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Abstract: In order to predict the temperature change of Laoshan scenic area in Qingdao more
accurately, a new back propagation neural network (BPNN) prediction model is proposed in this study.
Temperature change affects our lives in various ways. The challenge that neural networks tend to
fall into local optima needs to be addressed to increase the accuracy of temperature prediction. In
this research, we used an improved genetic algorithm (GA) to optimize the weights and thresholds
of BPNN to solve this problem. The prediction results of BPNN and GA-BPNN were compared,
and the prediction results showed that the prediction performance of GA-BPNN was much better.
Furthermore, a screening test experiment was conducted using GA-BPNN for multiple classes of
meteorological parameters, and a smaller number of parameter sets were identified to simplify the
prediction inputs. The values of running time, root mean square error, and mean absolute error of
GA-BPNN are better than those of BPNN through the calculation and analysis of evaluation metrics.
This study will contribute to a certain extent to improve the accuracy and efficiency of temperature
prediction in the Laoshan landscape.

Keywords: temperature prediction; genetic algorithm; BP neural network; neural network
optimization

1. Introduction

Temperature changes are influenced by many factors. Different regions have different topography,
altitude, latitude and longitude, which can lead to different temperatures. Meanwhile, the intensity of
solar radiation, changes in the Earth’s orbit, and anthropogenic factors caused by human activities can
also cause temperature variations. We currently have a wide variety of temperature-related data. How
to effectively apply these meteorological data for accurate temperature prediction became an issue to
be resolved. In addition, human productive life depends heavily on changes in temperature. It has
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a huge impact in the fields of agriculture, animal husbandry, aquaculture, tourism and transportation.
We need to adjust our various activities in time according to the different temperatures. Therefore, it is
necessary to select relevant data more efficiently for more accurate temperature prediction.

Current research on weather forecasting issues has gained the attention of researchers. Khaniani
et al. [1] compared the prediction effectiveness of two types of neural networks by selecting multiple
classes of meteorological parameters. Huang et al. [2] established a fuzzy time series model based
on automatic clustering interval differentiate method to predict the precipitation in spring, summer,
autumn and winter in Xinjiang. Lee et al. [3] developed an artificial neural network(ANN)–based
regional rainfall forecast model suitable for the Geum River Basin in South Korea, using teleconnection
climate indices. In [4], Liu et al. proposed a class of multi-meteorological parameter short-term
rainfall forecasting models based on improved BPNN algorithm design for precipitation prediction in
Singapore. Taking the prediction of precipitation in the Chao River Basin as the research object, Guan
et al. [5] compared two methods, kriging interpolation method in GIS program and constructing BPNN.
It showed the higher usefulness of BPNN model in weather prediction. Peng et al. [6] proposed a deep
neural network (DNN) hyperparameter auto-optimization method that can automatically optimize the
hyperparameters of DNNs. It makes the precipitation prediction problem more convenient for people
to operate. For the post-processing problem of numerical weather prediction, Cho et al. [7] proposed
a new multi-model ensemble. Shi et al. [8] proposed a cyclic evolutionary network model (CENS)
consisting of multiple network node units that can automatically match data from different regions
to the appropriate network node unit. Working with the RegCM4 ensemble, in [9], as well as the
Bayesian model averaging (BMA) weights, Song et al. investigate the temperature prediction problem
for 88 climate stations in Canada.

Most of the above works have adopted the ANN approach for weather prediction, especially in
[4, 5] the BP neural network model was utilized. Due to its highly nonlinear mapping capability
and generalization ability, bp neural networks have been deployed in many fields. However, there
are certain shortcomings of BP neural networks in terms of prediction. For example, long training
time, over-fitting phenomenon and the tendency to fall into local extremum. This would lead to the
connection weights and thresholds not being optimal. As a result, the error of prediction increases.

Recently, the study of genetic algorithms has been focused on various research areas (e.g., optics,
IoT security, traffic scheduling, power systems, mechanical design, etc. [10–14]). Because of its
global optimization capability, genetic algorithms have been used for prediction problems. In [11], a
multi-model integrated forecast experiment about temperature in the Jiangnan area ( 26◦–31◦ N,
112◦–121◦ E) was conducted using linear ensemble methods such as weighting, regression, and
bias-removed, combined with GA-BP neural network. Yao et al. [12] applied GA to model the
prediction of tropical cyclone intensity in the South China Sea by sifting factors, which made the
prediction more stable. In [13], the Simulated Annealing algorithm (SA) was combined with (GA) to
propose a HGASA-NN model for daily precipitation prediction. Tang et al. [15] proposes a class of
GA-BP neural networks for the air quality index (AQI) prediction problem during the winter heating
period.

The general prediction model first trained the structure of the neural network. In this study, the
optimal weights and thresholds of the network were first found by genetic algorithm. Combined with
the geographical environment of Laoshan scenic area, the day-by-day meteorological data between
2021 and 2022 were selected for the prediction experiment. By comparing each prediction result index
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of the improved model with the original model, it is shown that the prediction data of the improved
model is closer to the actual data.

The remainder of this paper is organized as follows. In Section 2, relevant preliminary knowledge of
BP neural network and genetic algorithm is given, and the GA-BPNN prediction model of this study is
proposed. In Section 3, the prediction simulation experiments of BPNN and GA-BPNN are conducted
separately using the obtained meteorological data of Laoshan scenic area, and the prediction results are
compared. In Section 4, the GA-BPNN is further used to do the screening of 9 types of meteorological
data, which in turn leads to efficient prediction with less data. Finally, Section 5 concludes the paper.

The main contributions of this paper are as follows. For the temperature prediction problem of
Laoshan scenic area in Qingdao, an improved GA-BPNN is proposed, and the weights and thresholds
of the neural network are optimized using GA to improve the accuracy of prediction. The GA-BPNN is
used to conduct screening test experiments on multiple types of meteorological parameters in Laoshan
scenic area to improve the prediction efficiency.

2. Problem modeling

2.1. BP neural networks

BP neural networks are a class of networks that learn by back propagation. It contains three layers
of structure, which are input layer, implicit layer and output layer. BPNN gradually adjusts the input
weights between layers through the training error. This adjustment process uses a gradient descent
algorithm. If the output error of the sample does not match the preset convergence error, then the
network will iteratively computed by backpropagation. The iterative process causes the parameter
values among the connected layers to be modified so that the error is reduced. The iteration ends when
the error is reduced to the target value.

The actual computational output equation of this model is:

ŷ j = S

 p∑
i=1

bi$i j + γ j

 , (2.1)

where bi is the activation values for the i-th input to the j-th output; $i j is connecting weighting
coefficients, at the initial moment it is a random small quantity; γ j is the output layer unit threshold; S
is the sigmoid function that is S(s) = 1

1+e−s .

2.1.1. Genetic algorithm

The concept of genetic algorithm was first introduced by Holland in 1962. The algorithm models
the mechanism of biological evolution and is a process search algorithm. The genetic algorithm first
considers the parameters as gene fragments and encodes them. Subsequently, the sub-generation will
undergo selection, crossover and mutation to exchange the information carried on the gene fragments
and eventually generate chromosomes that meet the desired conditions.

The first step of the algorithm is the initialization of the population. It generates the initial
population by selecting a suitable encoding method to transform multiple sets of solutions (in the
solution set) into chromosomes which carry various data information. By selecting the fitness
function, the individual’s fitness is assessed. Fitness is the extent to which species in nature are
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matched to their environment. By evaluating individuals in the population, the algorithm selects
individuals that fit the survival environment to continue reproducing, so that the good genes can be
kept alive. (2.2) is the fitness function

U = k

 p∑
i=1

|yi − oi|

 , (2.2)

where, p for network with p nodes; yi denotes the expected value at the i − th node; oi indicates the
actual output on the i− th node and denote the parameter by k. The next step of the algorithm performs
the selection operation. This step will pick the genes that are beneficial to the survival of the individual
from the many genes carried by the chromosomes. To allow the selected genes continue to exist in the
next generation. If the value of fitness for each member i is denoted as Ui, then let Ti = k

Ui
, where k is

a parameter, individual i’s probability of selection νi can be expressed as (2.3)

νi =
Ti

N∑
i=1
Ti

, (2.3)

N denotes quantity of the individuals in the species. Next, perform crossover. Crossover is the main
method of generating new individuals, which represents the idea of information exchange. It
interchanges some genes and forms new combinations to construct filial generation. (2.4) represents
the expression for the crossover of chromosomes k and l at the j-th position{

σk j = σk j(1 − b) + σl jb
σl j = σl j(1 − b) + σk jb.

(2.4)

Then perform variation. During the reproduction of offspring, genetic information can be wrong with
some probability, resulting in offspring with different chromosomal expression information than the
previous generation. If we use σmax to denote up-bound of the gene σi j and σmin to denote down-
bound of the gene σi j, then (2.5) represents the mutation operation of the gene σi j.

σi j =

 σi j +
(
σi j − σmax

)
· ψ(η) ρ > 0.5

σi j +
(
σmin − σi j

)
· ψ(η) ρ ≤ 0.5,

(2.5)

where ψ(η) = ρ ·
(
1 − η

GM

)2
, ρ ∈ [0, 1] is generated randomly; η means present iteration numbers; GM

means the maximum number of evolutions.

2.2. GA-BP neural network prediction model

BPNNs can predict samples by training the network, which has led many scholars to use BP neural
networks to study weather prediction problems. However, BP neural networks are not perfect in
prediction. This is due to the arbitrary settings of initial values, number of nodes and weights of BP
neural networks and the limitations of the gradient descent method. These problems cause the
algorithm to produce local extremes, which affect the efficiency of the operation and make the
predicted values less accurate. The shortcomings of BPNN are compensated, in this study, by using
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improved genetic algorithm to reduce the arbitrariness of network parameter setting. Thus, the
purpose of improving the accuracy of prediction is achieved.

By genetic manipulation, as shown in Figure 1, the individual fitness values will be evaluated and
the most adapted individual will be found. The advantage of this approach is that the network can get
the optimal parameters, which results in more accurate predicted values.

Figure 1. The flow chart for GA-BP neural network algorithm.

3. Simulation experiments

3.1. Data presentation and processing

In this paper, the meteorological data from January 1, 2021 to February 4, 2022 for the Laoshan
Scenic Area (36◦05′–36◦19′ N, 120◦24′–120 ◦ 42 ′ E) were selected as simulation data. The data was
obtained from the website https://rp5.ru. The meteorological data were recorded every 3 hours in
the raw data, and the data were measured 8 times a day, with a total of 3200 data sets of samples. There
are 15 types of data including the number of clouds and snow depth on this website. According to the
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geographical location and climatic characteristics of Laoshan Scenic Area, we selected horizontal air
pressure (HAP), mean sea level pressure (MSLAP), 2 meters (above the horizontal) relative humidity
(RH), and mean wind speed (MWS) (about 10 meters above the horizontal) ), 10–12 meters maximum
gust between observations (MAXG), minimum air temperature between two observations (MINT),
horizontal visibility (HV), and 2 meters above ground dew point temperature (D-PT) as the input of
this experiment. For further simplification, we calculated the daily average of the data for eight times a
day, and finally obtained 400 sets of data samples. The high autocorrelation of the input variables may
cause overfitting phenomenon, which affects the model prediction accuracy. In this study, the data were
initially processed using pauta criterion [16] (i.e., when the absolute value of the difference between
a measurement and the mean is greater than 3 standard deviations, the measurement is considered an
outlier, and the value is replaced with the mean of the data on both sides of the outlier).

Further, there are differences in the units of the parameters. For example, the value of horizontal
atmospheric pressure is around 765 mmHg, while the relative humidity is in the range of 50%–60%. To
avoid the influence of these differences on the prediction results, we normalized the data using Matlab
and the normalization function used was mapminmax(·). This function normalizes all data to between
[−1, 1]. The parameters after partial normalization are listed in Table 1.

Table 1. Normalized data.

HAP MSLAP RH MWS MAXG MINT HV D-PT
0.8090 0.8045 0.1840 0.0327 0.1217 0.2614 0.6474 0.2361
0.8865 0.8786 0.3810 0.0981 0.0609 0.2875 0.3388 0.3350
0.9493 0.9393 0.7175 0.0327 0.0000 0.3332 0.1016 0.4207
0.9047 0.8960 0.7175 0.2290 0.1565 0.3521 0.0646 0.4254
0.9879 0.9792 0.3086 0.5724 0.5130 0.2841 0.7576 0.2322
0.8978 0.8948 0.2305 0.6542 0.8174 0.1900 0.7752 0.1459

...
...

...
...

...
...

...
...

0.9398 0.9185 0.2361 0.3598 0.8696 0.6230 0.9295 0.4775
0.9177 0.9002 0.2026 0.1308 0.3217 0.5361 1.0000 0.4556

3.2. The network structure design

After several Matlab numerical experiments, among 400 sets of sample data, the first 290 sets were
used as training samples and the last 110 sets were used as prediction samples. The selection of the
number of nodes in the hidden layer is one of the factors that affect the model prediction. Too few
nodes will affect the learning of the network and increase the training times; too many nodes will
prolong the training time and make it easily overfitted. The scope of the number of implied layers is
determined in this paper using Eq (3.1).

n =
√

ni + no + q, (3.1)

which ni stands for the nodes of the input layer; no means the nodes of the output layer; q ∈ [1, 10] is a
constant. In this paper, the input data of the simulation experiment is 8 and the output data is 1. From
the above equation, the range of the number of nodes is [4, 13]. The results of RMSE corresponding to
different number of nodes are shown in Table 2.
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Table 2. Root mean square error of BP neural networks with different number of hidden
layer nodes.

n 4 5 6 7 8 9 10 11 12 13
RMSE 0.9562 0.5755 0.9570 1.1449 0.8136 0.5289 0.8157 1.1014 1.319 1.7056

From Table 2, we can conclude that the number of nodes is 9 and the corresponding RMSE value
is the smallest.

With the aim of obtaining the best results for prediction, in addition to the single hidden layer, this
study tried to set the two-hidden-layer. Through the experiments we found that the double hidden
layers made the network structure more complicated and took longer time for the experiments. And it
did not make the network show better prediction. Table 3 shows the experimental parameters recorded
during the prediction tests for the single and double models. The number of hidden layer nodes set
during the tests were all 9.

Figure 2. Single and double hidden layer BPNN structure diagram.

Therefore by comparison this paper choice to use single hidden layer BPNN. And the structure of
the BP neural network is 8 − 9 − 1. So the number of weights is 8 · 9 + 9 · 1 = 81, and the number of
thresholds is 9 + 1 = 10.

Table 3. Operating parameters of BPNN with single and double hidden layer.

Number of
hidden layers

Running
time

Root mean
squared error

(RMSE)

Mean absolute
error

(MAE)

Mean absolute
percentage error

(MAPE)

R-squared
(R2)

Single 16.285604 0.82121 0.6268 34.0871 0.98438
Double 19.568335 1.5751 1.1846 120.6385 0.94286

3.3. BPNN temperature prediction and result analysis

As an artificial intelligence-like learning scheme, BP neural network is realized by using repeated
training samples. Only by using original samples for high-quality training can obtain excellent training
results, which in turn determines the quality of neural network predictions. In this paper, Matlab
software is used to implement the BP neural network. In the early stage of training, the original samples
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are standardized and converted. The minimum training rate is set to 0.01, the maximum number of
iterations is set to 50 during the training process control, and the allowable error is set to 0.0001. The
fitting between the predicted and measured values of BPNN training is shown in Figure 3. The change
trend of the training predicted value and the measured value is basically the same. Figure 4 shows the
temperature prediction result curve and the temperature prediction error curve of the test sample after
training.
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Figure 3. Training curve of BP neural network.
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Figure 4. Temperature prediction results and the error curve of BP neural network.

3.4. Temperature prediction based on GA-BP neural network

As an algorithm to randomly find the global optimal solution, the genetic algorithm can find the
globally optimal link weight and threshold of the BP neural network, thereby avoiding the defects
of the traditional BP neural network. In this section, according to the process shown in Figure 1,
GA-BPNN is used to predict the temperature of Laoshan Scenic Area. Settings of the experimental
parameters for GA are shown in Table 4.
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Table 4. Parameter setting of GA.

Individual
coding length

Population
size

The number of
evolution

Crossover
probability

Variation
rate

100 50 100 0.4 0.001

Table 5. Optimal initial weights and thresholds.

Input-hidden
layer weights (81)

Implicit-output
layer weights (9)

Hidden layer
node thresholds (9)

Output layer
node thresholds (1)

-0.3208 -0.6306 0.3491 -0.8122
0.3562 0.6992 -0.9190 –
0.7714 -0.2670 -0.3955 –
0.5480 -0.0619 0.7009 –
0.4451 -0.1482 0.0497 –
... -0.6716 0.4268 –

-0.5893 0.8712 -0.9005 –
-0.0489 0.2260 -0.2524 –
-0.6791 -0.8542 0.7660 –

The optimal individual with the best fitness is found by the optimization-seeking operation of the
GA. The weights and thresholds of the network were updated after the optimization by the genetic
algorithm. The relevant data are given in Table 5.

Figure 5 shown the fitness evolution curve. It is derived that the average fitness value, in Figure 5,
decreases most rapidly when the number of evolutionary generations is between 0–10 generations;
when it is between 10–25 generations, the average fitness value decreases flatly; after 25 generations,
the average fitness value maintains a stable state.
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Figure 5. Fitness evolution curve.
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It is derived that the average fitness value, in Figure 5, decreases most rapidly when the number
of evolutionary generations is between 0–10 generations; when it is between 10–25 generations, the
average fitness value decreases flatly; after 25 generations, the average fitness value maintains a stable
state.

After training the network by performing 100 iterations on the normalized data, the resulting fitted
curve and error curvesis shown in Figure 6.
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Figure 6. Temperature prediction results and the error curve of GA-BPNN.

3.5. Comparative analysis of BPNN and GA-BPNN

For a more intuitive analysis and comparison of the prediction performance of BP and improved
GA-BP networks more intuitively, we plotted the fitting curves based on the prediction result data
separately.

In order to more intuitively analyze and compare the prediction performance of BP network and
improved GA-BP network, we plot the fitting curves based on the prediction result data respectively.
Figure 7 showed the fitting curve of BPNN and GA-BPNN. In comparison, the predicted value of
GA-BPNN fits better with the actual value, and the fluctuation is controlled in the range of [-0.7,1],
while the predicted value of BPNN fluctuates slightly in the range of [-1.3,0.49]. The analysis of the
fitted data is given in the Table 6. By comparing the Figures 4 and 6, the improved network obviously
shows that the prediction results are closer to the actual values and the fluctuations are reduced. The
comparison between Figures 4 and 6 showed that the error range of the original network was [−2.6, 2.3]
and the error range of improved network was [−1.9, 0.7]. The improvement of the algorithm reduces
the prediction error and the fluctuation of the values. Therefore the improvement of the network is
effective.

Table 6. The fitted data.

SSE R-aquare DFE Adj R-sq RMSE
BP Fitted Data 13.743795 0.993364 108 0.993302 0.488493
GA-BP Fitted Data 25.771643 0.996461 108 0.996428 0.356731
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Figure 7. BP neural network and GA-BP neural network temperature prediction fitting curve.

4. The meteorological data screening experiments

In Section 3, we selected 8 different types of meteorological data as the input layer of the BP
neural network to obtain the 8-9-1 neural network topology. In this section, we use the GA-BP neural
network to select the best combination of data by choosing 6 out of 8 types of data as the input. Thus,
the purpose of reducing the amount of input data is achieved. A total of C6

8 = 28 ways to select 6 types
of data out of 8 types of data. From Eq (3.1), the number of nodes in the hidden layer is taken to be in
the range of [3,12]. By experimental simulation, the number of nodes in the hidden layer is set as 4.
We conducted the prediction experiments in turn. The obtained results are given in the Table 7. In the
Appendix, we presented the actual versus predicted curves of the test predictions for 28 experiments
using GA-BPNN for a more visual display.

Combining the data in the following Table 7 and performing a comparative analysis, we can
obtained that when MSLAP, RH, MWS, MAXG, MINT, and D-PT are selected as inputs, the values
of each index can reach the best state. Among them, RMSE = 0.2705 and MAE = 0.20101 are less
than 0.3. MAPE = 2.277 is the minimum value among 28 experiments. R2 =0.99794, which is close
to 0.998. Through the experiment of influence factor selection, it can be seen that the choice of impact
factors makes an impact towards the forecast value, and more influence factors may not be better, but
partial data loss or too few influencing factors can increase the bias of the prediction. Therefore, when
the data storage space is limited, the temperature prediction for the Laoshan scenic area can be carried
out by preferentially selecting MSLAP, RH, MWS, MAXG, MINT, and D-PT.
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Table 7. Operating parameters.

RMSE MAE MAPE R2

RH,MWS,MAXG, MINT,HV,D-PT 0.57673 0.47115 35.8233 0.99322
MSLAP,MWS,MAXG, MINT,HV,D-PT 0.93737 0.75273 -6.5137 0.97607
MSLAP,RH,MAXG, MINT,HV,D-PT 0.28273 0.21147 -4.3979 0.99806
MSLAP,RH,MWS, MINT,HV,D-PT 0.46988 0.38296 3.4051 0.99448
MSLAP,RH,MWS,MAXG,HV,D-PT 0.41901 0.33745 6.8532 0.99703

MSLAP,RH,MWS, MAXG,MINT,D-PT 0.2705 0.20101 2.277 0.99794
MSLAP,RH,MWS,MAXG,MINT,HV 1.0247 0.81978 40.095 0.97037
HAP,MWS,MAXG,MINT,HV,D-PT 1.1576 0.91373 33.1758 0.96372
HAP,RH,MAXG, MINT,HV,D-PT 0.52654 0.44121 5.2227 0.99487
HAP,RH,MWS, MINT,HV,D-PT 0.46816 0.37099 -13.6055 0.99425

HAP,RH,MWS, MAXG,HV,D-PT 0.30757 0.24932 93.6903 0.99808
HAP,RH,MWS,MAXG,MINT,D-PT 0.452 0.37295 -50.7276 0.99558
HAP,RH,MWS,MAXG,MINT,HV 0.99626 0.78789 28.6812 0.97226

HAP,MSLAP,MAXG, MINT,HV,D-PT 0.90292 0.72788 11.6327 0.97788
HAP,MSLAP,MWS,MINT,HV,D-PT 0.99341 0.77745 24.9945 0.97342

HAP,MSLAP,MWS,MAXG,HV,D-PT 1.9731 1.5658 -257.2728 0.91054
HAP,MSLAP,MWS,MAXG,MINT,D-PT 1.0683 0.85061 9.6048 0.96837
HAP,MSLAP,MWS,MAXG,MINT,HV 1.0127 0.79219 30.9589 0.97262

HAP,MSLAP,RH,MINT,HV,D-PT 0.52593 0.43107 7.8321 0.99531
HAP,MSLAP,RH,MAXG,HV,D-PT 0.36603 0.28193 13.0585 0.99667

HAP,MSLAP,RH,MAXG,MINT,D-PT 0.44513 0.34116 11.4619 0.9948
HAP,MSLAP,RH,MAXG,MINT,HV 0.92494 0.71029 9.0949 0.97676

HAP,MSLAP,RH,MWS,HV,D-PT 0.44285 0.35799 18.1962 0.99594
HAP,MSLAP,RH,MWS,MINT,D-PT 0.32438 0.23941 -13.8789 0.99755
HAP,MSLAP,RH,MWS,MINT,HV 1.0187 0.80023 13.5466 0.97074

HAP,MSLAP,RH,MWS,MAXG,D-PT 0.34165 0.27842 17.295 0.99781
HAP,MSLAP,RH,MWS,MAXG,HV 1.2571 1.0156 40.6764 0.95651

HAP,MSLAP,RH,MWS,MAXG,MINT 0.83863 0.66808 90.157 0.98047

5. Conclusions and discussion

An improved genetic algorithm optimized BPNN, in this study is given for the temperature
prediction problem. The optimization of genetic algorithm can, to some extent, avoid the neural
network from falling into local extremes and enable the network to obtain better parameter settings.
The simulation experiments of BP and GA-BP neural network prediction models were run several
times using Matlab simulation program, respectively, and their parameters (RMSE, MAE, MAPE,
R2) were analyzed. It is obvious that the parameters in the improved network are set more
scientifically and rationally. The R2 value of GA-BP is stable within 0.98047–0.99823, and that of BP
is stable within 0.97322–0.99745. Therefore the GA optimization method for the weights and
thresholds of BPNN through the optimization-seeking operation is effective. From the simulation
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results, the improvement work of this paper on the neural network can be concluded to has a positive
impact on the prediction performance of the network.

In addition, through the screening of meteorological data parameters, this paper obtained six
categories of meteorological parameters that have a large impact on temperature prediction. Analysis
of the obtained RMSE, MAE, MAPE, and R2 values can initially determine the magnitude of the
influence of each type of meteorological parameters on temperature. In this paper, the analysis
workload for meteorological data is large. Next we will analyze the meteorological data using more
accurate and easy methods such as principal component analysis, cluster analysis methods [17].
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Figure 8. The GA-BPNN prediction curve when 6 types of parameters.
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Figure 9. The GA-BPNN prediction curve when 6 types of parameters.
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Figure 10. The GA-BPNN prediction curve when 6 types of parameters.
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Figure 11. The GA-BPNN prediction curve when 6 types of parameters.
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Figure 12. The GA-BPNN prediction curve when 6 types of parameters.
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