
  AIMS Environmental Science, 4(2): 323-347. 

  DOI: 10.3934/environsci.2017.2.323 

  Received: 01 January 2017  

  Accepted: 15 March 2017  

  Published: 29 March 2017 

http://www.aimspress.com/journal/environmental 

 

Research article 

Determining site-specific background level with geostatistics for 

remediation of heavy metals in neighborhood soils 

Tammy M. Milillo
1
, Gaurav Sinha

2,
* and Joseph A. Gardella Jr.

1
 

1 
Department of Chemistry, University at Buffalo-SUNY, Buffalo, NY, USA 

2 
Department of Geography, Ohio University, Athens, OH, USA  

* Correspondence: Email: sinhag@ohio.edu; Tel: +17405930304. 

Abstract: The choice of a relevant, uncontaminated site for the determination of site-specific 

background concentrations for pollutants is critical for planning remediation of a contaminated site. 

The guidelines used to arrive at concentration levels vary from state to state, complicating this 

process. The residential neighborhood of Hickory Woods in Buffalo, NY is an area where heavy 

metal concentrations and spatial distributions were measured to plan remediation. A novel 

geostatistics based decision making framework that relies on maps generated from indicator kriging 

(IK) and indicator co-kriging (ICK) of samples from the contaminated site itself is shown to be a 

viable alternative to the traditional method of choosing a reference site for remediation planning. GIS 

based IK and ICK, and map based analysis are performed on lead and arsenic surface and subsurface 

datasets to determine site-specific background concentration levels were determined to be 50 μg/g 

for lead and 10 μg/g for arsenic. With these results, a remediation plan was proposed which 

identified regions of interest and maps were created to effectively communicate the results to the 

environmental agencies, residents and other interested parties. 
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1. Introduction 

1.1. Evaluating chemical concentrations in soil 

When contamination in urban neighborhoods is examined, there are unique challenges to 

planning remediation and interpreting results. These challenges arise because of the neighborhoods‘ 

proximity to Brownfields and Superfund sites. In these neighborhoods, three questions arise: (i) what 

types of contaminants are present in the soil; (ii) what concentrations of these contaminants are 

present; and (iii) where are the contaminants located. A background level refers to the concentration 

of a substance in an environmental media (air, water, or soil) that occurs naturally or is not the result 

of human activities [1]. Background level concentrations are used to establish the lower bound of 

clean up levels for contaminated soil. 

State and federal agencies debate what concentration is characteristic for a given area. Action 

levels are defined as the existence of a contaminant concentration in the environment high enough to 

warrant action or trigger a response. These may be two to four times the acceptable background level, 

depending on the contaminant [1]. An action level serves as a clear indicator for immediate cleanup 

to eliminate the potential risk to human health. The concentration level to which a contaminant is 

remediated is referred to as the cleanup level. It is important to note that, in practice, cleanup levels 

are generally higher than the background level, but much lower than an action level. Understanding 

and determining the background concentration is essential for establishing accurate cleanup levels, 

which ultimately minimizes potential health risks in the contaminated neighborhoods. 

Table 1 provides an example of terminology describing concepts used by different states as 

guidelines for contaminant concentration. This suggests that states report concentrations whose 

definitions vary per state or location (e.g., industrial, residential, playground). For any agency‘s 

jurisdiction, background and action values may also be updated over time based on new methods or 

data. Thus, the impact that background or action values have on determination of risk-based soil 

clean-up levels varies considerably depending on which agency is consulted. Determining reliable 

background, cleanup and action levels is, therefore, a complicated and politically fraught task in 

many remediation planning exercises.  

Table 1. Select US State guidelines for Lead and Arsenic, in PPM. 

State Arsenic Lead Operational 

Concentration 

Definition 

Rural Industrial/ 

Commercial 

Rural Industrial/ 

Commercial 

New York [9] 13 16 63 1000–4300 Action level 

New Jersey [10] 20 20 400 600 Soil clean-up criteria 

New Hampshire [11] 11 11 51 51 Background level 

California [12] 0.067 0.31 80 320 Soil ESLs 

Colorado [13,14] 3–14 6–19 400 1200 Background Soil 

Concentration 

Connecticut [15] 10 10 500 1000 Direct exposure criteria 

Michigan [16] 5.8 5.8 21 21 Rural background 

Minnesota [17] 10 25 400 700 Soil reference values 
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This paper presents a novel approach to site-specific background concentration for study areas with 

known heavy metal contaminants in soils. In ―rust belt‖ post-industrial cities of the US, making decisions 

regarding background levels for remediation do not often use objective criteria. The contribution of this 

research project is an intuitive, geostatistically informed decision-making framework to choose values for 

background levels that guide remediation planning in urban areas, especially where residential 

neighborhoods bordering legacy contaminated sites, such as brownfields and Superfund sites.  

1.2. Site-specific background level for remediation planning 

Regional background levels cannot be relied on since substantial local variation resulting from 

natural processes such as type of soil and bedrock [2-6]. The regional background level can lead to 

incorrect source apportionment, and also leads to unnecessary remediation costs if cleanup is 

recommended to a much lower, uncharacteristic level. At any specific site, background level 

concentration can be adversely affected by the cumulative effects of historical land use [3]. A 

site-specific background level is used to produce cost-effective remediation, thus limiting financial 

responsibility and remediation costs [2,7]. 

Site-specific background levels are established for a specific contaminant by comparing the 

study area to a reference site, typically a neighboring area unaffected by that contaminant [4]. These 

areas are normally similar in physical, chemical, geological, and biological characteristics, and have 

a similar history of land use. Background level estimation at the nearby reference site is based on 

stratified sampling to cover all types of soil variations, and must follow certain recommended 

geochemical and statistical analytical frameworks [7,8]. When no reference site exists, regional 

background levels are common substitutes, resulting in increased remediation costs. Such costs can 

impede remediation efforts, causing immeasurable harm to people and their environment and 

increasing costs of remediation over time. 

1.3. Geostatistical modeling and GIS mapping based decision making framework for identifying 

site-specific background level concentrations and delineating contaminated areas 

A fundamental problem for site contamination analyses is that they are often limited by the lack 

of a reference site to determine a site-specific background level [18]. Although discrete regions of 

high contamination levels may be identified, they cannot be confidently suggested as remediation 

sites for lack of reliable site-specific background levels. This work makes an intellectual contribution 

in this regard specifically by offering an improvement over current remediation planning guidelines. 

The decision-making framework presented in this paper is based on application of well-established 

geostatistical interpolation and geographic information system (GIS) based mapping to estimate 

site-specific background levels based on sampled data from the contaminated site itself.  

This new decision-making framework relies on indicator kriging models of the contaminated 

site, which incorporates prior information from the US EPA and state guidelines for background 

levels. Indicator kriging uses spatial autocorrelation between samples to estimate the probability that 

the (unknown) attribute value at an unsampled location will exceed a selected threshold value. An 

indicator kriging map is used to determine a site-specific background levels and delineate areas 

characterized by the probability (>0.7) of exceeding the background level [19,20]. 



326 

AIMS Environmental Science  Volume 4, Issue 2, 323-347. 

An assumption of this decision making-framework is that contaminant levels for a large 

proportion of the study area data should exceed threshold values equal to or less than the 

site-specific background level. A critical parameter of this geostatistical decision making 

framework is the minimum proportion (pmin > 0.5 is recommended) of the study area for which 

contaminant levels must exceed a threshold value for the latter to be considered background level. 

Thus, if a site is small and/or it cannot be assumed that a majority (>50%) of the site is 

uncontaminated, this framework should not be used to determine site-specific background levels. In 

this study, the minimum proportion (pmin) was set to a conservative value of 0.8. Once pmin is selected 

for a site, a range of soil concentration thresholds for the chemical of concern will be found to yield 

study area proportions greater than pmin. To minimize cleanup costs, the goal should be to select the 

highest possible threshold value (vmax) as the site-specific background value. Note that there exists an 

inverse relationship between pmin and vmax, since if pmin increases, vmax must decrease to ensure that a 

larger proportion of the study area supports contaminant levels exceeding vmax.  

Since remediation planning is not driven by purely scientific criteria, and site-specific 

background level determination can be influenced by local social, political, and economic context, it 

is important to offer a simple, intuitive, and flexible decision-making framework for site-specific 

background level determination. Thus, a major attraction of this new framework is that it does not 

automatically generate a site-specific background level, but instead empowers decision makers to 

interactively explore impacts of different combinations of pmin and vmax parameters through GIS 

based geostatistical interpolation modeling and mapping of the spatial pattern of the contamination. 

Remediation specialists can make scientifically defensible decisions based on maps and statistical 

summaries generated from the application of this framework. However, they may still need to 

develop new skills, or have access to technically competent personnel for implementing the various 

components (mapping, spatial analysis, and geostatistical modeling) of the decision-making 

framework using GIS software. In the rest of this paper, the geographic context of this study, and the 

design and validation of the new geostatistical decision-making framework is discussed in detail. 

2. Study area 

Hickory Woods, a residential neighborhood of approximately one square mile in Buffalo, NY. It 

is one of many Western NY communities struggling with soil contamination and related health 

problems [21-26]. This neighborhood is adjacent to a New York State Class 2 Superfund site. The 

area includes Boone Park, which was found to be highly contaminated with arsenic and has already 

been remediated (see Figure 1). However, maps of samples and ordinary kriging analysis suggest 

that arsenic contamination levels are high even outside park boundaries, yet only the park was 

cleaned up [18]. This is hardly an isolated case of ignoring geostatistics in remediation planning and 

environmental assessment [27]. However, several important questions remain unanswered. These 

questions, which deal with the source, spread and extent of the contamination, require collaborative 

effort from researchers, government agencies and residents of the neighborhood.  
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Figure 1. Aerial imagery showing the study area of Hickory Woods, in Buffalo, NY. 
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3. Materials and Methods 

3.1. Lead and arsenic point soil samples  

Surface and sub-surface soil sample datasets were available from previous studies conducted by 

the EPA, New York State Department of Environmental Conservation (NYS DEC), the City of 

Buffalo, and the University at Buffalo, State University of New York. Due to confidentiality 

concerns, governmental agencies could not consolidate and perform or discuss geospatial analysis on 

the combined data. Therefore, university students were hired to obtain permission directly from 

residents to use data samples from each residential lot to create an integrated dataset. All sample 

point concentrations were established in certified laboratories. Although there likely existed some 

minor differences in the soil sample analysis techniques between different laboratories, all analyses 

at the various laboratories were done in accordance with the same analysis protocols established by 

the EPA. It should be noted that the decision making related to the scientific collection and analysis 

of soil samples is not a part of the decision-making framework presented in this paper. This 

framework is based on the (tacit) assumption that the soil sample analysis can be expected to yield 

accurate measurements of soil contamination for every sampled location.  

Because spatial or geostatistical analysis and mapping was not deemed necessary at the time by 

the agencies, samples were originally located only via postal addresses. The addresses were 

converted to geographic coordinates using ArcGIS
® 

geocoding tools and reference street network 

data; the results were carefully inspected visually against street maps and high resolution 

orthoimagery. A few addresses with appreciable geocoding error were manually geocoded using 

satellite imagery and reference street network data. The impacts of minor location errors on 

background level estimation were expected to be negligible for this case study.  

The surface lead dataset contained 308 sample points, including three duplicate samples that 

were analyzed by EPA contractors to confirm concentration values that were higher than the linear 

dynamic range of the analysis. The highest concentration value reported for the duplicate points was 

used to generate conservative concentration estimates. An additional 330 subsurface sample points 

were utilized for the co-kriging interpolation. The complete arsenic dataset contained 251 surface 

sample points and 159 subsurface sample points. For interpolations excluding Boone Park lead 

samples, 239 surface and 314 subsurface sample points were used, while the reduced dataset for 

arsenic was composed of 182 surface and 150 subsurface sample points.  

3.2. Experimental software 

ArcGIS
® 

(version 9.3), a commercially-available GIS software suite, and widely used in both 

government and private settings across the globe, was used for all geospatial data management, 

spatial analysis, geocoding, and mapping for this research project [28]. All indicator kriging and 

co-kriging interpolation results reported in this study were generated with the ArcGIS
®

 Geostatistical 

Analyst extension. The interpolated results are automatically available as geostatistical layers for 

mapping and analysis in ArcMap, a component software of ArcGIS.  
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3.3. Map creation 

A base map was first created which contained parcels and street information as well as the sample 

locations and concentrations for the individual heavy metal contaminants. All interpolated surfaces were 

overlaid on this base map to provide visual reference to the community members for whom maps were 

primarily designed. The parcel boundary dataset was downloaded from Erie County, NY
 
Internet 

Mapping System, while the dataset mapping street lines was extracted from US Census TIGER files [29] 

and digitally corrected using ArcGIS
®
 vector editing tools and high resolution orthoimagery serving as 

visual references. The base map was also used in geocoding several samples manually. Map color 

schemes for displaying sample data and interpolated results were chosen with the help of ColorBrewer
©
, 

an online tool that provides color advice for cartography [30].  

3.4. Geostatistical methods 

3.4.1. Indicator kriging/co-kriging 

Indicator kriging allows the estimation of the probability of unknown attribute values 

(concentrations) to exceed a certain threshold value at a given location. Indicator kriging provides a 

flexible interpolation approach that is well suited for datasets where: (1) many observations are 

below the detection limit, (2) the histogram is strongly skewed, or (3) specific classes of attribute 

values are better connected in space than others (e.g., low concentrations). To apply indicator kriging 

at its full potential requires, however, the tedious inference and modeling of multiple indicator 

semivariograms, as well as the post-processing of the results to retrieve attribute estimates and 

associated measures of uncertainty [31]. The mathematical basis of indicator kriging procedure is 

briefly summarized below.  

The variable representing original sample values (     , where s denotes a specific point 

location, is transformed into an indicator variable based on a chosen threshold (  ), such that if the 

concentration      at any location     exceeds   , then the indicator is 0, otherwise it is 1: 

 


 

otherwise

zszif
zsI

k

k
    ,0

 )(    ,1
    ;            (1) 

The expected value of            , conditional on n surrounding sample values for a sampled 

location   , is expressed as a probability (Equation 2): [32] 

        nznzsIE kk  sz Prob;           (2) 

The hazardous probability that exceeds    can then be easily calculated (Equation 3): 

         nznz kk  szProb1szProb         (3) 

At an unsampled location   , the ordinary indicator kriging estimator           can be 

estimated as the probability of a weighted average of n surrounding sample indicator values 

(Equation 4):  
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        



n
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where          represents the indicator values at sampled locations    (j = 1, 2…, n) surrounding 

the unsampled location   , and     is the weight assigned to that indicator for the estimation of 

         . The estimator must be unbiased (Equation 5), and with minimum estimation error 

variance. (Equation 6) [33] These conditions can be ensured by computing the weights     from the 

following specially constructed system of linear equations [19].  

     0;;* 0  kko zsIzsIE
                 (5) 

     minimum is ;;s*IVar 000 zsIzk 
             (6) 

The IK equation can be easily extended for the addition of a second indicator in Indicator 

Co-Kriging (ICK) as shown in Equation 7, where K = 2: [34]  

           
 


K

k

n

j

kkkjjkkcolK zFzsizszFnzsI
o

1 1

0 ;;(;*
0



     (7) 

where       is simply the expected value of the binary indicator function (Equation 8):  

    kk zsIEzF ;                (8) 

ICK is also used to derive conditional cumulative distributions for modeling prediction 

uncertainty by creating multiple indicator variables at different thresholds (cut-offs) from the same 

variable [19]. In this study, ICK is used to test if subsurface samples incorporated through a 

secondary correlated variable can improve results from indicator kriging of only surface samples of 

lead or arsenic. For a more comprehensive reference for IK and ICK, readers should consult 

Goovaerts [19].  

IK/ICK interpolations produce maps which display the probability that a given location will 

exceed a threshold concentration value. A summary probability measure, which is the average of all 

interpolated probabilities, can also be used to characterize the overall probability distribution for an 

interpolation. This statistic can be interpreted as the probability of exceeding the threshold value for 

the study area as a whole; as the measure increases, more locations are estimated to exceed the 

threshold value. All kriging methods also yield a probabilistic error associated with each predicted 

value. Maps of such errors can help assess the quality of the predicted probability for every location. 

3.4.2. Cross-validation error analysis 

Any interpolation model can be made to yield a set of cross-validation errors for every sample 

point. This standard method of testing the predictive robustness of a model involves making 

predictions for every sample by running the model with all other sample points only, and then 



331 

AIMS Environmental Science  Volume 4, Issue 2, 323-347. 

comparing the predicted and actual sample values for all samples. ArcGIS
® 

Geostatistical Analyst 

calculates five cross-validation summary statistics for each interpolation model: root mean squared 

error (RMS), average standard error (ASE) and RMS standardized error (RMS Std.) [35]. An ideal 

interpolation is one that has ASE and RMS values that are nearly identical, signifying good point to 

point variability, and a RMS Std. value of 1 [35,36]. These error statistics were used in conjunction 

with graphical plots of measured versus predicted values, interpolated kriging estimates and the 

original sample values to select the most accurate IK/ICK interpolation model, whose indicator 

threshold then is deemed the best estimate of the site-specific background level. 

3.5. Decision making framework for selecting the site-specific background level 

The justification and general approach to selection of the site-specific background level based 

on indicator kriging has already been described in Section 1.3. In this section, the main principles 

and all relevant parameters of the proposed decision making framework are explained: 

(a) The fundamental assumption for this decision making-framework is that contaminant levels for 

a large proportion of the study area data should exceed threshold values that are equal to or less 

than the site-specific background level. There are two important parameters of this 

decision-making framework: the minimum proportion of the study area (pmin) that must be 

exceeded by any threshold value that could be considered a background level, and the highest 

possible threshold value (vmax) that can be chosen as the site-specific background value.  

(b) To accurately calculate a maximum threshold value (vmax) from IK/ICK interpolations for 

estimating a reasonable site-specific background level, the minimum proportion of study area 

pmin exceeding vmax must be chosen first, keeping in mind that vmax and pmin are inversely related. 

In this study, pmin was chosen to be 0.8, based on previous soil contamination studies and 

geostatistical analyses of contamination in the study area. A high pmin of 0.8 ensures a lower vmax, 

which in turn would require a smaller area to be remediated, thus reducing remediation costs. 

Lower projected remediated costs increase the likelihood of cleanup projects being greenlighted. 

However, in the absence of any background information about a site, lower pmin values are 

necessary. Note that if soil samples and geostatistical analyses suggest that contamination 

affects more than 50 percent of the site, then this method cannot be used to establish a 

background value. 

(c) To determine the possible threshold values, the statistical distributions of the samples, and prior 

knowledge about regional background levels presented in guidelines for remediation planning 

from various states in the US were used (see Table 1). Table 1 includes both liberal and 

conservative guidelines to show the wide range of current contaminant concentration 

regulations across US States. The four potential choices ranged from well below the background 

level to well above the background level proposed for each contaminant. The selection of candidate 

thresholds was not based on quartiles or deciles, as is common practice in IK studies [19,20] 

Thresholds below the lowest known background level in the literature for the contaminant as well as 

values beyond the 10
th
 and 90

th
 percentiles of sample attribute values were not considered. Based on 

these criteria, the candidate threshold values chosen in this study for lead were 50, 100, 500 and 

1000 μg/g, and the candidate threshold values chosen for arsenic were 5, 10, 20 and 30 μg/g [9-17]. 

(d) For any given indicator threshold, the interpolation models were validated for different 

variogram model types (circular, spherical, and Gaussian) and parameters (sill/range/nugget), 
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and sizes and shapes of the search neighborhoods. Model cross-validation error statistics (mean, 

root mean square) were used to select the most accurate model for a given threshold. 

Cross-validation error statistics were generated by estimating the error for every sampled 

location by developing a geostatistical model without that sample, and then comparing the 

original (true) sample value with the model predicted value for that sampled location. 

(e) IK was performed with surface points for both lead and arsenic distributions. ICK for both 

contaminants was performed using surface samples as the primary variable and subsurface 

samples as a secondary variable. A total of 96 interpolations were generated. A few selected 

well-performing IK and ICK models were also tested with and without Boone Park samples for 

both lead and arsenic to test the impact of a confirmed cluster of highly contaminated sites on 

the site-specific background level. Table 2 presents summary cross-validation statistics for the 

best arsenic and lead IK/ICK models, based on which the site-specific background models were 

chosen for the two contaminants in Hickory Woods neighborhood. 

(f) The thresholds that did not yield enough (80% of the total area) high probability (>0.7) 

locations above the chosen background level threshold were eliminated from consideration. If 

multiple thresholds were found to meet the criterion, the highest threshold was selected as the 

site-specific background level to minimize potential remediation costs.  

(g) Finally, the documented regional background level is used to make a final assessment of the 

information yielded from the IK/ICK analyses. If the site-specific background level determined 

above is higher than the regional background level, then one of three conclusions can be drawn: 

(i) it is an indication that the site is widely contaminated, (ii) samples are preferentially located 

in higher contamination areas, or (iii) the background level percentage was set too 

conservatively, indicating that an analysis with a higher percentage is necessary.  

Table 2. Cross-validation summary statistics for Arsenic and Lead. 

Contaminant Lead Lead Arsenic Arsenic Arsenic 

Interpolation Type Indicator 

Kriging 

Indicator 

Co-Kriging 

Indicator 

Kriging 

Indicator 

Co-Kriging 

Indicator 

Co-Kriging 

Threshold (µg/g) 50 50 10 10 30 

Boone Park 

Playground 

No No  No  No  Yes 

Variogram Model Gaussian Gaussian Gaussian Gaussian Spherical 

Anisotropic 

Correction 

No No Yes Yes Yes 

Mean 0.01009 0.00997 −0.00569 −0.00424 0.00558 

RMS 0.39 0.39 0.48 0.46 0.26 

ASE 0.41 0.41 0.47 0.46 0.39 

M STD 0.02 0.02 −0.01 −0.01 0.01 

RMS STD 0.94 0.95 1.02 1.01 0.66 

Probability 0.84 0.84 0.39 0.44 0 

Error 0.41 0.41 0.46 0.45 0.39 
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3.6. Region of interest (ROI) 

Since GIS based IK/ICK modeling creates maps of the spatial model of contamination, with 

contextual site features overlaid on the map, it becomes possible to engage in further visual spatial 

analysis of the site. In a previous publication [18], the authors have shown the viability of delineating 

region(s) of interest (ROI) to make decisions about which areas to focus on for soil remediation. ROI 

delineation is also strongly recommended for making decisions about site-specific background level 

determination. Candidate ROIs are first determined by delineating individual areas within the site, 

where the probability of exceeding the chosen site-specific background level is higher than 0.7. In 

addition to this primary criterion, density of the sample points and sample values, associated 

estimation errors, parcel boundaries, past cleanup efforts, and remediation costs should all be 

considered. ROIs may also be ranked based on multicriteria analysis methods, if remediation 

resources must be prioritized across the site for incremental cleanup stages. 

4. Results and Discussion 

4.1. Point sample mapping 

Figures 2a–b show the lead and arsenic soil surface and subsurface samples mapped on the 

basemap of the study area. Seven classes proved to be optimal for distinguishing different ranges of 

concentrations for both lead and arsenic. The concentration intervals were chosen by comparison of 

soil background levels, contamination action levels, and NY state soil cleanup standards [9]. These 

interval values were also used for choosing the possible threshold concentrations for the IK and ICK 

interpolated surfaces. As is displayed in Figures 2a–b, there are known sample values that dictate an 

immediate need for remediation. Due to extremely high arsenic contamination levels in Boone Park, 

that area has already been remediated. Every lead and arsenic IK/ICK interpolation model for this 

study was tested with and without the Boone Park samples to show that a large cluster of high 

concentration samples substantially affects the site-specific background level. 

4.2. Indicator kriging and co-kriging interpolations 

4.2.1. Site-specific background level for lead 

In a previous study, we have shown that spatial correlation exists between surface and 

subsurface lead distributions, as well as between surface and subsurface arsenic distributions [18]. 

For both IK and ICK interpolation methods, the threshold values mentioned in section 3.5(c) were 

used. As expected, because fewer sample values were above the threshold value, the probability of 

exceeding the threshold decreased as threshold value increased. For lead indicator kriging, the 

summary probability measure is 0.84 for a threshold of 50 μg/g, and decreases significantly to 0.094 

for a threshold of 500 μg/g. This demonstrates how strongly estimates are influenced by the number 

of points used to predict a given probability measure. A low summary probability measure indicates 

that most of the study area is unlikely to exceed 500 μg/g and a lower threshold value needs to be 

explored to find the site-specific background value representative of the site at uncontaminated 

locations.  
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Figure 2a. Surface lead sample points are shown with colored dots, and subsurface 

lead sample points with colored stars. Areas previously remediated are labeled. 
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Figure 2b. Surface arsenic sample points are shown with colored dots, and 

subsurface arsenic sample points with colored stars. Areas previously remediated 

are labeled. 
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Interpolation model parameters and summary error statistics were quite similar for IK and ICK 

interpolations with similar threshold values, which suggests that subsurface samples were not able to 

improve accuracy. A Gaussian variogram model, with samples from Boone Park excluded, no 

anisotropic correction, and a threshold of 50 µg/g provided the most accurate estimates for both IK and 

ICK kriging models. Figures 3a–b shows screenshots (from ArcGIS
® 

Geostatistical Analyst) of the lead 

variogram models for the chosen IK and ICK models, respectively. Since NY State‘s rural background 

level for lead is also 50 µg/g, that provided secondary corroboration for this choice of site-specific 

background level—and for its geostatistical determination from site samples. The ICK model exhibited 

marginally better point-to-point variability, which helps accurately predict even small changes between 

sample locations. Thus, the ICK model was selected to delineate the ROIs for lead remediation. 

 

Figure 3a. Gaussian variogram for Indicator Kriging of Lead samples, without 

anisotropic correction, a threshold of 50 μg/g and without Boone Park samples. 
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Figure 3b. Gaussian variogram for Indicator Co-Kriging of Lead samples, without 

anisotropic correction, a threshold of 50 μg/g and without Boone Park samples. 

Figure 4a maps the interpolated surface resulting from ICK modeling of lead contamination. A 

darker shade indicates a higher probability of exceeding the chosen threshold on the map. By 

comparing the distribution of high probabilities and high sample values, four ROIs were delineated 

for lead remediation planning where the probability of exceeding the site-specific background level 

is approximately higher than 0.7. These are labeled L1–L4 in Figure 4a. ROIs serve as additional 

tools for visual comparison of specific regions across different interpolated surfaces resulting from 

various methods for each contaminant. In theory, ROIs can be generated and compared for several 

thresholds to assess risks at different contamination levels. This may help form a multistep 

remediation plan beginning with locations that are characterized by highest risks (e.g., high 

probability of exceeding much higher than background levels or even action levels). This kind of 

spatially explicit remediation planning is not possible without using indicator kriging mapping and 

ROI delineation, the traditional method is to either remediate the site wholly or often partially based on 

arbitrary administrative and parcel boundaries. The probability of exceeding the threshold of 50 µg/g 

across all ROIs is above 0.5 and ranges from 0.59 to 0.98. For ROIs L3 and L4, the probabilities range 

from 0.79–0.98. Although 50 µg/g is typical of rural areas (see Table 1), the only regions predicted to 

contain concentrations above this level are located only within ROIs that contained points which 

exceed the 400 µg/g action level set by the EPA. The inclusion of Boone Park samples caused a 

minor change in some variogram parameters to maintain the lowest cross-validation errors. However, 

the base variogram type of the model (Gaussian) and the highest background level meeting the 

background level percentage remained unchanged. 
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Figure 4a. Indicator Co-kriging results from lead surface and subsurface sample 

analysis. The model used a Gaussian variogram, threshold of 10 µg/g, and no 

anisotropic correction. As the probability of exceeding the threshold value increases, 

the surface color darkens. Labeled outlined represent ROIs. 
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Figure 4b. Indicator Co-kriging results from arsenic surface and subsurface sample 

analysis. The model used a Gaussian variogram, threshold of 10 µg/g, and 

anisotropic correction. As the probability of exceeding the threshold value increases, 

the surface color darkens. Labeled outlines represent regions of interest (ROIs). 

4.2.2. Site-specific background level for arsenic 

Both IK and ICK were also tested for arsenic. Threshold values of 5, 10, 20, and 30 μg/g were 

chosen based on reasons discussed above. As with the lead distribution, similarly parameterized IK 

and ICK models for arsenic yielded similar results: the summary probability decreased to 

approximately zero as the threshold value increased to 30 μg/g. This suggests that the background 

value should be considerably lower. The most accurate IK and ICK models were identical: no 

samples from Boone Park, a threshold of 10 μg/g, and a Gaussian variogram with anisotropic 
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correction to account for errors associated with unequal sampling (Figures 5a–b). Again, the ICK 

model had marginally better point-to-point variability and the least overall error, as indicated by the 

RMS-Std value of 1.023 (compared to 1.010 for the most accurate IK model; see Table 2). The 

indicator threshold of 10 µg/g used for this ICK model became the estimate of the site-specific 

background value for arsenic. Figure 4b maps the chosen ICK interpolation surface for arsenic. The 

color of the interpolation surface darkens as the probability of exceeding the threshold increases. 

After analysis, six ROIs (A1–A6) were demarcated for identifying areas severely contaminated by 

arsenic. The probabilities within the six identified ROIs range from 0.58 to 0.96.   

 

Figure 5a. Gaussian variogram for Indicator Kriging of Arsenic samples, with 

anisotropic correction, a threshold of 10 μg/g and without Boone Park samples. 

 

Figure 5b. Gaussian variogram for Indicator Co-Kriging of Arsenic samples, with 

anisotropic correction, a threshold of 10 μg/g and without Boone Park samples. 
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This dataset exhibited characteristics of point source pollution. As can be seen in Figure 6, 

when the surface and subsurface Boone Park samples are included in ROI A3, the model that 

produces the most accurate interpolation used a threshold of 30 μg/g and a Spherical variogram 

model. When the interpolation is examined, the only locations with high probabilities of exceeding 

the threshold value are centered on Boone Park (ROI A3) and its immediate environs (ROIs A2 and 

A4). These results support previous conclusions that Boone Park and its immediate environs form a 

separate statistical distribution, due to localized contamination effects. This also serves as validation 

of this methodology of using IK/ICK and demarcating ROIs, because Boone Park has indeed been 

determined to be a clear case of arsenic contamination and has already been remediated. 

 

Figure 6. Indicator Kriging Map for Arsenic, constructed using a spherical 

variogram, threshold of 30 µg/g, with anisotropic correction. As the probability of 

exceeding the threshold value increases, the color darkens. Labeled outlines 

represent areas of concern. 
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4.2.3. Mapping using parcel boundaries to communicate with community members 

An aspect that is often overlooked in environmental studies is the essential need to 

communicate results and open discussions with community members and neighborhood residents. 

Because of the way in which the geostatistical results are often displayed and communicated, 

residents and community members don‘t use the statistical analysis to its full potential. To address 

this limitation, complementary maps were deemed necessary to illustrate the benefits of establishing 

the site-specific background level and clarify the impact of demarcating ROIs. Parcels were chosen 

as mapping units to show how contextualizing sample concentrations with the respective site-specific 

background level helps in a more refined understanding of contamination levels and potential 

cleanup areas. Residents are concerned about direct impact to their property and neighborhood in 

which they live. By displaying the maps in this familiar way, the residents can become active 

partners and voices in the remediation planning process.   

Figures 7a–b show the parcel based maps developed for communicating about lead and arsenic 

contamination, respectively. Neither the ICK predicted probabilities, nor original sample points, are 

shown on these maps. Each map is specific to the particular contaminant and does not factor in any 

information about contamination due to the other contaminant. The map symbology strategy is explained 

as follows. Surface and subsurface sample concentrations were classified by the following intervals: 

background level, twice background level, and four times background level. The parcel color corresponds 

to the class to which the surface sample point found on that parcel would be allocated to. Similarly, the 

single/double hash line symbols indicate the classification of the subsurface sample point found on the 

parcel. If a parcel contained multiple surface and subsurface sample values, the highest surface or 

subsurface value was used to determine the corresponding surface or subsurface class to be used for 

choosing the parcel symbology. ROIs from the corresponding maps for lead (Figure 4a) and arsenic 

(Figure 4b) were also overlaid in Figures 7a–b to compare how ROIs from ICK analysis correspond to 

the distribution of sample concentrations which far exceed the site-specific background level. It is 

apparent that the parcels within ROIs determined from geostatistical analysis are indeed characterized by 

high levels of contamination, well above the respective background levels.  

5. Conclusions  

In this paper, the goal was to present and show the successful implementation of a new 

geostatistics based decision-making framework for determining site-specific background levels that 

can guide soil remediation of contaminated sites. The existing practice of finding a nearby reference 

area to establish site-specific background levels is often difficult to implement due to lack of an 

acceptable reference site nearby and the substantial extra costs of collecting and processing samples 

from the reference site. It was shown in this paper that the new geostatistical decision-making 

framework based on indicator kriging algorithms, and supplemented with GIS mapping, local and 

regional background levels supporting, and other social, political and economic contextual 

information about the site is a viable and cheaper alternative method of determining a site-specific 

background level. A pre-requisite for the use of this method is that the study area for sampling 

contains at least 50% of uncontaminated soils. Thus, small site remediation is not possible with this 

method, since there will not be enough uncontaminated area available to determine site-specific 

background levels.  
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Figure 7a. Map using parcel boundaries to show lead contamination levels in relation 

to the site-specific background level of 50 µg/g. Both the highest surface and highest 

subsurface sample values applicable to a parcel are shown simultaneously. ROIs 

developed from the map of the chosen lead indicator co-kriging interpolation are 

also overlaid for reference.  
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Figure 7b. Map using parcel boundaries to show arsenic contamination levels in 

relation to the site-specific background level of 10 µg/g. Both the highest surface and 

highest subsurface sample values applicable to a parcel are shown simultaneously. 

ROIs developed from the map of the chosen arsenic indicator co-kriging 

interpolation are also overlaid for reference. 
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Based on the developed framework, the interpolation techniques of IK and ICK were applied to 

datasets collected for the Hickory Woods neighborhood to identify site-specific concentrations based 

on samples from the contaminated site itself. ICK with subsurface samples was determined to be 

marginally better than IK with only surface samples. The ICK models indicate the site-specific 

background levels to be 50 µg/g for lead and 10 µg/g for arsenic. These concentrations coincide with 

guidelines for lead and arsenic (see Table 1). The lead concentration of 50 µg/g is significantly lower 

than the EPA action level of 400 µg/g, but consistent with rural background levels reported in New 

York State (20–50 µg/g). ROIs identified with high probabilities of exceeding the background level 

also encompass known areas of high concentration values well above the allowable limit. The results 

of this analysis also confirmed that Boone Park is characterized by localized contamination behavior, 

uncharacteristic of the rest of the study area. Remediation has already occurred in Boone Park; 

however, areas adjacent to the park have not been remediated and need to be.  
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