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Abstract: Data enabled research with a spatial perspective may help to combat human diseases in an 

informed and cost-effective manner. Understanding the changing patterns of environmental 

degradation is essential to help in determining the health outcomes such as asthma of a community. 

In this research, Mississippi asthma-related prevalence data for 2003–2011 were analyzed using 

spatial statistical techniques in Geographic Information Systems. Geocoding by ZIP code, choropleth 

mapping, and hotspot analysis techniques were applied to map the spatial data. Disease rates were 

calculated for every ZIP code region from 2009 to 2011. The highest rates (4–5.5%) were found in 

Prairie in Monroe County for three consecutive years. Statistically significant hotspots were 

observed in urban regions of Jackson and Gulf port with steady increase near urban Jackson and the 

area between Jackson and meridian metropolis. For 2009–2011, spatial signatures of urban risk 

factors were found in dense population areas, which was confirmed from regression analysis of 

asthma patients with population data (linear increase of R
2
 = 0.648, as it reaches a population size of 

3,5000 per ZIP code and the relationship decreased to 59% as the population size increased above 

3,5000 to a maximum of 4,7000 per ZIP code). The observed correlation coefficient (r) between 

monthly mean O3 and asthma prevalence was moderately positive during 2009–2011 (r = 0.57). The 

regression model also indicated that 2011 annual PM2.5 has a statistically significant influence on the 

aggravation of the asthma cases (adjusted R-squared 0.93) and the 2011 PM2.5 depended on asthma per 
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capita and poverty rate as well. The present study indicates that Jackson urban area and coastal 

Mississippi are to be observed for disease prevalence in future. The current results and GIS disease maps 

may be used by federal and state health authorities to identify at-risk populations and health advisory. 

Keywords: environmental health; GIS; spatial analysis; asthma; air quality; regression analysis; 

spatiotemporal statistics; kriging; geocoding  

 

1. Introduction  

Air pollution has become a burden on population health, as more than 2 million premature 

deaths every year can be attributed to the air pollution worldwide [1,2]. Environmental health is at an 

exciting stage. The 21
st
 century has witnessed the increased prevalence of respiratory-related health 

illnesses throughout the world [3], and the poor air quality is believed to be a significant cause for 

illnesses [4,5]. Air pollution is convincingly associated with many signs of asthma aggravation. 

These include pulmonary function decrements, increased bronchial hyperresponsiveness, visits to 

emergency departments, hospital admissions, increased medication use and symptom reporting, 

inflammatory changes, interactions between air pollution and allergen challenges, and immune 

system changes [6]. People living near roads with high traffic intensity are more likely to be affected 

by respiratory problems [7]. Many research studies have successfully established the relation 

between air pollution and its associated health effects [8–11]. It is less clear which pollutants are 

most responsible for causing respiratory illnesses, but traffic pollution might be playing a key role. 

Among the air pollutants, particles and O3 have the strongest associations [12]. Reports also convey 

that not only a single pollutant is responsible for causing respiratory-related health problems, but also 

a group of them (SO2, NO2, ozone (O3), and particulate matter (PM)) [13,14]. Around a quarter of the 

burden of disease is associated with environmental risk factors [15]. Risk factors for asthma may not 

be constant, and it is difficult to predict the exact cause. The risk may vary with time and by 

geography. The geography and subject’s spatial presence may play a major role in determining the 

environmental variables human being is exposed to [16,17]. They may also vary by sex, race, and 

age among individuals. 

One in every 12 Americans has asthma, and its management is expensive, costing the U.S. 

$56 billion each year [18]. The access to health care is an important issue in the U.S. and other 

countries [19]. In the case of Mississippi (MS), data showed that the trend is similar to the rest of 

the U.S. [20]. Asthma is a growing epidemic in MS and in the U.S. as a whole [18,21]. MS has been 

affected by 36–44 extreme weather and climate events in the past 30 years and temperatures across 

the southeast region are expected to increase in future [22]. The consequence of increasing 

temperatures could be the formation of harmful air pollutants and allergens [23]. MS has been ranked 

at 17 among the 20 toxic industrially polluted states in the year 2010 [24]. A 2014 report suspected 

that outdoor air pollution, high amounts of pesticide exposures and energy sector might be serving as 

causative agents of asthma in Mississippians [25]. Dramatic improvements and developments in 

technology platforms may promise the integrated approach of understanding a spatial problem. The 

present study has laid a path to understanding the spatiotemporal dimensions of asthma in MS. 

Understanding its prevalence and outbreaks may help to make better decisions, save lives, and design 

healthy communities. 
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It is hypothesized that the spatiotemporal extent of asthma-related health problems is associated with 

the prevailing air pollution and asthma causes are distinctive for urban and rural areas. The objectives of 

this research are to: (1) assess and map the asthma rates in urban and rural MS, (2) highlight asthma 

health as a spatiotemporally significant disease and not simply from random events, (3) interpolate and 

model the air quality data concerning the particulate matter (PM2.5) and ground-level ozone (O3), and 

(4) analyze the statistical association of asthma to air pollution and poverty. 

2. Materials and methods 

Study area  

According to the 2010 census, the MS population is about 3 million people and has a density of 63 

persons per square mile [26]. The primary economic activity of Mississippians is agriculture, fishing, 

mining, and timber. With a land area of 46,923.3 square miles, there are 82 counties, 5 urbanized areas, 

64 urban clusters, 69 urban areas, and 424 ZIP Code tabulation areas in MS, see Figure 1 [26].  

 

Figure 1. MS map showing the census 2010 population density, hospitals, and 

administrative units. 
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Overview of the research approach  

The following flowchart (Figure 2) explains the methods followed in processing and analyzing 

air quality and asthma health data. Geospatial statistical techniques were applied to the data of air 

quality and asthma patients visits. Asthma-related patient (inpatient, outpatient, and emergency visits) 

data were geocoded to ZIP Code boundaries, and hospital network data containing patient bed 

information were geocoded to street line data, (Figure 2). Later, the data were mapped using 

quantitative choropleth techniques in ArcGIS. Asthma per capita was calculated using census 2010 

population data to understand the differences in urban and rural prevalence. Annual levels of PM2.5 

and O3 were spatially interpolated by ordinary kriging method.  

 

 

 

 

 

 

 

 

                         

                              

 

 

 

 

 

 

Figure 2. Overview of the research methods. 
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Asthma per capita data were further explored by spatial statistical techniques (hot spot analysis) 

to identify the hot and cold spots in urban and rural areas (Figure 2). Additionally, census population, 

and poverty data are taken as independent variables were statistically analyzed to understand their 

association with asthma. Time series models (or) seasonal cycles of asthma-related visits were also 

generated to reveal the temporal prevalence. The viable options for air quality metrics are to rely on 

the measurements from routine regulatory and deposition networks, intensive aircraft and 

ground-based field studies, radiosonde programs, satellite measurements, ground-based remote 

sensing networks, focused, fixed-site, and special purpose networks [27]. Table 1 below explains the 

data types used in the study, their sources and the spatial resolution at which the data were obtained.  

Table 1. Data types, sources, and spatial resolution. 

Data type Source Spatial resolution  

Air quality (O3 and PM2.5) U.S. EPA web resources (http://www.epa.gov/airdata/) Ground-based 

point locations 

2010, 2012 population data Esri ArcGIS online resources ZIP code 

Road network feature class  Esri street map premium Street line 

2003–2011 Asthma health data, 

hospitals, and beds 

Mississippi State Department of Health (MSDH) ZIP code 

2007–2011 American Community 

Survey Poverty 

Census Bureau’s American FactFinder (AFF) website 

(http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml) 

Zip code 

These estimates reflect the economic characteristics of a geographic area over the entire five 

year period, and data are available for all geographic areas down to the census block group level [28]. 

The Census Bureau uses a set of dollar value thresholds that vary by family size and composition to 

determine who is in poverty. If a family’s total income is less than the dollar value of the appropriate 

threshold, then that family and every individual in it are considered to be in poverty. Similarly, if an 

unrelated individual’s total income is less than the appropriate threshold, then that individual is 

considered to be in poverty [29]. 

2.1. Geocoding of patient data and hospital addresses 

Data were preprocessed in Microsoft access software and segregated by yearly format to be 

further analyzed using ArcGIS. The first step in the analysis process is geocoding, which assigns 

patient counts to the corresponding ZIP code. An address locator was created for ZIP code polygons. 

This tells the ArcMap which is reference data [30]. Once the address locator was created, patient data 

were geocoded by ZIP code. On average, 96% of geocoding accuracy was achieved for the patient 

data, the rest of 4% was an error because of the absence of ZIP code information. To visualize the 

patient counts by ZIP code, patients and ZIP code layers were spatially joined. Later, quantitative 

choropleth mapping technique was applied to show the number of patients by ZIP code. Data were 

classified into increasing interval classes based on equal interval method and a color scheme was 

assigned to each class. Each interval class had a range of patient numbers that increased with each 

class. Street line geocoding uses a foundation address database to match the addresses of health 

events or healthcare facilities. This method was chosen for hospitals because of the completeness of 

the hospital database for address and the method places points at an accurate location on the ground. 
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An address locator for street lines was created and the hospitals were geocoded to streets, and the 

fields containing latitude and longitude values were added to the database. Output contained few 

errors in the form of unmatched addresses because of errors in hospital address database or in street 

line database. The unmatched addresses were examined and fixed case by case by an interactive 

re-matching process. 

2.1.1. Finding asthma rates by spatial aggregation 

Once patient data were geocoded by ZIP codes, the patient counts were joined to the ZIP code 

polygon. Disease rates were then calculated by dividing the counts with a total population of that ZIP 

code area. 

2.1.2. Investigation of asthma patients using hotspot analysis 

In the process of hot spot analysis, a powerful set of spatial statistical tools were used to look at the 

distribution of values associated with geographic features. The tools used in this part of analysis were (1) 

Data Management tools (Project and Copy Features), (2) Spatial Statistics (Collect Events, Hot Spot 

analysis), and kriging tool in spatial analyst extension. By default, patient data were using geographic 

coordinate system instead of the projected coordinate system. Project tool was applied, and the data were 

projected by the NAD_1983_UTM_Zone_15N projected coordinate system to preserve the distance. The 

data that fall within a ZIP code were aggregated by applying ―Collect events tool‖ and the resulting 

feature contained an ―ICount‖ field reflecting the number of patients in that ZIP code area. The 

aggregated feature class was used as input and ICount field was used for hot spot analysis.  

2.1.3. Establishing the spatial relationships 

Hotspot analysis tool looks for the spatial relationships in the data of interest. A feature with a 

high value surrounded by the other features with high values is called statistically significant hot spot 

(red areas) and the feature with a low value surrounded by other features with low values is called 

statistically significant cold spot (blue areas). The default spatial relationship is ―Fixed Distance 

Band‖ means the features neighboring to each other within a critical distance receive a higher weight 

in spatial computation and the features away from the critical distance have no influence, and the 

distance method is ―Euclidean Distance‖. Distance band was chosen by finding the appropriate scale 

of analysis. It is difficult to predict the optimal distance (the distance at which the spatial processes 

are most active and exhibit clusters) band based on what geographical extent these asthma rates are 

promoting clusters. To estimate an optimal distance band, ―Incremental Spatial Autocorrelation tool‖ 

was used to find a distance band that reflects the maximum spatial autocorrelation. This tool runs the 

spatial autocorrelation at increasing distances and assigns a Z-score for the observed spatial 

autocorrelation and the Z-scores were plotted against the increasing distance. The peaks were 

observed, and the distance bands were selected based on the of ZIP code areas. Once the optimal 

distance bands were estimated, the values were used in hot spot analysis. The output of hot spot 

analysis is a feature class where each feature had been assigned a Z-score and a P-value. Later, 

kriging method was applied to hotspot feature class and a continuous raster surface of heat map was 

generated.  
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2.2. Analysis of air quality 

During the period 2007–2011, air quality data were analyzed in relation to asthma rates. The 

two environmental factors that were studied in this research were (1) ground level O3 and (2) PM2.5. 

MS had been observing the air quality since many years with a sparse network of stationary ground 

monitoring stations (Supplementary Figure S1). Mississippi Department of Environmental Quality 

(MDEQ) is the only agency that operates the ambient air quality network in the state [31]. O3 

monitoring starts in the month of March and continued until the end of October for each year. PM2.5 

sampling was done every third day and continued throughout the year. Lack of monitoring station 

network at specific spatial and temporal intervals was the bottleneck for optimal data size, thus to 

improve the richness of spatial data and the model accuracy, data were collected from the 

neighboring states of Louisiana, Arkansas, Tennessee, and Alabama to be integrated into the 

geospatial statistical analysis. Sampling stations available for each year are varied by a range for 

each pollutant studied. From 2007 to 2011, the yearly numbers of sampling stations for O3 were 141, 

89, 89, 95, and 97, and the stations for PM2.5 were 124, 119, 135, 138, and 131, respectively. 

2.2.1. Spatial interpolation 

In this study, a geostatistical method called ordinary kriging was applied to estimate the values 

at unmeasured locations. The principles of geostatistics operate on two key tasks: (1) to uncover the 

dependency rules and (2) to make predictions. Kriging is based on semivariogram and covariance 

functions, and the prediction of unknown values [32]. This method not only predicts the values at 

unmeasured locations but also provides the measure of the accuracy of prediction [33,34].   

The general formula is:  

          

 

   

      

where:  

       is the value to be predicted for location s0;  

N is the number of measured values;  

λi are the weights assigned to each measured point; 

Z (Si) is the observed value at the location Si.  

2.2.2. Ordinary Least Squares (OLS) regression analysis 

For the period 2009–2011, data on asthma count by ZIP code and population size for the 

corresponding zip code were applied in regression analysis to understand the statistical dependency 

on population size. Other independent variables taken into the analysis are the data on children, older 

adults, patient counts of adjacent years, and annual PM2.5 interpolated values. An additional 

regression model was constructed on PM2.5 as a dependent variable, and the poverty rate, percent of 

older adults, and asthma per capita as independent variables. ZIP code population data from Esri 

appeared more reliable to apply in regression analysis, data were available for 2010, 2012, and 

estimated for 2009 and 2011. The reason for excluding other years (2007–2008) in regression 
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analysis is that absence of population data at a zip code scale. Economic variable (poverty) data for a 

period of 2007–2011 were downloaded from the U.S. Census Bureau, which was integrated as an 

independent variable in multivariate regression analysis. Standard line plots were generated for each 

independent variable against asthma. Monthly values of environmental variables (O3 and PM2.5) 

were investigated by correlation analysis to identify the possible association with asthma.   

3. Results 

3.1. The geography of asthma prevalence 

Spatial analysis indicated that the asthma-related patients have increased geographically over a 

decade. Largest numbers of patients were observed in urban regions, and the highest asthma rate was 

found in rural regions (Supplementary Figure S2). Evidence from statistically significant hot spots 

(northwest, southwest, northeast, and southcentral regions) of asthma rates indicated that the disease 

had taken a major turn between 2009 and 2011. Highest rates of asthma (4–5.5%) were observed in 

Prairie, Monroe County for the three consecutive years (Figure S2). Prairie, Monroe County (red 

spot on the map) appeared to be the victim of asthma with highest levels of observed prevalence for 

three consecutive years, 2009–2011. The areas of northwest and southcentral MS are also significant for 

asthma. Although a higher asthma prevalence is not seen in the coastal region populations (Figure S2), 

the number of patients is increased every year near Gulfport-Biloxi-Pascagoula because of increasing 

population [38].   

The maps of statistically significant hot spots and cold spots of asthma rates from 2009 to 2011 

are presented in Figure 3. The summary of Z-scores and the distance observed at maximum 

autocorrelation were presented in Table 2. A high Z-score and small P value for a feature indicate a 

significant hotspot, a low negative Z score, and small P value indicates a significant cold spot [39]. 

Asthma health is not random in populations. It shows a significant spatial phenomenon indicated by 

the spatial clustering (Figure 3). The high Z-scores showed the Table 2 below indicate that the 

residuals are statistically significant and reject the null hypothesis that the asthma health is 

spatiotemporally random and spatially not autocorrelated.  

Table 2. Global Moran’s I summary of asthma rates. 

Year First peak Max peak 

Distance in Kilometers Z-score Distance in Kilometers Z-score 

2009 40.00 11.45 40.00 11.45 

2010 44.48 6.09 44.48 6.09 

2011 44.47 7.17 106.79 9.38 
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                2009                                2010                                 2011 

Figure 3. 2009–2011 Hotspot analysis of asthma rates and spatial autocorrelation. 
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3.2. Temporal pattern mining on asthma patient data 

A steady and decreased trend in asthma-related visits was observed from 2005 to 2009 and the trend 

increased again beginning in 2010 (Figure 5). The highest daily average rates were observed in 2005 and 

the lowest in 2009 (Figure 4). For the remaining years, rates had fallen mostly between those two years. 

Average numbers of visits were lowest (30–51) in the months of June and July for all the analyzed data, 

increased beginning in August and peaked between the months of October and November. 

 

Figure 4. Average daily asthma-related inpatient, outpatient, and emergency visits. 

 

Figure 5. Total asthma-related visits for MS. 

From 2003 to 2011, the observed temporal pattern of asthma inpatient, outpatient, and emergency 

visit data is presented in Figure 4. The similarity in patients visits cycle, the pattern of timing, and 

common peaks were constant for all analyzed years, which indicated that the factors responsible for 

asthma exacerbations might be constant. These frequent exacerbations may be an indication of the 

greater severity of disease [42]. Asthma exacerbations peaked between September and October in each 

yearly cycle in MS. A related study investigated the similar phenomenon in North America and 

concluded that the increased consultations for childhood asthma every September were uniquely 
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related to school return [43]. Children heading back to school had closer personal contact with many 

more children, therefore, increasing their exposure to viral and bacterial infections that could trigger an 

asthma attack [44]. A graph of total asthma-related patient visits is presented in Figure 5. 

   

  

 

Figure 6. Daily 8-hour average 4
th

 max ground-level ozone (O3) pollution over MS. 
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Figure 7. PM2.5 annual pollution levels over MS. 
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3.3. The geography of air pollution 

Ambient concentrations of air pollutants were visualized for five years (from 2007 to 2011). 

Spatiotemporal distribution was modeled by ordinary kriging method, refer the Figures 6 and 7. 

The annual levels of O3 and PM2.5 predicted by ordinary Kriging model are presented in 

Figures 6 and 7 respectively. The highest levels of O3 (0.070–0.085 µg/m³) were observed in 

northwest, south, and southwest regions, and the highest levels of PM2.5 (10–15 µg/m³) were 

observed in the southcentral and eastern regions. While U.S. EPA has revised the primary annual 

PM2.5 standard and tightened it to 12 micrograms per cubic meter (g/m
3
) [45], the modeled values 

exceeded 12 g/m
3
 during 2007 and 2008. The values remained close to the standard during 2010 

and 2011 in the southcentral and central MS and posed a significant short-term and long-term threat 

to human health including premature mortality, increased hospital admissions and emergency 

department visits, and development of chronic respiratory diseases. 

3.4. Statistical interpretation of asthma and population size 

Between 2009 and 2011 (Figure 8), approximately 59% of asthma-related inpatient, outpatient, and 

emergency visits could be explained by the population size (coefficient of determination, R
2
 = 0.588 and 

correlation coefficient, r = 0.77). The relationship linearly increased to a maximum of 65%, R
2
 = 0.648 

until it reached a population size of 3,5000 per zip code and the relationship decreased to 59% as the 

population size increased to a maximum of 47000 per ZIP code. This is a statistical signature about the 

contribution of other variables at densely populated (>3,5000/ZIP code) areas. Generally, higher 

populations were seen in urban regions, thus indicating the effects of urban risk factors in the prevalence 

of asthma. 

 

Figure 8. Association of asthma to population. 

Figure 8 provides an explanation about the dependency of asthma-related visits to 

corresponding population size at ZIP code spatial scale. Although a higher asthma prevalence was 

observed in rural MS, its association was proportionately distributed in the areas of ZIP codes with a 



286 

AIMS Environmental Science  Volume 5, Issue 4, 273–293. 

population range of up to 35,000 indicating that the risk factors were constantly simple. As the 

population range increased above 35,000, the phenomenon became complex and was evidenced by 

the scattered data points in Figure 8, and also evident from population regression. It implies that 

complex risk factors were involved in the ZIP codes of urban areas with a larger population, which 

indicated that geography and urban settings are playing important roles. Research studies from many 

cities have documented that the urban heat island effects range from decreases in air quality, 

increased energy consumption, and alteration of the regional climate to direct effects on human 

health [41]. 

 

 

Figure 9. OLS Regression variable distributions and relationships for 2009, 2010, and 2011. 

Based on the results in supplementary Table S1, the adjusted R-squared value was significantly 

improved (R-squared- 0.723, 0.934, and 0.930 for 2009, 2010, and 2011 respectively) from the 

model that used only the population data (R-squared- 0.588 in Figure 8). Within the population, the 

regression results explain the asthma dependency on children and older adults (Figure 9) and the 

probabilities with asterisk resemble the statistical significance. Coefficient [a] with a positive value 
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indicates the positive relationship with asthma and a negative value indicates a negative relationship. 

Figure 9 provides the data for understanding the relationship of each variable with asthma count. The 

statistical significance in the Jarque-Bera statistics indicates a significant clustering in the fitted 

model, and the residuals from regression analysis are normally distributed, which means that the 

spatial pattern in the asthma health is not randomly generated. The asthma count of adjacent years is 

well correlated to the studied year, that means the health condition is mostly tied to the threshold 

levels from neighboring years indicating a consistent population that possessed the health condition.   

 

Figure 10. OLS Regression variable distributions and relationships 2011. 

Poverty and asthma per capita can be explained by the PM2.5 for 2011, as shown in Figure 10 

and coefficient [a] in supplementary Table S2. The relationship is positive from the positive sign on 

coefficient [a] and is further explained by the probability and robust probability columns, where an 

asterisk shows a statistical significance. Jarque-Bera statistic is also statistically significant, which 

means that the residuals from the fitted model did not show a random behavior, and the spatial 

pattern explains a significant clustering in the fitted variables. There is overwhelming evidence that 

exacerbations of asthma in terms of casualty attendances, hospital admissions, and deaths are related 

to poverty or to groups that are prevalent in poor sectors of the society [46]. Many published articles 

have discussed the poverty problem in the MS Delta [37,47–49].  

 

Figure 11. Correlation analysis of O3 and asthma. 
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Correlation analysis revealed an overall correlation coefficient (r) of 0.186 between monthly 

average levels of ozone and asthma count (Figure 11). The trend appeared to be synchronized in 

recent years from the second half of 2009. Since then, r increased to 0.572, indicating that there was 

a moderate positive correlation [35] between both the data. 

 

Figure 12. Correlation analysis of PM2.5 and asthma. 

Correlation analysis did not reveal any significant association between PM2.5 and asthma (Figure 12), 

and there was a negligible negative correlation [35] of −0.125 observed between the data.  

4. Discussion 

The comprehensive geospatial approach undertaken in this research is first of its kind for 

addressing asthma problem in MS. Derivation of statistics of asthma at zip code level is unique in 

this research. The stakeholders, the public, and the administrators can understand about dissemination 

of disease and its affected regions by the help of produced maps and data. During 2009–2011, northwest 
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This region is a floodplain of black alluvial fertile soils known for its agricultural heritage. Although 

poverty continues to prevail, farming remains the backbone for this region’s economy [36]. Many of 

the urban living patterns were seen in the rural delta region of MS such as the limited access to 
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morbidity and mortality among rural patients with asthma in the U.S. have not been designed or 

implemented, despite rural Americans representing one of the most highly disadvantaged populations 

in the U.S [40]. Higher prevalence of asthma in rural MS could be an indication to support this fact. 

Asthma exacerbations were increasingly observed in the Jackson County region from 2006, 

urbanization might be an important risk factor in this region, which contributes to the accumulation 

of air pollutants by trapping heat.  

Moderately significant associations were observed between monthly levels of O3 to asthma 

exacerbations, and the monthly associations were insignificant with PM2.5. This indicated that asthma 

populations are susceptible more towards seasonally varying environmental variables (O3), also for 

seasonal variability in asthma exacerbations almost similar trend is observed in every season for all 

the years studied. For 2011, there is a positive relationship observed and the annual PM2.5 levels 
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depended on asthma per capita and poverty rate, as shown on Figure 10 and supplementary Table S2. 

The lag analysis might be useful to understand the health effects during short-term air quality-asthma 

events, but the current study had utilized the data from multiple years. The relationships with O3 

were established only during the O3 sampling season from March to October in every year because 

the data were available only during this period.   

5. Conclusion 

Asthma is a complex health problem in MS, and distinctive spatial and temporal dimensions 

have been observed in asthma data. As hypothesized, its prevalence and risk factors were different in 

rural and urban areas. The risk factors were constantly simple in rural areas and more complex in 

urban areas. The highest rates (4–5.5%) were discovered in Prairie in Monroe County for three 

consecutive years. Statistically significant hotspots were observed in urban regions of Jackson and 

Gulf port, which mean the areas where a high number of patients are found in neighboring ZIP codes. 

It was visualized from hot spot analysis that the asthma rates have steadily increased near urban 

Jackson and the area between Jackson and Meridian metropolis. It is recommended that the Jackson 

urban area is monitored closely for disease prevalence in the future. The highest concentration levels 

of annual O3 (0.070–0.085 µg/m³) were observed in northwest, south, and southwest regions, and the 

highest levels of PM2.5 (10–15 µg/m³) were observed in the southcentral region. Statistical output 

indicated that 2009–2011 monthly O3 levels and 2011 annual PM2.5 levels have a moderate influence 

on the aggravation of the asthma cases, as evidenced on Figures 10 and 11. As the adequate air 

quality data become available for MS, the statistical model performance would be further improved 

in the future studies. Between 2009 and 2011, spatial signatures of urban risk factors were found in 

zip code areas with dense populations. This was confirmed by the regression analysis of asthma 

patients with population size (R
2
 = 0.59). Resulting spatial data and information produced to provide 

a new insight into the management of environmental health data. The visualizations, info-graphics, 

and pictograms could be useful for decision making and asthma-related healthcare delivery in 

Mississippians. Statistically significant hotspots indicated that causative spatial processes are at work. 

Spatial analysis of asthma showed significant clusters in this delta region. Therefore, geographic 

clusters of poverty-asthma associations would be interesting to understand and may better visualize 

through regional scale analysis. Every year, vast amounts of population characteristics data are being 

generated by U.S. Census Bureau and are made available through its publicly available portals. 

The environmental health GIS research results and disease maps generated from this research 

could potentially be useful to federal and state health authorities in treating the population at risk, as 

well as to develop and implement health advisories. Educational and awareness programs could be 

initiated, and proactive health needs may be delivered in targeted regions of MS (Delta, coastal, 

southcentral, and Prairie regions).  

Limitations 

A network of sparse spatial observations for air quality is a limiting factor to obtain a 

trustworthy data at specific spatial intervals, and this is a backdrop for MS. Not all sources of data 

are available at a spatial resolution of ZIP codes. Intercensal population estimates for all zip codes 

were limited for this study. Because of this reason, disease rates were calculated for 2009, 2010, and 
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2011 by taking the 2010 population data as being constant for three years. Change of support 

problems (COSP) may result when trying to link the exposure data to the health outcome information 

because the two variables have inherently different scales. The disease is specific to an individual, 

but air quality varies over a continuum. Hence, these two different types of data not be always related 

in a way that permits a valid inference [51].  

Recommendations 

The contribution of other confounding (agriculture, mobile source pollution, socio-economic, 

and racial) variables must be investigated to address the problem from its roots. Once these risk 

factors are identified, the public could be informed, and proactive measures can be taken to avoid the 

triggers and exposure. It may be a good decision to implement health education programs and health 

advisories in the MS Delta population. A street line data with information on updated routes and 

travel speed limits may be required to analyze the drive time for patients, which is a technique called 

network analysis that is used to better identify the underserved patients and deliver appropriate health 

care needs [52]. MDEQ may have to review plans for the observational network. A disease rate of 

around 4 to 6% in some zip codes is a significant issue to be addressed. Analysis of recent health data 

might reveal many insights on the potential conditions and geospatial distribution of asthmatics. 
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