered data for various fish species, including their numbers, ages, sexual maturity, densities, and 
diversities [43]. In the realm of these studies, there are several methods that can be utilized for 
capturing and gathering fish. The electrofishing method, as defined by the EPA [44], is a more 
extensive approach. Fish sampling will entail the use of an electroshock device with a power rating of 
2 kilowatts, a potential difference of 200–300 volts, a current intensity of 0–10 amps, and an anode 
opening length of 40 cm. Each sampling station will be positioned 20 to 50 meters from the river, in 
line with the Standard method [45]. Following capture, the fish samples from each station will be 
placed into containers with a 10% formaldehyde solution before being transported to the Fish Biology 
Laboratory of Kurdistan University. To determine channel index variables [46], substrate materials 
were sampled from each location, with three samples collected from the bed floor. The channel index 
was then calculated based on the sizes of sand, gravel, and stones. One of the most important steps in 
EF modeling is the production of HSI data [43]. The appropriate HSI shows the living conditions of 
the index species at the sampling site [12]. For example, by analyzing the water depth variable, it is 
possible to identify the optimal depth range for the index species' living conditions [47]. This 
information can then be used to predict how the living conditions will be affected when the depth 
deviates from the optimal range [48]. Data from all the studies mentioned was used to create habitat 
suitability curves. 
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2.3. Estimation of EF using the PHABSIM model 

The PHABSIM model is essentially a combination of hydraulic and habitat models. It establishes 
a relationship between flow conditions and the appropriateness of physical habitats for index species 
in the river ecosystem [30]. The method is divided into cells based on diversity. Each section has 
suitability functions for depth, velocity, and channel index that determine the cell's degree of suitability 
based on its current state [43]. The suitability index of the composite for each cell in each section is 
determined by combining the calculated scores for each of the mentioned parameters. The Weight 
Usable Area (WUA) is the final index used to determine EF, which is calculated by multiplying the 
HSI for each cell at the relevant available level [28]. A WUA versus discharge map can be generated 
using the overall WUA amount for a particular section of a river. This map provides a clear illustration 
of the correlation between discharge and the quality and quantity of habitat available. The index is 
used as a guide to analyze alterations in habitats due to evacuation. It's essential to acknowledge that 
there have been objections regarding the correlation between fish biomass and the availability of 
habitat or WUA [30–33]. 

2.4. Environmental water flow prediction models 

2.4.1. ANFIS model 

The ANFIS model was executed using Matlab version 14a during the simulation and testing 
phases. Jung's ANFIS method is an algorithm that merges fuzzy logic with an artificial neural network 
(ANN) for hybrid learning. This approach offers the benefits of both ANN and fuzzy models, allowing 
for the optimization of nonlinear problems and the acquisition of imprecise and ambiguous 
information [36]. The Fuzzy Inference System (FIS) was initially introduced by Mamdani and 
Assilian. Afterwards, Sugeno presented the Sugeno model, which enhanced the computational 
efficiency of the previous FIS [49]. The fuzzy approach offers a significant benefit by allowing for the 
direct integration of non-numerical information, such as specialized knowledge, into rules. This is 
particularly useful when there is a lack of field data. Furthermore, membership rules and functions can 
be defined in such a way as to consider the inherent uncertainty of environmental variables [50,51]. 
The ANFIS method was tested using the observed data set for validation [49]. The construction of the 
HSI model has also been achieved by utilizing fuzzy neural network models [52,53] and the results 
indicate that the evaluation of ecosystems demands the use of fuzzy neural network models, 
particularly when dealing with intricate ecosystems [49]. The least squares method and multiplication 
algorithm are used to predict output values and optimize the parameters of membership functions in 
this approach. The Sugeno inference system is employed to enhance the efficiency of optimization. 
The ANFIS network is composed of five layers, which include the fuzzy layer, product layer, 
normalized layer, de-fuzzy layer, and output layer. Each layer's output variables are determined by the 
input variables from the previous layers and the parameters in each node [36]. 

2.4.2. Multilayer perceptron neural network MLP 

Matlab version 14a was utilized to run the MLP model in the simulating and testing phases.  The 
most famous, adaptable, and uncomplicated form of artificial neural network is MLP. This approach 
is extensively employed to articulate the nonlinear correlation between anticipated and recorded 
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information [54]. The primary objective of the neural network is to enhance the efficiency of the 
predicted and observed values. MLP is specifically engineered to excel in modeling nonlinear 
phenomena. An MLP network that is forward-facing comprises an input layer as well as an output 
layer, both of which are flanked by one or more hidden layers in the middle. Within each layer, there 
are a predetermined number of artificial neurons. 

2.4.3. Linear regression model LR 

SPSS version 22 was used to run the LR model in the simulating and testing phases.   Regression 
analysis is a statistical technique used to investigate the connections between variables. It involves an 
independent variable and a dependent variable, with the researchers generally seeking to determine the 
impact of the independent variable Y on the dependent variable xi. All of these components, including 
the dependent and independent variables and the error, are part of the regression analysis process, and 
the resulting equation for prediction is commonly referred to as a regression model [55]. It should be 
kept in mind that prior to analyzing the correlation between the dependent and independent variables, 
it is recommended to use a distribution diagram to assess the noteworthy correlation between them. 
Furthermore, it is important to determine whether there exists a significant association between these 
variables. The statistical technique of linear regression holds a crucial position in statistical methods. 

In the research, the prediction quality of MLP, ANFIS, and LR neural network models was 
assessed using various performance indicators. The assessment criteria included statistical measures 
such as the R2 correlation coefficient, root mean square error (RMSE), and mean absolute error (MEA). 
The objective was to enhance the efficiency, speed, and accuracy of the models, with a focus on 
minimizing RMSE and MEA while maximizing the correlation coefficient to ensure high accuracy 
and close alignment between predicted and actual values at each stage of the model. 

3. Results and discussion 

3.1. Estimating EF of Pir Khezran river 

Habitat suitability curves in January for Pir Khezran River and surrounding rivers are shown in 
Figure 2. 

As Figure 2 shows, the appropriate flow velocity for the Pir Khezran River and the surrounding 
rivers in January is between 0.2 and 0.6 (m/s), i.e. in this range, the maximum rate of fishing and 
benthos, and the highest rate of diversity was obtained. At the flow velocity higher or less than this 
range, habitat suitability for the index species gradually tends to zero. The appropriate flow depth, 
according to figure 2, is between 0.22 to 0.51 m, which, as stated for the flow velocity, in this depth 
range, was the highest catch of index species. 
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Figure 2. Flow Depth, flow velocity, channel index, and suitable temperature for the life 
of index species in Pir Khezran River in January. 

Habitat suitability decreases at a very high depth of river but will not be zero because the index 
species studied in this research has also been seen in the Azad dam, which has a depth of nearly 85 m, 
so the highest depth has 0.1 value in the flow depth suitability index. Habitat suitability for the channel 
index is highest at 5 and tends to zero at lower and higher than this rate. Also, the appropriate 
temperature in the best biological condition was 7 to 10 ° C. In order to obtain the EF of the rivers of 
the study area in January, the PHABSIM model developed HIS indexes. As Figure 3a shows, the 
amount of EF in this river in January is equal to 2.2 m3/s. since then, the habitat suitability does not 
change and remains the same, but reducing the volume of water from this amount causes a reduction 
in the habitat suitability. 

The desirability of habitats in different parts of the Pir Khezran River for flow velocity, flow 
depth, and channel index are shown separately below. Habitat suitability for the flow velocity variable 
is shown in Figure 3b. The legend section is stated and different numerical ranges are given for each 
color. As this figure shows, the habitat suitability in the left part of the river has the highest rate, and 
moving from left to right reduces the habitat suitability. Figure 4a shows the desirability of habitat at 
different flow depths in the Pir Khezran River in January. As this figure shows, most parts of the river 
are suitable for fish life. 
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Figure 3. (a) EFR in Pirkhezran River in January, (b) Habitat suitability at the flow 
velocity of 2.2 m3/s in Pir Khezran River in January.  

 

Figure 4. (a) Habitat suitability at flow depths between 0.22 to 0.51 m of Pirkhezran River 
in January, (b) Habitat suitability based on a combination of flow velocity and flow depth 
variables in Pir Khezran River in January. 

Figure 4b indicates the habitat suitability for the indicator species based on a combination of the 
flow velocity and flow depth variables. In this figure, the left side of the river has good desirability, 
and in only two parts of the left side did the desirability decrease. This is also observed in Figures 3b 
and 4a. 

Figure 5a shows the extent of habitat desirability based on the channel index, in which the 
expression of the degree of desirability for the channel index is equal to 5, which is the highest. Then, 
this rate gradually tends to zero. As Figure 5a shows, all the different parts of the river have the highest 
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habitat quality at this range, and therefore it can be said that the river does not limit the life of the 
indicator species at this range of channel index. 

 

Figure 5. (a) Habitat suitability in Pir Khezran river based on substrate index, (b) Different 
desirability of Pir Khezran river at the 2.2 m3/s of EFR. 

Finally, the habitat suitability of the index species is modeled by the PHABSIM model based on 
all the variables shown in Figure 5b. As this figure shows, the Pir Khezran River has different ranges 
of habitat suitability for the indicator species. 

3.2. Predicting environmental water requirement using ANFIS, MLP, and LR models 

In this study, the data were divided into 80% and 20% for the training and testing phases, 
respectively. In order to eliminate the alignment effect on the modeling results, the VIF and Tolerance 
tests were performed and the results are shown in Table 1. 

Table 1. Tolerance and VIF results of independent variables for estimation EFR. 

Test V min V max D min D max Ch min Ch max T min T max 

VIF 4.418 4.638 4.328 4.863 4.856 4.871 5.500 5.700 

Tolerance 0.208 0.216 0.202 0.206 0.010 0.211 0.185 0.171 

 
The results of Table 1 show that the appropriate water temperature for indicator species in both 

minimum and maximum conditions has a high correlation with other parameters, so these two variables 
were not used in modeling. The mean, minimum, maximum, and standard deviation of independent 
and dependent variables used in modeling are shown in Table 2. 
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Table 2. Descriptive statistics of independent and EFR data. 

 No. Min Max Mean SD 
V min 100 0.20 0.80 0.48 0.13 
V max 100 0.30 0.97 0.60 0.15 
D min 100 0.10 0.95 0.57 0.18 
D max 100 0.22 1.35 0.70 0.22 
Ch min 100 5.00 5.50 5.25 0.02 
Ch max 100 6.00 6.50 6.25 0.03 
EFR 100 7.00 3.20 2.10 0.49 

 
As Table 2 shows, by increasing the value of the independent variables to its maximum value, the 

minimum amount of EF increased. Results can indicate that there is a strong relationship between 
increasing EF and the increase of independent variables. However, the linearity or nonlinearity of this 
relationship is not yet clear which were tested using the linear model LR and nonlinear model such as 
MLP and hybrid model like ANFIS. 

3.3. Predicting the minimum environmental water requirement using the LR model 

The LR model is a linear regression model that has many applications in environmental 
studies [56–58]. The obtained LR model is shown using independent and dependent variables in Eq 1. 

EWF = 0.115-0.13 * (V min) -0.597 * (V max) + 0.155 * (D min) + 0.197 *(D max) + 0.01 * 
(Ch min) +0.02 (Ch max) (1)  

As equation 1 shows, the minimum EF has an inverse relationship with the flow velocity at both 
the lowest and highest levels and a direct relationship with the flow depth and channel index at both 
the lowest and highest levels. The results of the LR model training phase are shown in Figure 6a. 
 

 

Figure 6. (a) Observed and simulated data of EFR in LR model, (b) Observed and 
predicted data of EFR in LR model.  

The correlation between the observed and simulated data is equal to R2 = 0.67 and also RMSE = 
0.1301 and MAE = 0.0191. As Figure 6a shows, there is no high correlation between the observed and 
simulated data. Figure 6b shows the results of the test phase of the LR model in which R2 = 0.81, 
RMSE = 0.1233, and MAE = 0.0152. As Figure 6b shows, the correlation between the observed and 
predicted data at this phase is greater than at the training phase. 
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3.4. Predicting the minimum environmental water requirement using the MLP model 

The MLP model is one of the most common artificial neural network models that is widely used 
in natural resource studies [59–61]. The results of the MLP model in the training stage of determining 
the EF of Pir Khezran River are shown in Figure 7a, where R2= 0.96, RMSE = 0.0370, and MAE = 
0.0014. As Figure 7a shows, the correlation coefficient between the observed and simulated data in 
the MLP model is greater than the results of the LR model in the training phase. 

 

Figure 7. (a) Observed and simulated data of EFR in the MLP model, and (b) Observed 
and predicted data of EFR in MLP model.  

The results of the testing phase of the MLP model (R2 = 0.92, RMSE = 0.0026, and RME = 
0.0027) in predicting the EF of Pir Khezran River are shown in Figure 7b. According to Figure 7b, the 
correlation coefficient between the observed and predicted data at this phase is more than the results 
of the LR model, which are consistent with the results [62–64]. 

3.5. Prediction of minimum environmental water requirement using ANFIS model 

As stated in the methodology section, the ANFIS model is a hybrid nonlinear model that has more 
advantages than the nonlinear models [40,41,65]. Figure 8a indicates the results of the ANFIS model 
in the training phase (R2 = 0.98, RMSE = 0.0248, and MAE = 0.0006) to determine the EF. 
 

 

Figure 8. (a) Observed and modeled data on environmental water demand in ANFIS 
model, (b) Observed and predicted data of EFR in the testing phase of ANFIS model. 

A comparison of Figure 8a with the previous figures related to the models training phases (LR 
and MLP models) shows that the correlation coefficient of the ANFIS model is the highest. The results 
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of the testing phase of the ANFIS model (R2 = 0.97, RMSE = 0.0295, and MAE = 0.0008) in predicting 
the EF of the Pir Khezran River are shown in Figure 8b. A comparison of the results of the ANFIS 
model in the testing phase to the results of the other two models shows that the ANFIS model has a 
higher accuracy in predicting the amount of EF in the Pir Khezran River. 

The comparison between the training and test phases revealed these findings. This research aligns 
with previous studies by Klaus Jorde et al. [66–68]. Their results indicated that the fuzzy method, with 
minimal field data, offers greater flexibility and predictive ability compared to other hybrid methods. 
It also appears capable of identifying critical situations more effectively than the conventional IFIM 
method. This is supported by the work of Junga and Choib [69], who utilized the ANFIS model to 
predict the composite suitability index (CSI) for simulating the physical habitat of the Dal River in 
Korea. In their study, utilizing two 2D hydraulic models to simulate the habitat, it was found that the 
ANFIS model accurately predicted the distribution of the suitability index. They also suggested the 
potential for utilizing monitoring data with ANFIS in other watershed areas. 
It has been found that fuzzy neural network models, as used by Dongkyun et al. [70], are suitable for 
addressing uncertainties in complex ecosystems. Additionally, the ANFIS method can be utilized to 
predict CSI in habitat simulation models by directly using data from the PHABSIM model, including 
depth, velocity, and channel index. This suggests that implementing the ANFIS model to estimate 
environmental damage could simplify and enhance the accuracy of environmental modeling. These 
findings align with a study conducted by Elkiran et al. [71], which compared artificial neural network 
models, linear regression models, and neural-fuzzy inference system models, demonstrating the 
superiority of the ANFIS model over the others. 

4. Conclusion  

An essential link in the water supply chain, water resource management guarantees that water 
resources will be distributed and made available sustainably to meet various human and environmental 
demands. The main objective in writing this article, thus, was to offer practical advice for river basin 
conservation and environmental management by evaluating different modeling approaches to EF 
determination. To estimate EF using data from the HSI and river discharge, for the case of Pir Khezran 
River, we utilized the PHABSIM model. The necessity for more efficient and cost-effective modeling 
techniques is highlighted by the resource-intensive field sampling that is required for PHABSIM. This 
research showed that nonlinear modeling approaches, especially the ANFIS model, can be effective at 
predicting EF. When tested against more traditional models like MLP and LR, the ANFIS model 
outperformed them due to its fuzzy logic neural network integration. The results show that optimizing 
EF in river basin management can be achieved through interdisciplinary approaches that combine 
fuzzy logic with machine learning. 

This research, however, has broader implications for environmental management practices as it 
provides a methodology for managing river ecosystems in a sustainable way. This work helps 
policymakers and practitioners find a balance between human water needs and ecological conservation 
goals by demonstrating how well ANFIS generalizes EF estimates across rivers and watersheds. This 
highlights the significance of working together across disciplines to tackle intricate environmental 
issues. Nonetheless, proposing and validating more models in a variety of river basins and 
environmental settings could remain a subject for future research. To further improve our ability to 
manage and conserve freshwater resources, we should investigate how ANFIS can be integrated with 
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other modeling techniques and decision support systems. In addition, studies should be conducted to 
examine the monetary and social effects of EF optimization methods, considering the costs and 
benefits of balancing human progress with environmental preservation. Moreover, by outlining a solid 
modeling strategy for optimizing EF in river basin management, our study helps to progress 
environmental management practices. We can enhance our knowledge of river ecosystems and 
promote evidence-based decision-making for sustainable environmental management by utilizing 
advanced modeling techniques such as ANFIS. 
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