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Abstract: We used 19 bioclimatic variables, five species distribution modeling (SDM) algorithms, 

four general circulation models, and two climate scenarios (2050 and 2070) to model nine bird 

species. Identified as Species of Concern (SOC), we highlighted these birds: Northern/Masked 

Bobwhite Quail (Colinus virginianus), Scaled Quail (Callipepla squamata), Pinyon Jay 

(Gymnorhinus cyanocephalus), Juniper Titmouse (Baeolophus ridgwayi), Mexican Spotted Owl 

(Strix occidentalis lucida), Cassin’s Sparrow (Peucaea cassinii), Lesser Prairie-Chicken 

(Tympanuchus pallidicinctus), Montezuma Quail (Cyrtonyx montezumae), and White-tailed 

Ptarmigan (Lagopus leucurus). The Generalized Linear Model, Random Forest, Boosted Regression 

Tree, Maxent, Multivariate Adaptive Regression Splines, and an ensemble model were used to 

identify present day core bioclimatic-envelopes for the species. We then projected future 

distributions of suitable climatic conditions for the species using data derived from four climate 

models run according to two greenhouse gas Representative Concentration Pathways (RCPs 2.6 and 

8.5). Our models predicted changes in suitable bioclimatic-envelopes for all species for the years 

2050 and 2070. Among the nine species of birds, the quails were found to be highly susceptible to 

climate change and appeared to be of most future conservation concern. The White-tailed Ptarmigan 

would lose about 62% of its suitable climatic habitat by 2050 and 67% by 2070. Among the species 

distribution models (SDMs), the Boosted Regression Tree model consistently performed fairly well 

based on Area Under the Curve (AUC range: 0.89 to 0.97) values. The ensemble models showed 
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improved True Skill Statistics (all TSS values > 0.85) and Kappa Statistics (all K values > 0.80) for 

all species relative to the individual SDMs. 

Keywords: bioclimatic-envelope; climate change; habitat suitability modeling; birds  

 

1. Introduction  

Bioclimatic variables (biologically meaningful variables created from monthly temperature and 

precipitation) can have direct effects on birds leading to limits on their distributions [1] and changes in 

species habitat value [2] when these bioclimatic variables change (e.g., [3,4]). Several studies have 

already indicated how recent changes in climate have affected the geographical ranges of birds [5], their 

reproduction and migration [6]. This is one reason why numerous studies have based their predictions of 

the effects of climate change on species distributions on bioclimatic-envelope models (e.g., [7,8]).  

The use of the bioclimatic variables alone to model the species’ climate space has been met with 

objections by a handful of studies due to the absence of a broad range of climate change-related 

stresses in the model that could affect population ecology and physiology [9-11]. Studies like that of 

Jeschke and Strayer [12] and Dawson et al. [13] asserted that the consequences of climate change are 

a multifaceted problem that is not completely encompassed by assessing exposure of a focal species 

to climate change using bioclimatic-envelope models. A complete assessment of the impacts of 

climate change in a focal species includes other variables, such as land use [14], invasive species, 

and pollutants [12]. The interrelationships among these variables can become complex [15]. 

Despite the controversy over the limitations of bioclimatic-envelope models, many of their 

proponents have high praises for their predictive power [16-19]. These models have provided broad 

insights regarding the likely effects of climate change on species distribution [20] and biodiversity, 

especially the impacts on vulnerable species [11]. Beaumont et al. [2] and Elith et al. [21] have 

demonstrated that, even with just climate data alone, models were effective in establishing the 

current distributions of species, resulting in baseline models that could be used to predict the effect 

of climate on future distributions of conditions suitable for species. Further, in a modeling effort by 

Huntley et al. [22], bioclimatic variables were seen as the main range-limiting factor among 

environmental variables.  

While other predictor variables such land cover is often used for modeling the present species 

distributions, it is not often utilized when projecting to future distributions [23]. In fact, other 

predictors, including land cover, were found to be not critical in species distribution modeling 

compared to climate variables [24]. Here, we evaluated bioclimatic-envelope models [16,25] in 

projecting availability of suitable bioclimatic conditions for nine bird species, identified as species of 

concern (SOC) in the South Central United States (U.S.), using various climate projections derived 

from general circulation models (GCMs) run according to Representative Concentration Pathways 

(RCPs) and post-processed via application of a simple statistical downscaling method. We compared 

future projected climate envelope suitability results produced by combinations of four GCMs and 

two greenhouse gas RCPs for two future time periods. Our objectives are (1) to develop models of 

present day and potential future distributions of suitable environmental conditions for multiple bird 

species of conservation concern in the South Central U.S. region, and (2) to compare how 

bioclimatic-envelope suitability is projected to change from present day to future conditions. Our 
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hypothesis is that much of the area within the range of the focal species that currently possesses 

suitable bioclimatic conditions would be converted to unsuitable conditions in the future and that all 

birds considered here would be at high risk from climate change. Specifically, we expect to see 

bigger changes in some species due to their biology and vulnerability to climate variables. 

2. Materials and Method 

We employed a three-step procedure for this study. First, we gathered and processed datasets 

regarding the bird species occurrence, their species ranges, and the bioclimatic variables used in the 

bioclimatic-envelope modeling. Second, we developed models for current conditions, which 

included selecting SDMs and generating current bioclimatic conditions, and lastly, we modeled 

future conditions, including selecting species distribution models (GCMs) and RCPs, and projecting 

current to future conditions. The general flow of the study is shown in Figure 1. 

2.1. Species data 

After a rigorous selection process including feedback from valued stakeholders within the focal 

area for the South Central Climate Science Center, we identified nine birds as focal species. The nine 

bird species of interest—Northern/Masked Bobwhite Quail (Colinus virginianus), Scaled Quail 

(Callipepla squamata), Pinyon Jay (Gymnorhinus cyanocephalus), Juniper Titmouse (Baeolophus 

ridgwayi), Mexican Spotted Owl (Strix occidentalis lucida), Cassin’s Sparrow (Peucaea cassinii), 

Lesser Prairie-Chicken (Tympanuchus pallidicinctus), Montezuma Quail (Cyrtonyx montezumae), 

and White-tailed Ptarmigan (Lagopus leucurus)—are found within the South Central U.S. (Figure 2). 

We selected birds from this region because this region is known to be the driest region in the U.S. 

and changes of the climate could adversely affect diversity of animal species. For more information 

about the species selection process, see Appendix 1.  

Original species data included 27,232 bird presence records, with 12,260 for Northern/Masked 

Bobwhite Quail; 3629 for Scaled Quail; 3237 for Pinyon Jay; 2900 for Juniper Titmouse; 1763 for 

Mexican Spotted Owl; 1570 for Cassin’s Sparrow; 993 for Lesser Prairie-Chicken; 485 for 

Montezuma Quail; and 395 for White-tailed Ptarmigan. We obtained species occurrence datasets 

from Natural Heritage programs in New Mexico, Arizona, and Texas. We only used presence data 

since there was not sufficient absence data available. Other online sources of presence data used in 

this study include: Biodiversity Information Serving Our Nation (BISON) [26], National Science 

Foundation’s (NSF) bird specimen collection (ORNIS) [27], and NSF’s biodiversity data portal 

(VertNet) [28]. For datasets that were provided in polygon format, we converted to point data, with a 

centroid (or point close to a centroid but contained within the polygon) generated for each polygon. 

We standardized dataset attributes across sources to match data from BISON and fixed errors in 

coordinates, as each data source has a different set of attributes for species record. Changing to the 

same projection was included in the process. In this study, we limited the datasets combined across 

sources to the same date range for which historical climate data are available (1950 to 2000). Also, 

we eliminated occurrences that fell outside the boundaries of species ranges obtained from the U.S. 

Geological Survey (USGS) National Gap Analysis Program (GAP) [29] to reduce the number of 

records for which the species had been misidentified or were otherwise geographic outliers. All 

spatial data analyses were conducted using ArcGIS for Desktop 10.3 (ESRI) [30]. 
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Figure 1. The three major steps of the methodology used here include: gathering the 

input datasets, modeling the present day bioclimatic conditions, and modeling the 

future bioclimatic conditions. The final output are maps comparing present day with 

future bioclimatic-envelopes for each of the two years we selected, 2050 and 2070. These 

maps show the distribution of suitable bioclimatic conditions for the nine bird species 

and how they are projected to change in future. 
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Figure 2. The nine bird species of interest—(a) Cassin’s Sparrow, (b) White-tailed Ptarmigan, 

(c) Pinyon Jay, (d) Montezuma Quail, (e) Mexican Spotted Owl, (f) Scaled Quail, (g) Lesser 

Prairie-Chicken, (h) Juniper Titmouse, and (i) Northern/Masked Bobwhite Quail—existing 

within the South Central United States and currently considered Species of Concern by 

stakeholders within the area of interest for the South Central Climate Science Center. The 

shaded regions represent the species range designated by USGS. 
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2.2. Species distribution modeling 

We obtained a set of 19 raster-based bioclimatic variables (Table 1) from among the WorldClim 

datasets [31] to describe present environmental conditions and explore the relationship between 

bioclimatic conditions and species distribution patterns. For each species, we removed one of each 

pair of highly correlated (r > 0.7) [32] environmental variables from the bioclimatic-envelope models 

to avoid collinearity among variables [33]. We chose between highly correlated variables based on 

the results of a species-specific literature search. In particular, we selected variables that were 

identified in one or more studies regarding each individual species of interest as having an effect on 

the species’ range or population dynamics (Table 1). In cases where the results of the literature search 

could not differentiate between two highly correlated climatic variables, we used a qualitative 

assessment of the distribution of values of the variable at all presence points and of the relationship 

between the variable and species presence or pseudo-absence [34]. 

Table 1. List of 19 bioclimatic variables used in bioclimatic-envelope model 

development. Names and descriptions are based on WorldClim [31]. Name codes for 

species are as follows: Northern/Masked Bobwhite Quail (CV), Scaled Quail (CS), Pinyon 

Jay (GC), Juniper Titmouse (BR), Mexican Spotted Owl (SO), Cassin’s Sparrow (PC), 

Lesser Prairie-Chicken (TP), Montezuma Quail (CM), and White-tailed Ptarmigan (LL). 

Variable Description Scale Species Use 

Bioclim 1 Annual Mean Temperature Annual  

Bioclim 2 Mean Diurnal Range Variation CS,CV,CM,GC 

Bioclim 3 Isothermality Variation All 9 bird species  

Bioclim 4 Temperature Seasonality Variation  

Bioclim 5 Maximum Temperature Warmest Month Month CS,CV 

Bioclim 6 Minimum Temperature Coldest Month Month All 9 bird species 

Bioclim 7 Temperature Annual Range Annual BR,GC 

Bioclim 8 Mean Temperature of Wettest Quarter Quarter All 9 bird species 

Bioclim 9 Mean Temperature of Driest Quarter Quarter All 9 bird species 

Bioclim 10 Mean Temperature of Warmest Quarter Quarter  

Bioclim 11 Mean Temperature of Coldest Quarter Quarter  

Bioclim 12 Annual Precipitation Annual All 9 bird species 

Bioclim 13 Precipitation of Wettest Month Month  

Bioclim 14 Precipitation of Driest Month Month PC,SO 

Bioclim 15 Precipitation Seasonality Variation BR,CV,CM,GC,LL,SO 

Bioclim 16 Precipitation of Wettest Quarter Quarter  

Bioclim 17 Precipitation of Driest Quarter Quarter  

Bioclim 18 Precipitation of Warmest Quarter Quarter All 9 bird species 

Bioclim 19 Precipitation of Coldest Quarter Quarter  

WorldClim provides climate projections statistically downscaled, using a ―delta method‖ approach, 

to a spatial resolution of 30 arc-seconds, roughly 900 m at the equator. We only used the bioclimatic 

variables in the models because we assumed that change in climate could be a driving force of 

modifications to species habitats, especially for species of conservation concern and vulnerable species. If 
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the climate continues to change, associated changes to species habitat could be damaging [11], and could 

lead to reduction in species population sizes as suitable habitats disappear [35]. 

Araujo and New [36] emphasized that using a single SDM algorithm would not provide 

sufficient information regarding whether the selected technique gave the best predictive accuracy for 

the dataset. Here, we analyzed the bioclimatic condition by species distribution relationship using the 

following SDMs for each species: Generalized Linear Model (GLM), Random Forest (RF) [37,38], 

Boosted Regression Tree (BRT) [39], Maxent [40,41], and Multivariate Adaptive Regression Splines 

(MARS) [42]. We selected SDMs based on their performance with presence-only data [43]. We used 

the modeling tool Software for Assisted Habitat Modeling (SAHM) run within VisTrails [34,44] to 

create a workflow and develop bioclimatic-envelope models for present day conditions. When 

multiple species occurrences were present within a given pixel of the climatic data, a tool in SAHM 

consolidated them to a single occurrence per pixel. Since species lacked absence data, the tool 

randomly generated background points (i.e., pseudo-absences [41]) within a 95% minimum convex 

polygon defined by the presence data. Phillips et al. [45] suggested an improved method for 

background sampling that uses target group, however, the approach may not be applicable for our 

multisource datasets. Also, Phillips et al. [45] warned the use of target-group background for 

extrapolation studies that involves future climate conditions. We extended the species ranges 

obtained from the USGS National Gap Analysis Program [46] to generate a template boundary layer 

for each species. The length of the extension was based on the dispersal ability of the nine bird 

species [47,48]. In this study, we extended a maximum distance of 25 km beyond what USGS 

defined for the present species range. We used this template to restrict model development and future 

projection of the species. The choice of the extent of the species range was critical in the performance of 

the SDMs. Since SAHM assigns background points for each SDM, selecting a range that is too broad or 

too restricted could negatively affect the relationship between background and presence points [49]. To 

avoid the mismatch between species extent and presence/absence points, we used the unique geographic 

range of the species to define where background points should be assigned.   

Further, we utilized the SAHM ensemble tool to produce ensemble maps for the present day 

distribution of suitable environmental conditions for each species. The ensemble map is a summation 

of binary maps generated from probability surfaces from each statistical modeling algorithm [50-52]. 

We used specificity = sensitivity as the threshold in discretizing the probability maps. This has 

previously been identified as the optimal threshold [53]. The final ensembles consisted of pixel values 

that showed the number of models in agreement that a particular pixel is suitable for the species. A 

pixel with a value of zero meant that none of the models identified bioclimatic suitability for the 

species at that location, while a value of five meant there was agreement across all five models. 

We assessed confidence in individual model results in terms of concordance among the different 

distribution models. We had higher confidence that environmental conditions were suitable for a 

species when three or more (at least 60% of) algorithms were in agreement (e.g., [54]). We compiled 

information on various measures of model performance, including the Area Under the Receiver 

Operating Characteristic (ROC) Curve (AUC) for the test data, correct classification rate (%C) [55,56], 

the True Skill Statistic (TSS) [57], and the kappa statistic [58] for each algorithm by species 

combination. Swets [59] classified values of AUC as follows: those > 0.9 indicated high accuracy, 

from 0.7 to 0.9 indicated good accuracy, and those < 0.7 indicated low accuracy. Kappa values ranging 

from 0.2 to 0.5 were labeled poor, 0.6 to 0.8 useful, and those larger than 0.8 were excellent [60]. We 

checked other qualitative assessments of model performance, which included inspecting cross-calibration 
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and deviance of residual plots. Calibration plots indicate whether models tend to over or under predict 

habitat suitability. Deviance of residual plots are used to identify individual data points that may 

require further inspection or whether there may be an important environmental layer missing from 

the model inputs [44]. The current version of SAHM [39] does not produce evaluation metrics for 

the ensembles, so we ran a code in R, with the same settings as the ones we used in SAHM, to 

generate ensemble statistics. We then compared the statistics of the five individual SDMs to their 

ensemble for all nine species. Finally, we used the current distributions estimated by the SDMs and 

projected each to climate conditions in the years 2050 and 2070. 

2.3. Projecting models to future climatic conditions  

Informed in part by previously published evaluations of model performance [61,62], we 

screened GCMs based upon their simulations of 20th century climate across the continental U.S. and 

regions that overlap the study area, as well as the general areas inhabited by the focal species (e.g., 

Central and Western North America). We used values showing bias of model output relative to 

observed historical data as one of several criterion to exclude GCMs. In particular, we excluded 

GCMs for which multiple variables had a relatively high bias (i.e., were more biased than two times 

the standard deviation of variation among biases of all models evaluated) or for which few evaluated 

variables were less biased (i.e., bias was less than half of the standard deviation of variation in bias 

among all models evaluated). Also, we excluded models with large values (>1 or <−1) for top of 

atmosphere energy imbalance (Wm-2) since these values may be an indication of long term drift in 

simulated climatic conditions (Forster et al. 2013). The final list of selected GCMs includes: 

Community Climate System Model version 4 (CCSM4) [63], Hadley Centre Global Environment 

Model version 2-Earth System (HadGEM2-ES) [64], Model for Interdisciplinary Research on 

Climate version 5 (MIROC5) [65], and Max Planck Institute Earth System Model, low resolution 

(MPI-ESM-LR) [66]. 

For future conditions, we used the downscaled data provided by WorldClim [31]. We 

downloaded raster data for two RCPs (2.6 and 8.5) available for all four selected GCMs and for two 

time periods (year 2050—average for 2041 to 2060 and year 2070—average for 2061 to 2080). We 

selected RCP 2.6 since it is the most aggressive among all RCPs in terms of greenhouse gas 

emissions reductions [67,68]. Also, near-term warming projected under RCP 2.6 is greater than under 

RCP 4.5, even though the greenhouse gas forcing is lower [69]. RCP 8.5 is the most extreme 

scenario in that it entails the highest projected increase in the concentration of multiple greenhouse 

gases in the atmosphere [70] and associated increases in global surface temperatures [71].  

We projected the bioclimatic-envelope models developed using present day conditions to 

potential future climatic conditions as simulated by a total of 16 GCM by RCP by year combinations. 

To avoid generating hundreds of map results, again we used the SAHM ensemble tool to produce 

ensemble maps for the future bioclimatic-envelope suitability of each bird species. Once ensembles 

were generated, we further combined results across GCMs within each RCPs. This led us to having 

two sets of maps with information on projected suitable conditions for each species, one for each of 

the years (2050 and 2070) according to each RCP. Finally, after considering the agreement (overlap) 

of at least three species distribution models and two GCMs, we compared the current and future 

ensemble maps to determine areas of stability, gains, and losses in suitable bioclimatic conditions 

between present day and the two projected years. 
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3. Results 

Six of the 19 variables—isothermality, minimum temperature of the coldest month, mean 

temperature of the wettest quarter, mean temperature of the driest quarter, and precipitation of the 

warmest quarter—were identified as relevant to the biology and distribution of all nine species, as 

reflected in the modeling results (Table 1). The bioclimatic variable, maximum temperature of the 

warmest month, was a driver of change for two quail species—the northern/masked bobwhite quail 

and the scaled quail.  

We saw variability in of the performance of the five statistical models across species (Table 2). 

For instance, for the Pinyon Jay, the AUC scores were highest for the BRT model, followed by RF, 

Maxent, MARS, and GLM. For the White-tailed Ptarmigan, BRT also had the highest AUC, however, 

it was followed by Maxent and RF, and then MARS and GLM had equal values. AUC values 

generally indicated strong accuracy of the models, with most AUC values ≥ 0.70. Only GLM for the 

Pinyon Jay resulted to a slightly lower value (AUC = 0.68). Among all nine birds, only models for 

the White-tailed Ptarmigan all had AUC values ≥ 0.90. Comparing the five statistical models, BRT 

performed the best in terms of AUCs for all species (0.89 to 0.97). The values of percent of 

occurrences correctly classified for BRT were also higher than for the rest of the SDMs (80.3% to 

90.5%). After BRT, Maxent and RF performed fairly well in terms of AUC, ranging from 0.78 to 

0.94 for Maxent and 0.82 to 0.92 for RF. Low percentages of occurrence points correctly classified 

(<70%) were found for the GLM model. The ensemble models consistently had AUCs for the test 

data above 0.90 for all nine species, thus surpassing all individual SDMs. Table 3 shows the results 

of the True Skill Statistic (TSS) and Kappa statistic (K), with values varying across species and 

models. Similar to the results for AUC, the BRT and RF models performed fairly well in terms of the 

TSS. For the Cassin’s Sparrow, for instance, BRT scored the highest (TSS = 0.92) followed by RF 

(TSS = 0.67), while GLM scored the lowest among the five models with TSS = 0.56. Overall, GLM 

had the lowest accuracy based on both the TSS and the K relative to the other four models.  

Table 2. Areas Under the Curve (AUC) associated with the test data and the 

percentages of occurrence points correctly classified (%C) for the five different 

Species Distribution Models for each species. Model abbreviations are as follows: 

GLM = Generalized Linear Model, MARS = Multivariate Adaptive Regression Splines, 

BRT = Boosted Regression Tree, and RF = Random Forest. 

Species GLM MARS BRT RF Maxent Ensemble 

AUC %C AUC %C AUC %C AUC %C AUC %C AUC %C 

Juniper Titmouse 0.74 66.3 0.75 68.7 0.89 80.3 0.83 76.4 0.82 73.4 0.90 85.6 

Scaled Quail 0.71 63.1 0.77 68.0 0.92 84.2 0.83 77.8 0.81 71.3 0.94 87.1 

Northern/Masked 

Bobwhite Quail 

0.71 64.2 0.74 66.9 0.91 83.0 0.83 74.9 0.78 69.6 0.94 89.3 

Montezuma Quail 0.89 81.1 0.89 81.5 0.97 89.8 0.92 85.8 0.93 83.9 0.98 92.1 

Pinyon Jay 0.68 64.8 0.74 67.1 0.95 87.1 0.84 76.2 0.83 74.4 0.98 94.8 

White-tailed Ptarmigan 0.91 82.4 0.91 82.5 0.96 89.9 0.92 84.1 0.94 85.9 0.98 92.1 

Cassin’s Sparrow 0.75 68.7 0.76 74.4 0.95 85.7 0.82 72.3 0.82 81.0 0.95 89.6 

Mexican Spotted Owl 0.90 84.0 0.92 84.8 0.97 90.5 0.92 86.9 0.91 84.2 0.97 93.7 

Lesser Prairie-Chicken 0.72 66.4 0.82 74.3 0.97 90.5 0.89 82.1 0.88 80.0 0.97 95.6 
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Table 3. The True Skill Statistics (TSS) and the kappa statistics (K) for the five different 

Species Distribution Models. Model abbreviations are as follows: GLM = Generalized 

Linear Model, MARS = Multivariate Adaptive Regression Splines, BRT = Boosted 

Regression Tree, and RF = Random Forest. 

Among all bird species, models for the White-tailed Ptarmigan resulted in a good level of 

accuracy for the TSS values (≥0.80). The ensemble models showed improved TSS (all values ≥ 0.85) 

and K (all values ≥ 0.80) for all species relative to the individual SDMs. Other qualitative 

assessments of model performance included an inspection of the calibration and deviance of residual 

plots. No models had calibration plots that were without some form of over or under prediction, with 

models under predicting lower probabilities of occurrence and over predicting higher probabilities. 

3.1. Present day bioclimatic-envelope models  

The present day maps of suitable climate envelopes differed among the models. As an example, 

all models of the Scaled Quail showed high suitable conditions in the western region of the species’ 

range, in accordance with most of the reported species occurrence points in the region (Figure 3). 

Further, Figure 3 shows how the results of the five statistical models differ between each other even 

with using the same species occurrence points. Among the five models, only RF and BRT identified 

highly suitable bioclimatic conditions in areas where presence points were mostly concentrated and 

low suitability in areas with fewer points. These two suitability maps (Figures 3a and 3e) are 

associated with fairly high AUC values in Table 2 for RF (0.83) and BRT (0.92). MARS and GLM 

highlighted suitable conditions in the western region, and Maxent accentuated climate condition 

suitability more in the southern end of the range.  

Species GLM MARS BRT RF Maxent Ensemble 

 TSS K TSS K TSS K TSS K TSS K TSS K 

Juniper Titmouse 0.52 0.46 0.54 0.47 0.78 0.71 0.72 0.66 0.64 0.57 0.85 0.81 

Scaled Quail 0.46 0.42 0.62 0.58 0.88 0.83 0.75 0.71 0.65 0.57 0.92 0.89 

Northern/ Masked Bobwhite Quail 0.48 0.42 0.56 0.50 0.86 0.78 0.70 0.65 0.56 0.50 0.93 0.89 

Montezuma Quail 0.80 0.54 0.86 0.61 0.82 0.59 0.87 0.59 0.88 0.55 0.90 0.88 

Pinyon Jay 0.50 0.32 0.57 0.35 0.84 0.57 0.71 0.44 0.67 0.41 0.94 0.92 

White-tailed Ptarmigan 0.84 0.54 0.83 0.64 0.91 0.64 0.86 0.56 0.82 0.50 0.96 0.93 

Cassin’s Sparrow 0.56 0.32 0.66 0.49 0.92 0.63 0.66 0.43 0.67 0.46 0.96 0.90 

Mexican Spotted Owl 0.66 0.37 0.71 0.40 0.83 0.54 0.75 0.47 0.73 0.62 0.91 0.88 

Lesser Prairie-Chicken 0.45 0.25 0.57 0.25 0.91 0.46 0.69 0.35 0.69 0.41 0.93 0.91 
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Figure 3. Bioclimatic suitability maps derived from current climatic conditions 

for the Scaled Quail (Callipepla squamata) using five common species 

distribution models: (a) BRT = Boosted Regression Tree, (b) GLM = Generalized 

Linear Model, (c) MARS = Multivariate Adaptive Regression Splines, (d) Maxent, 

and (e) RF = Random Forest. Species occurrence points are shown in black dots. The 

map values range between 0 (yellow, low probability) to 1 (blue, high probability).  

For each species, locations where all five models identified potential suitable bioclimatic 

conditions (score = 5) for the species usually matched where species occurrence points were found 

(Figures 4a, 4b, 4c, 4f, 4g, 4h, and 4i). However, this was not entirely true for the Mexican Spotted 

Owl (Figure 4d) and the Lesser Prairie-Chicken (Figure 4e), where high agreements among models 

(score = 5) were also found in the northern region of the species ranges. Worth noting was the 

Mexican Spotted Owl, for which the models identified a large, suitable climate envelope area where 

no species occurrence points were recorded. 

The suitable area (in km
2
) for each of the nine bird species’ bioclimatic-envelopes, as modeled 

using the current climate conditions, as shown in Table 4. These suitable areas are contained within 

the specified USGS species ranges (Figure 2). The calculation of the suitable area was based on the 

agreement of at least three SDMs. The smallest area was for the Montezuma Quail (16,089 km
2
), 

followed by the White-tailed Ptarmigan (43,818 km
2
). These species also have the two smallest 

species ranges.  
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Figure 4. Present day bioclimatic-envelope ensemble models for the nine bird species: 

(a) Juniper Titmouse (Baeolophus ridgwayi), (b) Pinyon Jay (Gymnorhinus cyanocephalus), 

(c) Cassin’s Sparrow (Peucaea cassinii), (d) Mexican Spotted Owl (Strix occidentalis lucida), 

(e) Lesser Prairie-Chicken (Tympanuchus pallidicinctus), (f) Scaled Quail (Callipepla 

squamata), (g) Northern/Masked Bobwhite Quail (Colinus virginianus), (h) Montezuma 

Quail (Cyrtonyx montezumae), and (i) White-tailed Ptarmigan (Lagopus leucurus). A high 

score of 5 means that all species distribution models agreed and identified that pixel as 

containing suitable bioclimatic conditions for the species. Black dots represent the species 

occurrence data. Note: For scale reference, see Figure 1. 

3.2. Projecting models to future climatic conditions  

Figures 5, 6, 7, and 8 are maps of the projected bioclimatic-envelopes of the nine bird species 

generated through comparison of ensembles of suitable bioclimatic-envelopes between present and 

projected future climatic conditions. These maps show areas where ensembles agree between present day 

and future (stable), future ensemble projects newly suitable conditions (gain), present ensemble may be 

converted to unsuitable conditions in the future (loss), and areas where conditions are unsuitable now and 
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in the future (unsuitable). For comparison purposes, we added the current day, suitable 

bioclimatic-envelopes in the first column, for which the area (km
2
) for each species is found in Table 4.  

Table 4. Quantitative summary of the bioclimatic-envelope models for the nine focal 

bird species. The area (km
2
) represents the amount of suitable bioclimatic conditions for 

each species in present day based on the agreement of at least three models. 

Scientific Name Common Name Area (km
2
) 

Baeolophus ridgwayi Juniper Titmouse 464,973 

Callipepla squamata Scaled Quail 256,634 

Colinus virginianus Northern/Masked Bobwhite Quail 1,615,668 

Cyrtonyx montezumae Montezuma Quail 16,089 

Gymnorhinus cyanocephalus Pinyon Jay 425,169 

Lagopus leucurus White-tailed Ptarmigan 43,818 

Peucaea cassinii Cassin’s Sparrow 417,717 

Strix occidentalis lucida Mexican Spotted Owl 202,111 

Tympanuchus pallidicinctus Lesser Prairie-Chicken 95,209 

The total size of the area containing suitable bioclimatic conditions increased from present day 

to future for the years 2050 and 2070 for RCP 2.6 (Figures 5 and 9) for Juniper Titmouse (16.5% & 

8.2%), Pinyon Jay (12.3% & 9.0%), and Cassin’s Sparrow (41.0% & 78.6%). For the Juniper 

Titmouse and Pinyon Jay, the gains were mostly located in the northern part of the species ranges. 

For the Cassin’s Sparrow, the gains were around the center of the range. For RCP 2.6, both years 

2050 and 2070 showed a slight increase of suitable climatic conditions for the Mexican Spotted Owl 

(7.9% & 6.7%) and the Lesser Prairie-Chicken (23.3% & 15.0%). For both future time periods and 

RCP 2.6, major loss of suitable climatic habitat was projected for the Lesser Prairie-Chicken (48.8% 

average), while Cassin’s Sparrow had the least loss (10.0% average; Figure 5). 

The years 2050 and 2070 under RCP 8.5 (Figures 6 and 9) showed comparable trends to RCP 2.6 in 

terms of the amounts of gains and losses for the Lesser Prairie-Chicken. The only major difference 

observed was the lesser gain in 2070, with an associated loss of 63.9%. Also, about 56.1% of area of 

currently suitable climatic conditions for Pinyon Jay was projected to become unsuitable by 2070.  

Among the nine species of birds, the quails were the ones projected to be highly susceptible to 

climate change and appeared to be of most concern. The Northern/Masked Bobwhite Quail, 

Montezuma Quail, and White-tailed Ptarmigan all showed considerable losses of suitable climatic 

habitat for both modeled years and RCPs (Figures 7, 8, and 10). The White-tailed Ptarmigan would 

lose 61.5% of its suitable habitat by 2050 and 66.7% by 2070, when both RCPs were averaged. 

Worse, gains of newly suitable regions for Montezuma Quail and White-tailed Ptarmigan were 

minimal. For the Scaled Quail, contraction would most likely occur in the northern part of the 

species range (Figures 7 and 8). A quantitative summary of the future projections shown in Figures 5 

and 6 is provided in Figure 9, while for the future projections shown in Figures 7 and 8, the summary 

can be found in Figure 10. Bars in Figures 9 and 10 represent the percent increase (+) and decrease 

(−) in area of the present day suitable bioclimatic conditions for the focal species as projected 

according to RCPs 2.6 and 8.5 to the years 2050 and 2070. Decrease in area is related to loss, or area 

reduction, of the distribution of presently suitable conditions (Table 4). As an example, for Juniper 

Titmouse projected to 2050 (RCP 2.6), Figure 9 showed a percent increase of +16.5 and a percent 
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decrease of −37.4, or a net of +20.9. This net positive value can be interpreted as a 20.9% increase of 

the present day suitable bioclimatic conditions for the Juniper Titmouse when projected to year 2050. 

 

Figure 5. Comparison of ensembles of suitable bioclimatic conditions between present 

day (column 1) and future for five non-quail birds: Juniper Titmouse, Pinyon Jay, 

Cassin’s Sparrow, Mexican Spotted Owl, and Lesser Prairie-Chicken. The future model 

is based on bioclimatic data derived from statistically downscaled General Circulation 

Models projected according to RCP 2.6 to the year 2050 (column 2) and 2070 (column 3). 

Maps show areas where ensembles agree between present and future (stable in green), future 

ensemble projects newly suitable conditions (gain in yellow), present ensemble may be 

converted to unsuitable conditions in the future (loss in red), and areas where conditions are 

unsuitable now and in the future (unsuitable in gray). Note: For scale reference, see Figure 1. 
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Figure 6. Comparison of ensembles of suitable bioclimatic conditions between present 

day (column 1) and future for five non-quail birds: Juniper Titmouse, Pinyon Jay, 

Cassin’s Sparrow, Mexican Spotted Owl, and Lesser Prairie-Chicken. The future model 

is based on bioclimatic data derived from statistically downscaled General Circulation 

Models projected according to RCP 8.5 to the year 2050 (column 2) and 2070 (column 3). 

Maps show areas where ensembles agree between present and future (stable in green), future 

ensemble projects newly suitable conditions (gain in yellow), present ensemble may be 

converted to unsuitable conditions in the future (loss in red), and areas where conditions are 

unsuitable now and in the future (unsuitable in gray). Note: For scale reference, see Figure 1. 
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Figure 7. Comparison of ensembles of suitable bioclimatic conditions between 

present day (column 1) and future for four quails: Scaled Quail, Northern/Masked 

Bobwhite Quail, Montezuma Quail, and White-tailed Ptarmigan. The future model is 

based on bioclimatic data derived from statistically downscaled General Circulation 

Models projected according to RCP 2.6 to the year 2050 (column 2) and 2070 (column 3). 

Maps show areas where ensembles agree between present and future (stable in green), 

future ensemble projects newly suitable conditions (gain in yellow), present ensemble 

may be converted to unsuitable conditions in the future (loss in red), and areas where 

conditions are unsuitable now and in the future (unsuitable in gray). Note: For scale 

reference, see Figure 1. 
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Figure 8. Comparison of ensembles of suitable bioclimatic conditions between 

present day (column 1) and future for four quails: Scaled Quail, Northern/Masked 

Bobwhite Quail, Montezuma Quail, and White-tailed Ptarmigan. The future model is 

based on bioclimatic data derived from statistically downscaled General Circulation 

Models projected according to RCP 8.5 to the year 2050 (column 2) and 2070 (column 3). 

Maps show areas where ensembles agree between present and future (stable in green), 

future ensemble projects newly suitable conditions (gain in yellow), present ensemble 

may be converted to unsuitable conditions in the future (loss in red), and areas where 

conditions are unsuitable now and in the future (unsuitable in gray). Note: For scale 

reference, see Figure 1. 
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Figure 9. Graphs provide a quantitative summary of the future projections shown in 

Figures 5 and 6 for five bird species: Juniper Titmouse, Pinyon Jay, Cassin’s Sparrow, 

Mexican Spotted Owl, and Lesser Prairie-Chicken. Bars represent the percent increase 

(+) and decrease (−) in area of presently suitable environmental conditions for the focal 

species as projected according to RCPs 2.6 and 8.5 to the years 2050 and 2070. Increase in 

area is related to the gain, or area expansion, of the distribution of presently suitable conditions 

(Table 4). Decrease in area is related to loss, or area reduction, of the distribution of presently 

suitable conditions (Table 4). Among all five species of birds, only the Cassin’s Sparrow has 

shown more than 50% gain of suitable bioclimatic conditions for all model scenarios. Note: 

When the percent decrease (−) is greater that the percent increase (+), this means that the 

present suitable bioclimatic habitat for the species has decreased for the projected year. 
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Figure 10. Graphs show a quantitative summary of the future projections shown in 

Figures 7 and 8 for four quail species: Scaled Quail, Northern/Masked Bobwhite 

Quail, Montezuma Quail, and White-tailed Ptarmigan. Bars represent the percent 

increase (+) and decrease (−) in area of the presently suitable environmental conditions 

for the focal species as projected according to RCPs 2.6 and 8.5 to the years 2050 and 

2070. Increase in area is related to the gain, or area expansion, of the distribution of 

presently suitable conditions (Table 4). Decrease in area is related to loss, or area 

reduction, of the distribution of presently suitable conditions (Table 4). For all four quail 

species, the amount of loss of suitable bioclimatic conditions in future is greater than the 

amount of gain for all model scenarios. Note: When the percent decrease (−) is greater 

that the percent increase (+), this means that the present suitable bioclimatic habitat for 

the species has decreased for the projected year. 

4. Discussion  

4.1. Individual species modeling and ensemble performance. 

The most important finding was the utility of the ensemble models, as produced by the SAHM 

ensemble function, for modeling the bioclimatic-envelopes. All ensemble efforts for all species 

resulted in AUCs > 0.90, showing more robust models than any individual SDMs. All five SDMs 

predicted different distributions of suitable bioclimatic conditions within species. Previous studies 
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reported the same results [52,72-75]. Overall, values of most of the AUCs (≥0.70) indicated strong 

accuracy of the individual models.  

Combining individual models to a single ensemble provided a more representative species 

distribution because it underscored the agreement among algorithms [36,52]. Although other studies 

(e.g., [75]) highlighted the limitations of the ensemble map in not outperforming individual models, 

in our case, the ensembles outperformed all five models. In other words, the fairly strong 

performance of the individual models led to a still stronger ensemble. Araújo and New [36] and 

Marmion et al. [76] agreed that the performance of ensemble models is dependent on the accuracy of 

the individual models.  

Incorporating lower performing models (in our case the GLM and MARS) could make ensemble 

models less reliable than a single, high performing model [77]. Stohlgren et al. [52] emphasized that 

ensemble techniques are useful for newly arrived invasive species whose relationship to their 

environment has not yet been established. This study showed that ensembles could provide a valuable 

alternative to using a single SDM. In the future, we may test more SDMs, introduce ensemble thresholds 

to further exclude underperforming models, including those having low AUC values [77], and diversify 

the types of models selected to improve the performance of the ensembles [78]. 

4.2. Future projections: uncertainty and robustness 

Although there were differences in results among the four climate models for both 2050 and 

2070, all predictions entailed a significant reduction of the present day distribution of suitable 

bioclimatic conditions for most of the bird species, especially for quails. Suitability is projected to 

decline in the northern part of the Lesser Prairie-Chicken’s species range. This projection goes 

against the northward movement often projected for species in response to climate change. This 

might be caused by the unusual pattern of precipitation in the area. 

Though many robust features can be identified in future projections, multiple limitations 

associated with the projection of species distributions into the future under different climate scenarios 

have been documented. Three broad categories of uncertainties affecting the climate variables used to 

drive the SDMs include (a) uncertainties in future greenhouse gas concentrations [79], (b) limitations 

in the accuracy of GCM-simulated, large-scale physical climate responses to changing greenhouse gas 

levels [71], and (c) shortcomings and assumptions inherent to statistical downscaling methods used to 

refine GCM results to a finer level of spatial detail [80,81]. By utilizing data products derived from 

four GCMs and two RCPs, this study partially explores two of these three sources of climate variable 

uncertainty. Stoklosa et al. [82] specifically discuss approaches to account for some uncertainties in the 

climate variables used to drive SDMs. Furthermore, several authors have shown variability among 

future projections of suitable climatic conditions when using different climate models applied to the 

same species occurrence dataset [8,83]. This variability of results makes assessment of projections of 

future conditions a complex effort. First, there is no way to know which single SDM could provide 

the most accurate information for a species, although one could argue that the model with the highest 

accuracy in capturing the present day distribution of suitable climatic conditions may produce more 

accurate future projections. However, Thuiller [8] reasoned that even when a model has the highest 

AUC and K statistic, that does not mean the model provides the best estimate of the future 

distribution of suitable conditions, especially as every model is based on different assumptions. It is 

most fitting to use an ensemble model of future projections, as this ensemble represents the areas of 
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agreement among individual model projections. The reliability of future conditions produced by 

ensembles may still be questioned, but ensemble results do incorporate the positive aspects of 

multiple models and provide a more conservative assessment of these conditions.  

Our future projections showed that, although the nine bird species would be impacted by climate 

change, a vast area would still remain stable 50 years from now for most species. Even for the 

White-tailed Ptarmigan and Montezuma Quail, about 17% and 57%, respectively, of the distribution 

of presently suitable bioclimatic conditions would remain stable in 2070.  

4.3. Caveats 

We purposely excluded non-climatic variables, such as topography, vegetation cover, and 

land-use from our modeling effort. Our analysis did not disregard the fact that variables other than 

climate could add explanatory power in the model. However, we chose to determine the effects of the 

bioclimatic variables alone and did not want to restrict the distributions in present day and future by 

adding the non-climatic variables, especially for the more widely distributed species (e.g., 

Northern/Masked Bobwhite Quail, Pinyon Jay, Juniper Titmouse, and Cassin’s Sparrow). We believe 

that bioclimatic modeling helps improve understanding of the vulnerability of the species of 

conservation concern considered here to climate change. Unless there are dramatic changes to 

non-climatic variables in the future (i.e., future changes in vegetation and land-use), the majority of 

any shifts in distribution of suitable conditions between present day and future would be driven by 

the climatic variables that we focused on. In other words, these non-climatic variables would not lead 

to dramatic changes in the future distributions of suitable conditions; they would simply limit the 

distribution of these suitable conditions further. Apart from the lack of datasets projected according 

to the RCPs, scale is also an issue as many vegetation and land-use datasets, for example, are 

available at finer resolutions than the climate projections. However, we acknowledge the role that 

finer-scale habitat changes, such as in water availability, could play in determining future distributions 

of species. Further studies on the impacts of climate change to these species of concern should address 

the interaction between climate and other non-climatic variables that may have profound effects on bird 

populations and their habitat. One important non-climatic variable that has been shown to adjust the 

future distribution of suitable areas is the dispersal ability of the species [84], which, unfortunately, we 

did not look cover in this research. Dispersal behavior is hard to incorporate in model projections as it 

could also change over time. By design, our models do not capture microclimate nor other local 

environmental characteristics such as soil moisture. However, they do provide a strong climate 

change context for future explorations of species population sustainability as affected by other 

drivers, including land use and water resources. There is a follow-up study after this that would look 

further beyond just bioclimatic effects on the bird species. 

4.4. Biological relevance of projections  

All five SDMs agreed that the distributions of the nine bird species within the areas where they 

currently occur contain the best climatic conditions for the species. However, a large area in the 

northern regions of the Mexican Spotted Owl and Lesser Prairie-Chicken ranges were also identified 

as currently containing suitable climatic conditions, even with few or no current species occurrences 

recorded. In the case of the Mexican Spotted Owl, the current climatic projection closely matches the 
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species profile from the Environmental Conservation Online System (ECOS), mapping the home 

range within five States, including Colorado and Utah (both northern regions of the species’ range). 

While it is unknown why Colorado and Utah support fewer owls [85], our projection indicated and 

confirmed the climatic suitability of these regions for the Mexican Spotted Owl.  

As for the Lesser Prairie-Chicken, a large area in northwestern Kansas was identified by our 

models as currently containing suitable climatic conditions. The area is part of the Short Grass 

Prairie (SGPR), a type of habitat with which the Lesser Prairie-Chicken is associated [86]. Our 

results complement a recently developed habitat suitability model [87] that also showed a high level 

of suitability in the northwestern region of Kansas. The State of Kansas currently protects the most 

extensive remaining range of the lesser prairie-chicken among the five states—Kansas, Texas, New 

Mexico, Oklahoma, and Colorado—where the species occurs [88]. 

The climatic habitat loss predicted by our models for the White-tailed Ptarmigan was expected 

as the species are in alpine areas, which are likely to be affected by climate change under future 

conditions. The range of the ptarmigan is severely constrained by its dependence on the alpine areas 

that they occupy. As warmer temperatures continue, the species habitat is becoming unstable. 

Furthermore, warming also exacerbates the ecological instabilities caused by previous habitat 

degradation [89] that could further threaten the distributions of white-tailed ptarmigan.  

Of all 19 bioclimatic variables used in the modeling, six were present in all of the 9 bird species. The 

minimum temperature of the coldest month, mean temperature of the wettest quarter, mean temperature 

of the driest quarter, and precipitation of the warmest quarter—were identified as relevant to the biology 

and distribution of all nine birds. Precipitation of the driest month was only relevant for the Mexican 

Spotted Owl and the Cassin’s Sparrow, while precipitation seasonality seemed unnecessary in modeling 

the bioclimatic habitat for Scaled Quail, Cassin’s Sparrow, and Lesser Prairie-Chicken. 

5. Conclusion 

Seven of the nine ensemble models for present day identified areas with potential suitable bioclimatic 

conditions that are currently occupied by the species. The other two models for the Mexican Spotted Owl 

and the Lesser Prairie-Chicken, after evaluation of existing studies, showed promising results as little 

gains were observed. Further, our results presented an opportunity for some of these other bioclimatically 

suitable areas to be evaluated as potential translocation sites for the Mexican Spotted Owl and the Lesser 

Prairie-Chicken. However, this has to be conducted with caution as there are many factors and 

environmental conditions at play that should be explored. In addition, locations that we identified as 

having suitable bioclimatic conditions could, following further evaluation and consideration of these 

other limiting factors, be given priority for conservation management.  

We conclude that bioclimatic variables alone may not always correctly ascertain current or future 

suitable conditions. We recommend that suitable bioclimatic-envelopes be identified and that 

species-specific, non-climatic variables should be characterized to eliminate questionable modeled 

locations. Future research should incorporate temporal processes into the models to better capture the 

changing distributional patterns of the species distributions. For instance, bird species with a 

widespread geographical distribution may adapt to differences in local habitat availability or 

conditions across their range during movements in response to a change in climatic conditions. This 

process has to be accounted for when modeling species distributions, otherwise the SDM does not 

fully reveal the underlying processes that may drive expansions or shifts in species distributions.  
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