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Abstract: The Yom River Basin is one of 25 river basins in Thailand. The Yom River Basin 

experiences perennial droughts and floods that heavily impact the agricultural sector. In order to reduce 

the impact, water management, including water level estimation, must be applied to critical basins like 

the Yom River Basin. An important task of management is the quantitative prediction of water levels. 

Four different modeling approaches were applied to forecast the average monthly water level (AMWL) 

data from four water level measurement stations for the wet season (May–October) and dry season 

(November–April) from 2007 to 2020. The forecast patterns obtained from the four approaches were 

similar to the observed historical values, except the upstream in wet season and downstream in dry 

season. Furthermore, the artificial neural network (ANN) approach overestimated forecasts for almost 

every station in both seasons. All four approaches were more accurate in the dry season than the wet 

season. This study proposed a forecasting method called dynamic seasonal regression (DSR), which 

was obtained by combining multiple linear regression (MLR) and the autoregressive integrated moving 

average (ARIMA) model of the random error from MLR. DSR was more efficient than ANN, seasonal-

ARIMA (SARIMA) and a hybridized SARIMA and ANN approach (SARIMANN). On average, for 

all stations in wet and dry seasons, DSR reduced RMSE by over 40.86%, 9.10% and 23.07% with 

respect to ANN, SARIMA and SARIMANN, and MAPE by over 35.01%, 13.02% and 15.96% with 

respect to ANN, SARIMA and SARIMANN. The RMSE of upstream was higher than the RMSE 

downstream in the wet season for all methods, and the MAPE of upstream was lower than the 

downstream in both seasons for all methods. Moreover, the RMSE of upstream was lower than the 

downstream in the dry season for all methods except the ANN method. 
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1. Introduction  

The Yom River Basin is one of the 25 main basins of Thailand. Located in Northern Thailand, the 

Yom River Basin is important because of the variety of tropical wet and dry, and even savanna, climates 

that occur throughout the year. This river basin impacts a huge area. The Land Development 

Department reported in 2013 that the Yom River Basin comprises an area of 907.75 km2 which 

experiences fewer than 4 droughts every ten years, an area of 701.3 km2 which experiences 4–5 

droughts every ten years, and an area of 229.34 km2 which experiences over 5 droughts every ten years. 

These areas respectively accounted for 49.38, 38.15, and 12.34% of the total area which experiences 

repeated drought conditions in the basin. The same area represents 3.77, 2.92, and 0.95% of the total 

area of the Yom River Basin. The Yom River Basin has an area of 2454.06 km2 which experiences 

fewer than 4 floods every ten years, an area of 1334.25 km2 which experiences 4–7 floods every ten 

years, and an area of 541.90 km2 which experiences 8 or more floods every ten years. These areas 

respectively accounted for 56.67, 30.81, and 12.51% of the total area of the basin which experiences 

repeated flooding, and represent 10.21, 5.55, and 2.25% of the total area of the Yom River Basin [1–4].  

There are several factors that affect the streamflow of a river; precipitation, climate change and 

disturbance from human activities. These factors complicate hydrological modeling [4–7]. Sopipan 

(2014) [8] studied historical monthly rainfall data from April 2005 to March 2013 in Nakhon 

Ratchasima Province, Thailand. From the data, he developed forecasts using the autoregressive 

integrated moving average (ARIMA) model and the multiplicative Holt–Winters method. The 

performances of the forecasts were measured using the mean absolute percentage error (MAPE), mean 

squared error (MSE) and mean absolute error (MAE). Forecasts developed from both methods were 

found to be acceptable but ARIMA gave a better result. Fashae et al. (2018) [9] used the artificial 

neural network (ANN) and ARIMA models to analyse the discharge of the River Opeki in Oyo State, 

Nigeria from 1982 to 2010 and used the best model to forecast the discharge of the river from 2010 to 

2020. The performance of the two models was subjected to an evaluation based on the root mean 

square error (RMSE) and correlation coefficient. The result showed that ARIMA performed better, 

considering the level of RMSE and higher correlation coefficient. Pongsiri (2007) [10] compared the 

accuracy of forecasts derived from the ARIMA model, the ANN model, and a hybrid ARIMA-ANN 

model for the daily closing price of the Trans-Pacific Partnership (TPP) time series since 2005 to 2007. 

The assessment of the accuracy of the three models was based on the MSE, MAE, and MAPE. The 

ARIMA model concept was suitable for a time series with a linear structure, while the ANN model 

was able to completely describe the non-linear structure. Therefore, the hybrid ARIMA-ANN model 

would be completely descriptive of time series data with a linear and non-linear structure. The result 

showed that the hybrid ARIMA-ANN model was able to provide more accurate short-term (7-day) 

forecasts than the ARIMA and ANN models, but for a long-term (30-day) forecast, the ANN model 

provided the most accurate forecast. 

This study proposes appropriate forecasting models for time series of the average monthly water 

level (AMWL) of the Yom River Basin in Northern Thailand. The approach modified the Box-Jenkins 

method into a seasonal regression time series model. The proposed approach is called the Dynamic 
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Seasonal Regression (DSR) model, which has been developed from previous works [11–13]. The 

efficiency of this forecasting model was determined from comparisons to three different approaches. 

Firstly, a machine learning approach, the ANN model; secondly, a stochastic approach, the seasonal 

autoregressive integrated moving average (SARIMA) model; and finally, a hybridized approach, 

seasonal autoregressive integrated moving average and artificial neural network or SARIMANN. The 

study period was over thirteen hydrological years from April 2007 to March 2020. 

2. Materials and methods 

2.1. Study region and dataset 

The Yom River Basin in Northern Thailand (Figure 1) covers a surface area of approximately 

24046.89 km2, between latitudes 14°50′ N and 18°25′ N and longitudes 99°16′ E and 100°40′ E. The 

Yom River Basin comprises 11 major sub-river basins and covers 11 provincial administrations, 45 

districts, 286 sub-districts, and 2028 villages [4,14]. 

 

Figure 1. Locations of water level measurement station in Yom River Basin. 

In 2014, the Yom River Basin received average annual precipitation of about 1179 mm, average 

annual runoff of about 5261 million m3 and an average annual runoff of fewer than 2500 m3 per year 

per person, which is less than the average annual runoff in Thailand per year per person (3496 m3). In 
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2019, the Yom River Basin contained one large-sized reservoir and five medium-sized reservoirs with 

a total storage capacity of 295.62 million m3 [1,4,14,15]. 

The daily water level data in m (MSL) were selected from four water level measurement stations 

over the length of the Yom River: Ban Thung Nong [Y.31] station, Ban Huai Sak [Y.20] station, Ban 

Nam Khong [Y.1C] station, and Ban Wang Chin [Y.37] station (Figure 1). Data were collected from 

the Upper Northern Region Irrigation Hydrology Center (Royal Irrigation Department) over thirteen 

hydrological years or 4649 days [16–20], from April 1, 2007 to March 31, 2020. The average of 

monthly data was adopted as the observation of any time series, so the monthly period represented by 

𝑡. The AMWL data at the four listed water level measurement stations for the wet and dry seasons of 

Thailand were calculated, the wet season was from May to October and the dry season was from 

November to April.  

2.2. Methodology 

2.2.1. Seasonal Autoregressive Integrated Moving Average Model (SARIMA Model) 

The ARIMA model is a universal model widely used in the area of time series analysis. An 

ARIMA model is a combination of autoregressive (AR) and moving average (MA) parts with 

differencing. Generally, the ARIMA model is denoted by ARIMA(𝑝, 𝑑, 𝑞)  where 𝑝, 𝑑  and 𝑞  are 

non-negative integers. In this notation, the 𝑝-parameter refers to the autoregressive (AR) part, the 𝑑-

parameter refers to the order of regular differencing part, and the 𝑞-parameter refers to the moving 

average (MA) part [21–23]. The back-shift operator (𝐵) , where 𝐵𝑗𝑦𝑡 = 𝑦𝑡−𝑗  for 𝑗 , is a positive 

integer. The multiplicative SARIMA(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄)𝑆 model is represented by: 

Φ𝑃(𝐵𝑆)𝜑𝑝(𝐵)(1 − 𝐵𝑆)𝐷(1 − 𝐵)𝑑𝑦𝑡 = Θ𝑄(𝐵𝑆)𝜃𝑞(𝐵)𝜀𝑡 (1) 

where 𝜑(𝐵) is the regular Autoregressive polynomial of order 𝑝,  

i.e., 𝜑(𝐵) = 1 − 𝜑1𝐵 − 𝜑2𝐵2 − ⋯ − 𝜑𝑝𝐵𝑝 

Φ(𝐵𝑆) is the seasonal Autoregressive polynomial of order 𝑃 , i.e., Φ(𝐵𝑆) = 1 −
Φ1𝐵𝑆 − Φ2𝐵2𝑆 − ⋯ − Φ𝑃𝐵𝑃𝑆 

𝜃(𝐵) is the regular Moving Average polynomial of order 𝑞, i.e., 𝜃(𝐵) =  1 − 𝜃1𝐵 −
𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞 

Θ(𝐵𝑆) is the seasonal Moving Average polynomial of order 𝑄 , i.e., Θ(𝐵𝑆) = 1 −
Θ1𝐵𝑆 − Θ2𝐵2𝑆 − ⋯ − Θ𝑄𝐵𝑄𝑆 

(1 − 𝐵)𝑑 is the 𝑑𝑡ℎ order differencing process 𝑦𝑡 

(1 − 𝐵𝑆)𝐷 is the 𝐷𝑡ℎ  order seasonal differencing process 𝑦𝑡  and 𝜀𝑡  is independent 

random variable that represents the error term at time 𝑡. 

The multiplicative SARIMA model is a form of the Box-Jenkins methodology, It requires 

stationary time series data of 𝑦𝑡 and the independent random variable (𝜀𝑡) must qualify as white 

noise 

2.2.2. Artificial Neural Network Model (ANN Model) 

Artificial neural networks are the foundation of artificial intelligence (AI). ANNs have self-

learning capabilities and two properties: learning and recall. The multi-layer perceptron neural network 
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or feed-forward back-propagation neural network is the learning function of the neural network. It 

utilizes a supervised learning technique that requires an input set and a target output as a training pair. 

During network teaching multiple training sets are normally used which generate actual output. If the 

actual output is different from the target output, it causes an error value. The network learns both 

datasets by adjusting the weight to reduce the difference value, or the error value, between actual output 

and target output to a minimum. The weight adjustment will be adjusted in small increments by the 

process of repeating the data one by one until the weights in the network converge. Its greatest strength 

is in non-linear solutions to ill-defined problems [23,24]. In the representation of a multi-layer 

perceptron neural network shown in Figure 2, 

 𝑦𝑛  is the input data of input layer at node 𝑛𝑡ℎ;  𝑛 = 1, 2, … , 𝑁 

𝑥𝑚  is the output data of hidden layer after weight adjustment using sigmoid-activation 

function at node 𝑚𝑡ℎ ;  𝑚 = 1, 2, … , 𝑀 

𝑧𝑗  is the actual output data of output layer after weight adjustment using linear -

activation function at node 𝑗𝑡ℎ;  𝑗 = 1, 2, … , 𝐽 

𝑡𝑗  is the target output data of output layer at node 𝑗𝑡ℎ;  𝑗 = 1, 2, … , 𝐽 

𝑒𝑗  is the error of output layer at node 𝑗𝑡ℎ;  𝑗 = 1, 2, … , 𝐽 

𝑤𝑛𝑚  is the weight of network between input layer and hidden layer 

𝑤𝑚𝑗  is the weight of network between hidden layer and output layer 

 

 

Figure 2. The multi-layer perceptron neural network. 

2.2.3. Hybrid between Seasonal Autoregressive Integrated Moving Average and Artificial Neural 

Network Model (SARIMANN Model) 

SARIMA models use a stochastic approach, which is suitable for linear variation with linear 

seasonal and trends data but is unable to manage non-linear data, such as hydrological data. ANN 

models, on the other hand, employ a machine learning approach which is more suitable for non-linear 

situations. Therefore, we hybridized the SARIMA model and the ANN model to deal with linear and 

non-linear situations simultaneously. The result is called the SARIMANN model. The creation of the 

SARIMANN model uses the concept of taking the input variables obtained from the best-fit SARIMA 

model and applying them to input data in the ANN model [23]. In the SARIMANN model shown in 

Figure 3, 𝜑𝑝 is the parameter of the autoregressive (AR) of order 𝑝; Φ𝑃 is the parameter of the 
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seasonal autoregressive (SAR) of order 𝑃; 𝜃𝑞 is the parameter of the moving average (MA) of order 

𝑞 ; Θ𝑄  is the parameter of the seasonal moving average (SMA) of order 𝑄 ; (1 − 𝐵)𝑑  is the 

differencing (a.k.a. Integrated, denoted by I) process 𝑦𝑡 of order 𝑑; and (1 − 𝐵𝑆)𝐷 is the seasonal 

differencing process (a.k.a. Seasonal Integrated, denoted by SI) 𝑦𝑡 of order 𝐷. 

 

Figure 3. The concept of input variables of SARIMANN models. 

2.2.4. The dynamic seasonal regression technique 

As mentioned above, the technique combines three approaches: MLR, ARIMA and DSR. 

Modeling was performed in three stages 

Step 1: To find the best multiple linear regression model (MLR model) for each AMWL series, 

time series data of the AMWL were input with seasonal lag 𝑗 = 3, 6, 9, and 12. Then the time series 

with significance lags can be imported to the MLR full model as the predictors, where the significance 

lags are obtained by testing any autocorrelation function (ACF) value by its 95% confidence limits. 

After that, the best subset be justified by stepwise selection. The MLR model is represented by: 

𝑦𝑡  =  𝛽0 + 𝛽1𝑦𝑡−3 + 𝛽2𝑦𝑡−6 + ⋯ + 𝛽𝑗𝑦𝑡−𝑗 + 𝜗𝑡 (2) 

where 𝑦𝑡  is the AMWL at time 𝑡 

𝑦𝑡−𝑗 is the AMWL at time 𝑡 − 𝑗 

𝛽𝑗 is the coefficients of the MLR method of 𝑗𝑡ℎ 

𝜗𝑡 is the independent random error term of MLR model at time 𝑡 

𝑡  is time period (month) 

Step 2: The best ARIMA model for the random error component from above MLR above was 

found by considering the random error component from the best subset fitting. The 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) 
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model can be written in terms of the back-shift operator (𝐵), where 𝐵𝑗𝜗𝑡 = 𝜗𝑡−𝑗 for seasonal lag 𝑗 

is a positive integer represented by 

(1 − ∑ 𝜑𝑗𝐵𝑗

𝑝

𝑗=1

) (1 − 𝐵)𝑑𝜗𝑡  =  (1 − ∑ 𝜃𝑗𝐵𝑗

𝑞

𝑗=1

) 𝜀𝑡 (3) 

in which 𝜗𝑡   is independent random error term of MLR model at time 𝑡 

𝜑𝑗   is the autoregressive parameter of 𝑗𝑡ℎ 

𝜃𝑗    is the moving average parameter of 𝑗𝑡ℎ 

(1 − 𝐵)𝑑  is the 𝑑𝑡ℎ order differencing process 𝜗𝑡 

𝜀𝑡   is the residual of ARIMA model at time 𝑡 

Step 3: The dynamic seasonal regression model (DSR model) was derived by integrating the MLR 

and ARIMA components. Therefore, the DSR model is represented by the equation: 

𝑦𝑡  =  𝛽0 + 𝛽1𝑦𝑡−3 + 𝛽2𝑦𝑡−6 + ⋯ + 𝛽𝑗𝑦𝑡−𝑗 + [
(1 − ∑ 𝜃𝑗𝐵𝑗𝑞

𝑗=1 )𝜀𝑡

(1 − ∑ 𝜑𝑗𝐵𝑗𝑝
𝑗=1 ) (1 − 𝐵)𝑑

] (4) 

where the second part of the right-hand side of the equation is from Eq 3. 

2.2.5. Accuracy and efficiency 

If the RMSE and MAPE values are small, the forecast value of AMWL is highly accurate. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑥𝑡 − 𝑦𝑡)2

𝑛

𝑡=1

 (5) 

𝑀𝐴𝑃𝐸 =  
100

𝑛
∑

|𝑥𝑡 − 𝑦𝑡|

𝑥𝑡

𝑛

𝑡=1

 (6) 

where 𝑦𝑡 is the forecast value of AMWL data of 𝑡. Since 𝑡 = 1, 2, … , 𝑛; 𝑥𝑡 is the observations 

value of AMWL data at month 𝑡 and 𝑛 is the total number of observations of AMWL data. 

3. Results 

The time series plots of AMWL data from four water level measurement stations show relatively 

clear seasonal variations for the wet and dry seasons from 2007 to 2019; the wet season is from May 

to October and the dry season is from November to April. There is a peak in the AMWL every 

hydrological year. The peak and the dispersion of data are smaller in the dry season than in the wet 

season, as shown in Figures 4 and 5. 
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Figure 4. Time series plots of AMWL data from all four stations in the wet season from 

2007 to 2019 (12 hydrological years). 

 

Figure 5. Time series plots of AMWL data from all four stations in the dry season from 

2007 to 2019 (12 hydrological years). 
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Figure 6. The ACF plots with 95% confidence limits of AMWL data from all four stations 

in wet and dry seasons from 2009 to 2019 (10 hydrological years). 

The AMWL data from all four water level measurement stations for the wet and dry seasons from 

2007 to 2019 were prepared with seasonal: Lag 3, Lag 6, Lag 9, and Lag 12. The ACF values were 

plotted at 95% confidence limits from AMWL data from the four water level measurement stations for 

the wet and dry seasons from 2009 to 2019 (Figure 6). Series that lag outside the 95% confidence limit 

were selected as independent variables of the full MLR model, as shown in Table 1. 
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Table 1 Predictors for the full MLR models of AMWL at all four stations in wet and dry 

seasons. 

Series Data Series Data 

Y.31 Station [Wet season] 𝑦𝑊𝐸𝑇 𝑌.31𝑡−3
, 𝑦𝑊𝐸𝑇 𝑌.31𝑡−6

, 𝑦𝑊𝐸𝑇 𝑌.31𝑡−9
, 𝑦𝑊𝐸𝑇 𝑌.31𝑡−12

 

Y.20 Station [Wet season] 𝑦𝑊𝐸𝑇 𝑌.20𝑡−3
, 𝑦𝑊𝐸𝑇 𝑌.20𝑡−6

, 𝑦𝑊𝐸𝑇 𝑌.20𝑡−9
, 𝑦𝑊𝐸𝑇 𝑌.20𝑡−12

 

Y.1C Station [Wet season] 𝑦𝑊𝐸𝑇 𝑌.1𝐶𝑡−6
, 𝑦𝑊𝐸𝑇 𝑌.1𝐶𝑡−9

 

Y.37 Station [Wet season] 𝑦𝑊𝐸𝑇 𝑌.37𝑡−6
, 𝑦𝑊𝐸𝑇 𝑌.37𝑡−9

 

Y.31 Station [Dry season] 𝑦𝐷𝑅𝑌 𝑌.31𝑡−6
, 𝑦𝐷𝑅𝑌 𝑌.31𝑡−12

 

Y.20 Station [Dry season] 𝑦𝐷𝑅𝑌 𝑌.20𝑡−3
, 𝑦𝐷𝑅𝑌 𝑌.20𝑡−6

, 𝑦𝐷𝑅𝑌 𝑌.20𝑡−9
, 𝑦𝐷𝑅𝑌 𝑌.20𝑡−12

 

Y.1C Station [Dry season] 𝑦𝐷𝑅𝑌 𝑌.1𝐶𝑡−6
, 𝑦𝐷𝑅𝑌 𝑌.1𝐶𝑡−12

 

Y.37 Station [Dry season] 𝑦𝐷𝑅𝑌 𝑌.37𝑡−6
, 𝑦𝐷𝑅𝑌 𝑌.37𝑡−12

 

The best-fitted models and coefficients of the MLR model of the AMWL data from all four water 

level measurement stations for wet and dry seasons, are shown in Table 2. 

Now take the random error values from the best-fitted models of the MLR to create the ARIMA 

model. Figures 7 and 8 show the time series plots of the random error series of the MLR model that 

best fitted the data from the four water level measurement stations for the wet and dry seasons from 

2009 to 2019. 

 

Figure 7. Time series plots of the random error of MLR for all four stations in the wet 

season from 2009 to 2019 (10 hydrological years). 
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Table 2 Coefficients of the MLR model of AMWL data from all four stations in wet and 

dry seasons. 

Series Data Estimate Std. Error t value p-value  

Y.31 Station [Wet season]     

Intercept 284.5455 46.3542 6.1390 9.04×10-8 *** 

𝑦𝑊𝐸𝑇 𝑌.31𝑡−6
 0.2261 0.0990 2.2840 0.0262 * 

𝑦𝑊𝐸𝑇 𝑌.31𝑡−9
 -0.5342 0.0970 -5.5060 0.0000 *** 

𝑦𝑊𝐸𝑇 𝑌.31𝑡−12
 0.2088 0.1023 2.0400 0.0461 * 

Y.20 Station [Wet season]     

Intercept 143.2314 41.0168 3.4920 9.53×10-4 *** 

𝑦𝑊𝐸𝑇 𝑌.20𝑡−3
 0.2756 0.1233 2.2360 0.0294 * 

𝑦𝑊𝐸𝑇 𝑌.20𝑡−6
 0.2558 0.0998 2.5620 0.0132 * 

𝑦𝑊𝐸𝑇 𝑌.20𝑡−9
 -0.6264 0.1039 -6.0280 1.45×10-7 *** 

𝑦𝑊𝐸𝑇 𝑌.20𝑡−12
 0.3132 0.1287 2.4340 0.0182 * 

Y.1C Station [Wet season]     

Intercept 150.0174 22.7725 6.5880 1.54×10-8 *** 

𝑦𝑊𝐸𝑇 𝑌.1𝐶𝑡−6
 0.4135 0.1005 4.1150 1.26×10-4 *** 

𝑦𝑊𝐸𝑇 𝑌.1𝐶𝑡−9
 -0.4466 0.1032 -4.3260 6.19×10-5 *** 

Y.37 Station [Wet season]     

Intercept 97.7530 13.9911 6.9870 3.35×10-9 *** 

𝑦𝑊𝐸𝑇 𝑌.37𝑡−6
 0.4597 0.0953 4.8230 1.09×10-5 *** 

𝑦𝑊𝐸𝑇 𝑌.37𝐶𝑡−9
 -0.4800 0.0988 -4.8570 9.67×10-6 *** 

Y.31 Station [Dry season]     

Intercept 67.6116 23.3034 2.9010 0.0052 ** 

𝑦𝐷𝑅𝑌 𝑌.31𝑡−6
 0.7379 0.0903 8.1690 3.2×10-11 *** 

Y.20 Station [Dry season]     

Intercept 109.0405 24.6359 4.4260 4.39×10-5 *** 

𝑦𝐷𝑅𝑌 𝑌.20𝑡−6
 0.6449 0.0818 7.8830 1.08×10-10 *** 

𝑦𝐷𝑅𝑌 𝑌.20𝑡−9
 -0.2443 0.0815 -2.9960 0.0040 ** 

Y.1C Station [Dry season]     

Intercept 72.2529 17.7215 4.0770 1.41×10-4 *** 

𝑦𝐷𝑅𝑌 𝑌.1𝐶𝑡−6
 0.4983 0.1230 4.0520 1.53×10-4 *** 

Y.37 Station [Dry season]     

Intercept 46.6447 9.4506 4.9360 7.09×10-6 *** 

𝑦𝐷𝑅𝑌 𝑌.37𝑡−6
 0.5058 0.1001 5.0550 4.61×10-6 *** 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

The random error of the MLR models that best fitted the data from the four water level 

measurement stations for the wet and dry seasons can be tested with the augmented Dickey-Fuller 

method. A p-value higher than the significance level, 0.05, is evidence of stationarity. The wet season 

time series for the Y.31 station, the Y.1C station, and the Y.37 station, returned p-values of 0.2794, 

0.0645, and 0.2594, respectively. The dry season time series for the Y.31 station, the Y.20 station, the 

Y.1C station, and the Y.37 station, returned p-values of 0.2459, 0.1847, 0.1333, and 0.0706, 
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respectively. Therefore, all the time series are stationary except the wet season series for the Y.20 

station, which gave a p-value of 0.0484 (Table 3). 

 

Figure 8. Time series plots of the random error of MLR for all four stations in the dry 

season from 2009 to 2019 (10 hydrological years). 

Table 3 Stationarity consideration of the random error from the MLR models for all four 

stations in wet and dry seasons. 

Series Data 
Augmented Dickey-Fuller Test 

Dickey-Fuller Lag order p-value 

Y.31 Station [Wet season] -2.7308 3 0.2794 

Y.20 Station [Wet season] -3.5096 3 0.0484 * 

Y.1C Station [Wet season] -3.3992 3 0.0645 

Y.37 Station [Wet season] -2.7802 3 0.2594 

Y.31 Station [Dry season] -2.8136 3 0.2459 

Y.20 Station [Dry season] -2.965 3 0.1847 

Y.1C Station [Dry season] -3.0923 3 0.1333 

Y.37 Station [Dry season] -3.3604 3 0.0706 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05. 

The ACF plots with 95% confidence limits of the random error of best fitted MLR models for all 

stations in wet and dry seasons are shown in Figure 9. 
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Figure 9. The ACF plots of random error with 95% confidence limits of the MLR models 

for all four stations in wet and dry seasons. 

 

The best ARIMA models of the random errors from the best fitted MLR models were then 

determined. The coefficients of the best ARIMA models are shown in Table 4. For the Y.31 Station 

[wet season], Y.1C Station [wet season], and Y.31 Station [dry season] the best ARIMA model was 

ARIMA (1,0,0) with zero mean. For the Y.20 Station [wet season], the best ARIMA model was ARIMA 

(1,1,0). For the Y.37 Station [wet season], the best ARIMA model was ARIMA(1,0,1) with zero mean. 

For the Y.1C Station [dry season] the best ARIMA model was ARIMA(1,1,1). For the Y.20 Station 

[dry season] and Y.37 Station [dry season], the best ARIMA model was ARIMA(0,0,0) with zero mean, 

or random walk. 
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Table 4 Coefficients of the ARIMA models for all four stations in wet and dry seasons. 

Series Data  Estimate 
Std. 

Error 
z value p-value  

Y.31 Station [Wet season]      

ARIMA(1,0,0) with zero mean  ar1 0.4946 0.1112 4.448 8.67×10-6 *** 

Y.20 Station [Wet season]      

ARIMA(1,1,0)  ar1 -0.3354 0.1213 -2.7646 0.0057 ** 

Y.1C Station [Wet season]       

ARIMA(1,0,0) with zero mean  ar1 0.4377 0.1163 3.762 1.69×10-4 *** 

Y.37 Station [Wet season]      

ARIMA(1,0,1) with zero mean  ar1 0.7664 0.1352 5.6698 1.43×10-8 *** 

 ma1 -0.4147 0.1826 -2.2715 0.0231 * 

Y.31 Station [Dry season]      

ARIMA(1,0,0) with zero mean  ar1 0.3409 0.1221 2.7912 0.0053 ** 

Y.20 Station [Dry season]      

ARIMA(0,0,0) with zero mean        

Y.1C Station [Dry season]      

ARIMA(1,1,1)  ar1 0.5968 0.1451 4.1122 3.92×10-5 *** 

 ma1 -0.9553 0.0964 -9.9093 <2.2×10-16 *** 

Y.37 Station [Dry season]      

ARIMA(0,0,0) with zero mean        

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Table 5 Consider the assumption of white noise of the residuals of ARIMA models of all 

four stations in wet and dry seasons. 

Series Data 
Box-Ljung Test 

Chi-squared df p-value 

Y.31 Station [Wet season] 0.2516 1 0.6159 

Y.20 Station [Wet season] 0.2387 1 0.6252 

Y.1C Station [Wet season] 0.2618 1 0.6089 

Y.37 Station [Wet season] 0.0117 1 0.9140 

Y.31 Station [Dry season] 0.2275 1 0.6334 

Y.20 Station [Dry season] 2.7767 1 0.0957 

Y.1C Station [Dry season] 0.0905 1 0.7636 

Y.37 Station [Dry season] 3.1613 1 0.0754 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

To verify the assumptions of white noise, the Box-Ljung test was applied to the residuals of the 

ARIMA models for the wet and dry seasons at the four stations. The p-values were all higher than 

significance level of 0.05 and therefore non-significant. The Y.31 station, the Y.20 station, the Y1C 

station, and the Y.37 station for the wet season show p-values of 0.6159, 0.6252, 0.6089, and 0.9140, 
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respectively. The Y.31 station, the Y.20 station, the Y1C station and the Y.37 station for the dry season 

show p-values of 0.6334, 0.0957, 0.7636, and 0.0754, respectively (Table 5). Therefore, all residuals 

are white noise. 

The equations of the DSR models of AMWL data from all four stations for wet and dry seasons 

are shown in Table 6. 

Table 6 The equation of the DSR models of AMWL data from all four stations in wet and 

dry seasons. 

Series Data Equation of the best-fitted SARIMA model 

Y.31 Station 

[Wet season] 

𝑦𝑊𝐸𝑇 𝑌.31𝑡
=  284.54550 +  0.22611 𝑦𝑊𝐸𝑇 𝑌.31𝑡−6

− 0.53416 𝑦𝑊𝐸𝑇 𝑌.31𝑡−9

+  0.20879 𝑦𝑊𝐸𝑇 𝑌.31𝑡−12
+ 0.4946 𝜗𝑊𝐸𝑇 𝑌.31𝑡−1

 

Y.20 Station 

[Wet season] 

𝑦𝑊𝐸𝑇 𝑌.20𝑡
=  143.23144 +  0.27558 𝑦𝑊𝐸𝑇 𝑌.20𝑡−3

+  0.25581 𝑦𝑊𝐸𝑇 𝑌.20𝑡−6

− 0.62644 𝑦𝑊𝐸𝑇 𝑌.20𝑡−9
+ 0.31316 𝑦𝑊𝐸𝑇 𝑌.20𝑡−12

− 1.3354 𝜗𝑊𝐸𝑇 𝑌.20𝑡−1

+ 0.3354 𝜗𝑊𝐸𝑇 𝑌.20𝑡−2
 

Y.1C Station 

[Wet season] 

𝑦𝑊𝐸𝑇 𝑌.1𝐶𝑡
=  150.0174 +  0.4135 𝑦𝑊𝐸𝑇 𝑌.1𝐶𝑡−6

 − 0.4466 𝑦𝑊𝐸𝑇 𝑌.1𝐶𝑡−9

+ 0.4377 𝜗𝑊𝐸𝑇 𝑌.1𝐶𝑡−1
 

Y.37 Station 

[Wet season] 

𝑦𝑊𝐸𝑇 𝑌.37𝑡
=  97.75304 + 0.45969 𝑦𝑊𝐸𝑇 𝑌.37𝑡−6

 − 0.47995 𝑦𝑊𝐸𝑇 𝑌.37𝑡−9
 

+ 0.7664 𝜗𝑊𝐸𝑇 𝑌.37𝑡−1
+ 0.4147 𝜀𝑊𝐸𝑇 𝑌.1𝐶𝑡−1

 

Y.31 Station 

[Dry season] 
𝑦𝐷𝑅𝑌 𝑌.31𝑡

=  67.61155 +  0.73788 𝑦𝐷𝑅𝑌 𝑌.31𝑡−6
+ 0.3409 𝜗𝐷𝑅𝑌 𝑌.31𝑡−1

 

Y.20 Station 

[Dry season] 
𝑦𝐷𝑅𝑌 𝑌.20𝑡

=  109.04052 +  0.64489 𝑦𝐷𝑅𝑌 𝑌.20𝑡−6
− 0.24431 𝑦𝐷𝑅𝑌 𝑌.20𝑡−9

 

Y.1C Station 

[Dry season] 

𝑦𝐷𝑅𝑌 𝑌.1𝐶𝑡
=  72.2529 +  0.4983 𝑦𝐷𝑅𝑌 𝑌.1𝐶𝑡−6

− 0.4032 𝜗𝐷𝑅𝑌 𝑌.1𝐶𝑡−1

− 0.5968 𝜗𝐷𝑅𝑌 𝑌.1𝐶𝑡−2
+ 0.9553 𝜀𝐷𝑅𝑌 𝑌.1𝐶𝑡−1

 

Y.37 Station 

[Dry season] 
𝑦𝐷𝑅𝑌 𝑌.37𝑡

=  46.6447 +  0.5058 𝑦𝐷𝑅𝑌 𝑌.37𝑡−6
 

 

The forecast results obtained from the four models applied to AMWL data from all four water 

level measurement stations for the wet (six months: May 2019 – October 2019) and dry (six months: 

November 2019 – April 2020) seasons of one hydrological year showed that the methods yielded 

similar forecast patterns to previous recorded values, except upstream in the wet season and 

downstream in the dry season. Furthermore, ANN overestimated forecasts at almost every station in 

both seasons, as shown in Figures 10 and 11. 
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Figure 10. Forecast for one hydrological year applying the four models to AMWL data 

from all four stations for the wet season. 
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Figure 11. Forecast for one hydrological year applying the four models to AMWL data 

from all four stations for the dry season. 
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Table 7 The accuracy (RMSE, MAPE) and efficiency (percentage reduction) between all 

approaches of the four stations for wet and dry seasons. 

 Model 

Wet Season Dry Season 

Y.31  

Station 

Y.20  

Station 

Y.1C  

Station 

Y.37 

 Station 
Average 

Y.31  

Station 

Y.20  

Station 

Y.1C  

Station 

Y.37  

Station 
Average 

RMSE 

ANN 1.62 1.51 1.63 1.58 1.58 0.31 0.31 0.68 0.23 0.38 

50.14% 24.72% 33.34% 54.56% 40.86% 46.98% 22.40% 73.85% -20.39% 43.87% 

SARIMA 0.94 1.25 1.32 0.90 1.10 0.15 0.22 0.27 0.31 0.24 

14.62% 8.79% 17.94% 19.81% 15.02% -11.35% -10.41% 34.01% 10.86% 9.10% 

SARIMANN 1.18 1.36 1.32 1.02 1.22 0.22 0.36 0.45 0.29 0.33 

31.45% 16.18% 17.60% 29.60% 23.07% 25.50% 33.42% 60.38% 3.30% 34.74% 

DSR 0.81 1.14 1.09 0.72 0.94 0.16 0.24 0.18 0.28 0.21 

MAPE 

ANN 0.55 0.73 1.04 1.43 0.94 0.10 0.12 0.43 0.18 0.21 

49.40% 28.93% 40.03% 54.23% 44.67% 40.32% 2.67% 75.69% -42.24% 35.01% 

SARIMA 0.32 0.56 0.68 0.82 0.60 0.06 0.11 0.18 0.28 0.16 

11.51% 8.34% 8.33% 20.66% 13.02% -12.59% -3.55% 43.17% 7.69% 14.17% 

SARIMANN 0.37 0.60 0.60 0.90 0.62 0.08 0.18 0.31 0.27 0.21 

24.62% 13.71% -3.49% 26.94% 15.96% 25.03% 34.09% 66.09% 5.57% 35.55% 

DSR 0.28 0.52 0.62 0.65 0.52 0.06 0.12 0.10 0.26 0.14 

 

The accuracy of the four approaches was interpreted from the RMSE and MAPE values (Table 

7). The efficiency of DSR was represented in the percentage reduction of RMSE and MAPE with 

respect to the ANN, SARIMA and SARIMANN models. On average, for wet season forecasts, DSR 

reduced the RMSE by 40.86%, 15.02%, and 23.07%, with respect to ANN, SARIMA, and 

SARIMANN, respectively, and reduced MAPE by 44.67%, 13.02%, and 15.96%, with respect to ANN, 

SARIMA, and SARIMANN, respectively. For dry season forecasts, DSR reduced RMSE by 43.87%, 

9.10%, and 34.74%, with respect to ANN, SARIMA, and SARIMANN, respectively, and reduced 

MAPE by 35.01%, 14.17%, and 35.55%, with respect to ANN, SARIMA, and SARIMANN, 

respectively. 

All approaches were more accurate for the dry season than the wet season but it is difficult to 

make a conclusion about the accuracy of upstream and downstream forecasts because of the 

incongruence between the RMSE and MAPE values for these forecasts. The updtream RMSEs (1.62, 

0.94, 1.18, and 0.81) were slightly greater than the downstream (1.58, 0.90, 1.02, and 0.72) for the wet 

season for all methods, while the upstream MAPE scores (0.55, 0.32, 0.37, and 0.28) were slightly 

lower than the downstream scores (1.43, 0.82, 0.90 , and 0.65) for the wet season for all methods. For 

the dry season, the upstream MAPE scores (0.10, 0.06, 0.08, and 0.06) were slightly lower than the 

downstream scores (0.18, 0.28, 0.27 , and 0.26) for all methods, but the upstream RMSEs (0.31, 0.15, 

0.22, and 0.16) were slightly smaller than the downstream RMSEs (0.23, 0.31, 0.29, and 0.28) for all 

methods except ANN. 

4. Discussion and conclusions 

All approaches were performed to forecast the average monthly water level (AMWL) data of all 

four water level measurement stations for wet seasons (May–October) and dry seasons (November–
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April) from 2007 to 2020. The forecast patterns of the four approaches were similar to the historical 

patterns, except the upstream in wet season and downstream in dry season. ANN overestimated 

forecasts for almost every station in both seasons. All approaches were more accurate in the dry season 

than the wet season. This study proposed an efficient forecasting method called DSR, which by 

combining the MLR model and the ARIMA model of random error from MLR was more efficient than 

the ANN, SARIMA and SARIMANN approaches. On average, DSR was more efficient than the other 

approaches for all stations in wet and dry seasons, reducing RMASs by over 40.86%, 9.10% and 23.07% 

with respect to ANN, SARIMA and SARIMANN, and reducing the MAPEs by over 35.01%, 13.02% 

and 15.96% with respect to ANN, SARIMA and SARIMANN. The RMSEs of upstream were higher 

than the downstream MAPE scores in the wet season for all methods, and the upstream MAPE scores 

were lower than the downstream MAPE scores in both seasons for all methods. The upstream RMSEs 

were smaller than the downstream RMSEs in the dry season for all methods except ANN. 

The forecasts of the four models of AMWL data from all four water level measurement stations 

for the wet season (six months: May 2019 – October 2019) and dry season (six months: November 

2019 – April 2020) of one hydrological year gave similar forecast patterns to the previously observed 

values, except the upstream in wet season and downstream in dry season. Furthermore, ANN over 

estimated forecasts at almost every station in both seasons. All approaches were more accurate in the 

dry season than the wet season but it is difficult to draw a conclusion about the accuracy of upstream 

and downstream forcasts because of incongruence between RMSE and MAPE results. The RMSEs of 

upstream was slightly greater than the downstream RMSEs in the wet season for all methods, while 

the MAPE scores upstream was slightly lower than the downstream MAPE scores in wet and dry 

seasons for all methods. Also, the RMSEs of upstream were slightly smaller than the downstream 

RMSEs in the dry season for all methods except ANN. The proposed forecasting approach in this study, 

DSR, was obtained by combining MLR and ARIMA of the random errors from MLR and was more 

efficent than the ANN, SARIMA and SARIMANN approaches. 
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