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Abstract: Malaria represents an infectious disease keenly tied to environmental conditions, as 

mosquitoes represent the disease vector. Many studies are beginning to document that changes in 

environmental conditions, such as deforestation, can greatly alter the density and activity of mosquito 

populations and therefore malaria rates. While numerous epidemiological studies examine the links 

between forest loss and mosquito proliferation in distinct locales, comparative assessments across 

multiple sites are lacking. We attempt to address this gap by imparting a cross-national analysis of 

less-developed, non-desert, malaria endemic nations. Using a structural equation model of 67 nations, 

we find positive associations between deforestation rates and malaria prevalence across nations. Our 

results also suggest that rural population growth and specialization in agriculture are two key 

influences on forest loss in developing nations. Thus, anthropogenic drivers of environmental 

degradation are important to consider in explaining cross-national variation in malaria rates.  
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1. Introduction 

The World Health Organization boasts that over the last 15 years, malaria incidence has decreased 

by 37% and deaths from malaria declined by 60% globally [1]. While this is undoubtedly marked 

progress, it is important to acknowledge that headway is not uniform across regions or countries, with 

some nations, particularly in Sub-Saharan Africa and some areas of Southeast Asia, lagging behind in 
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malaria improvements [1]. Furthermore, malaria represents an infectious disease keenly tied to 

environmental conditions with mosquitoes as the disease vector [2,3]; thus, changes in environmental 

conditions can greatly alter the density and activity of mosquito populations and therefore malaria 

rates (e.g., [2]). As human alterations to the natural environment are only increasing in scale and 

intensity over time [3,4], we cannot assume that progress in addressing this disease will continue with 

manifest success. Instead, research needs to continue to investigate how human activities may be 

altering ecosystem conditions in ways that enhance mosquito habitats and transmission of malaria.   

Although a number of forms of environmental degradation or ecosystem alteration could affect 

mosquito populations, deforestation is an increasingly studied factor in several locales across Asia, 

Sub-Saharan Africa, and, most prominently, Latin America (e.g., [5-8]). While a number of case 

studies identify links between forest loss and malaria or mosquito prevalence [5-9], whether 

relationship exists across areas or regions remains insufficiently examined. We attempt to contribute to 

this line of inquiry by imparting a cross-national analysis of less-developed, non-desert nations to 

examine the potential association deforestation and malaria prevalence across countries. 

Prior examinations of deforestation and malaria tend to focus on the epidemiological aspects of 

ecosystem change and mosquito habitat proliferation [5,6,8-10]. While these studies provide key 

evidence on the direct mechanisms that cause deforestation to lead to increased levels of larvae, 

parasite concentrations, mosquito populations, or actual malaria rates [5,6,8-10], they fail also to 

consider fully the wider socio-economic context in which forest loss occurs. Our study contributes to 

this endeavor by simultaneously investigating the causes and disease consequences of deforestation in 

developing nations. By illuminating some of the key anthropogenic forces behind deforestation, our 

study contributes to broader understanding on how environmental degradation affects global trends in 

infectious disease. 

2. Background 

2.1. Malaria: characteristics and global trends 

In 2015, around 450,000 people died from malaria worldwide [1]. The burden of this disease 

spreads across around 90 countries, with 88% of malaria cases concentrated in the Sub-Saharan 

African region [1,11]. Over the last several decades, partially due to major initiatives and programs, 

such as the WHO‘s ―Roll Back Malaria, Roll in Development‖, there have been major reductions in 

malaria deaths and incidence [1,11]. However, this disease is still a leading threat to health and 

premature death in several countries [1]. Poverty represents one of the greatest risks for malaria 

cross-nationally [12]; undoubtedly, socioeconomic development fundamentally relates to the global 

distribution of morbidity and mortality for many health issues (e.g., [13-18]). 

Caused by a parasite in the genus Plasmodium, four of the species, P. falciparum, P. vivax, P. 

malariae and P. ovale, lead to malaria in humans [19]. These parasites rely on two hosts throughout 

their lifecycle: a mosquito and a human (or another animal) [19]. Only around 30–40 of the 400 species 

of Anopheles mosquito can act as vectors for the parasite, and only the bite of a female Anopheles 

mosquito spreads the parasite from one person to another [19,20]. The different types of malaria cause 

different variations of the disease in humans, with some forms being milder than other strains [19,20]. 

P. falciparum is the most prevalent species in Africa and causes the most deaths worldwide [1,11]. 
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Early diagnosis of malaria is crucial and essential for management of the disease [1,13]. The 

WHO recognizes microscopy and rapid diagnostic tests as the current most common and effective 

ways of diagnosing the disease [1,11]. However, the quality of this method can be inadequate due to 

lack of sensitivity and insufficient expertise of personnel required to analyze results properly [1,11,21]. 

Especially in poor nations and rural areas, access to quality healthcare is limited [13,12,21]. Currently, 

there are many drugs available to combat the infectious parasite, but some are not very effective [1,22,23]. 

The most effective and popular drug, artemisinin combination treatments (ACTs), contain an active 

ingredient that is a derivative of artemisinin from the sweet wormwood tree [11,23]. Other drug 

treatments, including quinine and chloroquine were also popular in past decades; however, the parasite 

has developed resistance to these drug treatments [1,23]. In addition, recent studies already document 

increased tolerance to ACTs in many regions, leading to concerns over the potentials of widespread 

resistance [22]. 

As previously emphasized, patterns in malaria prevalence and international development are 

closely linked, as rates are highest in the poorest nations and, conversely, eradication of malaria took 

place decades ago in affluent nations [13,24,12,23]. Many studies in the areas of global health and 

development emphasize that impoverished people lack knowledge of disease prevention techniques, 

have little access to modern ‗Western‘ medicine, and face limited access to appropriate 

preventative strategies, such as screened windows or insecticide-treated bed nets [13,24,21]. In 

addition, many poor households lack adequate access to water or sanitation, increasing potential 

mosquito habitats (e.g., [12,21,24-26]). 

Education in particular signifies a key determinant of malaria incidence. For example, Dike et al. [27] 

find that formal education teaches basic skills that remove cultural ideologies leading to misconceptions 

that affect proper malaria management. In particular, people of higher education were more likely to 

identify mosquitoes as the malaria disease vector and to use insecticide-treated bed nets [27]. Numerous 

other studies of malaria report similar findings (e.g., [21,26,28]), suggesting that education also enhances 

people‘s awareness of Western medicine techniques and propensity to seek proper treatment. The potential 

importance of education in predicting cross-national malaria rates fits with other comparative global health 

assessments, including examinations of HIV, life expectancy, and infant and child mortality, which find 

that participation in schooling greatly improves health outcomes across nations (e.g., [14-18]).  

While social and economic factors are important in shaping cross-national disease trends, 

environmental factors are also especially relevant with mosquitoes as the vector [2]. Thus, prevalence 

patterns are not only shaped by education, healthcare access, and poverty, but also the degree to which 

environmental conditions exist or are created that can sustain or flourish mosquito habitats [2,3]. 

Location in tropical or sub-tropical zones alone is argued to account for a significant amount of 

vulnerability to malaria, as the parasite quickly becomes weak and eliminated below 16 degrees 

Celsius [29]. Additionally, the role of other environmental factors, such as deforestation, represents an 

emerging area of inquiry (e.g., [7,8]). As deforestation results from human activities, this represents a 

potential underlying anthropogenic cause of the malaria burden in many developing countries. 

2.2. Links between forest loss and malaria  

Today over 3 billion people worldwide remain at risk of acquiring malaria [13], and many of these 

vulnerable people tend to live in areas where environmental factors facilitate Plasmodium growth and 

prevalence. Mosquitoes fundamentally depend upon stagnant water and warm temperatures for their 
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breeding and life cycle, explaining why malaria largely remains a tropical disease. Deforestation represents 

an additional environmental factor that can influence malaria [2,6,8,9,30,31]. The goal of this section is to 

draw on case study and epidemiological evidence from distinct studies to establish a rationale for 

examining the relationship between deforestation and malaria prevalence at the cross-national level. 

Deforestation can impact malaria prevalence by several mechanisms, including increasing the 

amount of sunlight and standing water in some areas [2,6,9,32]. Although it is important to emphasize 

that different sub-types of Anopheles mosquitoes prefer shadier versus more sunlit habitats, or may be 

more or less sensitive to land use changes in general, typically, increasing standing water and sunlight 

is favorable for most species [2,6,9,30,32]. Deforestation potentially contributes to these processes in 

multiple ways. For example, primary growth forests tend to be heavily shaded with thick debris on the 

ground, which absorbs water and often leaves any standing water acidic [32]. After clearing non-steep 

terrain, the land usually become flatter and more likely to pool water, which is typically less acidic and 

more conducive to Anopheles larvae development [32]. Not only does ponding more readily increase 

the availability of breeding grounds for the malaria vector, but increases in sunlight resulting from 

deforestation also promotes more ideal breeding grounds by warming temperatures [2,6-9]. When 

agriculture replaces forested areas, the plants can still provide the bushy cover needed for some species 

of Anopheles mosquito or stages of larvae development. Increases in mosquito reproduction 

potentially impact rates of malaria transmission to nearby populations [2,6,9]. 

Another possible link between forest loss and malaria concerns biodiversity (e.g., [33,34]). 

Disease ecologists find that higher levels of biodiversity generally take on a protective role for the 

human population, in a so-called ―dilution effect.‖ If there is a wider variety of species available, the 

proportion that are able to transmit the vector are reduced and thus transmission of diseases occurs less 

frequently [33,34]. One of the primary effects of deforestation is a loss in biodiversity, as a single, 

typically nonnative, crop often replaces a huge variety of vegetation and animal life [33]. Establishing 

a connection between forest loss and malaria is not straightforward; there are many confounding 

factors or factors specific to certain regions and locales. Thus, comparative assessments that examine 

trends in forest loss and malaria across regions can help to establish whether we can generalize the 

findings from epidemiological case studies to other areas endemic to the Plasmodium parasite. 

Several studies conducted in sites in Asia indeed establish a link between malaria prevalence and 

forest loss. For example, studies conducted in China and Myanmar determine that the pupation rate of 

Anopheles minimus, a malaria vector, was highest in samples collected from deforested areas ([7,8]). 

Similarly, a study carried out over the course of a year in Vietnam found that there was a statistically 

significant relationship between percentage of forest cover loss and prevalence of multiple strains of 

malaria [10]. In Sub-Saharan Africa, one study set in the highlands of Kenya in a case-control format 

found that living on land without trees led to increased risk for malaria contraction [5].  

South America, particularly the Amazon region, represents perhaps the most popular site to 

examine the links between environmental degradation and malaria. For example, studies conducted in 

the Peruvian Amazon, which has experienced deforestation due to small-scale farming, discovered that 

Anopheles darlingi had a statistically significant preference for living and breeding in areas that had 

experienced a loss of forest cover [6,9]. The observed connection between malaria rates and 

deforestation persisted even when considering changes in population density [9]. A study that sampled 

from over 800 water sources throughout the Amazon found that Anopheles darlingi sites were more 

likely to be located in areas that had experienced alterations in land cover, such as reductions in forest 

and the establishment of new croplands [6].  
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These studies demonstrate that multiple researchers across different regions and variety of 

Anopheles mosquito species identify a link between deforestation and malaria rates or mosquito 

populations. In fact, Yasuoka and Levins [35] conduct a content analysis of case studies centered on 

changes in ecology and malaria. They find around 60 examples from a variety of areas, including 

Thailand, Nepal, India, China, Guyana, Uganda, and others, that demonstrate a link between 

deforestation and land-use changes and growth in mosquito populations or malaria incidence [35].  

It is important to emphasize that deforestation is not a natural phenomenon, but rather results 

predominantly from human activities [4]. Expanding agricultural areas represents an underlying cause of 

deforestation in the majority of these studies (e.g., [6,9,30]). Population growth within developing nations 

can lead to increased pressure for food production, but also many developing nations are encouraged to 

expand agricultural exports as a means for development (e.g., [36]). Aside from food demands, rural 

population pressures overall are likely to spur forest loss [4]. Many developing nations where malaria is 

most prevalent continue to have high rates of fertility and rural population growth [14]. Research also 

identifies access to timber for building or for use as fuelwood as key causes of deforestation in developing 

nations (e.g., [37,38]). Thus, rural population dynamics and pressures to increase food production are 

likely to be key anthropogenic causes of deforestation. In our analysis, we engage an innovative 

statistical method, structural equation modeling, in order to examine not only the potential role of 

deforestation in explaining cross-national variation in malaria prevalence, but also to account for the 

underlying causes of forest loss. 

3. Materials and Methods 

3.1. Sample 

The sample is restricted to malaria-endemic nations. Malaria-endemic nations are nations that have 

a constant and measurable incidence of malaria and are located in natural areas of transmission [1]. 

Countries that register malaria cases resulting from imported cases are not included in the analyses. 

Malaria-endemic nations overwhelmingly have GDP per capita estimates in the lower three quartiles of 

the income classification of countries [1], thus largely representing a sample of less-developed nations. 

We exclude desert nations as deforestation is only relevant and measurable in countries with significant 

forest stock. Our sample includes 67 non-desert, less-developed nations for which data are reported for 

the key variables in the analysis, including the deforestation rate and malaria prevalence. For a complete 

list of the countries included in the analyses, see Table 1. 

3.2. Analytic strategy 

To examine the association between deforestation and malaria prevalence, as well as the underlying 

predictors of deforestation, we utilize structural equation models (SEMs). SEM is particularly useful in 

this context based on its efficient ability to model direct and indirect effects (e.g., [39]). While most 

comparative analyses utilize direct effects approaches, this strategy prevents modeling the mediating 

and interrelationships outlined above, such as the potential pathway involving rural population growth, 

deforestation, and malaria. Structural equation modeling also allows us to utilize latent or composite 

constructs of multi-dimensional concepts, such as health resources, and circumvent issues of 

multicollinearity, which often occur with cross-national data [40]. 
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Table 1. Countries included in the Analyses (N = 67). 

Angola SSA Gambia, The SSA Pakistan AS 

Bangladesh AS Ghana SSA Papua New Guinea PAC 

Belize LA Guatemala LA Peru LA 

Benin SSA Guinea SSA Philippines AS 

Bhutan AS Guinea-Bissau SSA Rwanda SSA 

Bolivia LA Guyana LA Sao Tome & Principe SSA 

Burkina Faso SSA Haiti LA Senegal SSA 

Burundi SSA Honduras LA Sierra Leone SSA 

Cabo Verde SSA India AS Solomon Islands PAC 

Cambodia AS Indonesia AS South Africa SSA 

Cameroon SSA Kenya SSA Sudan SSA 

Central African Rep. SSA Lao PDR AS Swaziland SSA 

Chad SSA Liberia SSA Tajikistan AS 

China AS Madagascar SSA Tanzania SSA 

Colombia LA Malawi SSA Timor-Leste AS 

Comoros SSA Mali SSA Togo SSA 

Congo, Dem. Rep. SSA Mauritania SSA Uganda SSA 

Congo, Rep. SSA Mozambique SSA Vanuatu PAC 

Cote d'Ivoire SSA Namibia SSA Vietnam AS 

Dominican Rep. LA Nepal AS Zambia SSA 

Ecuador LA Nicaragua LA Zimbabwe SSA 

El Salvador LA Niger SSA   

Ethiopia SSA Nigeria SSA   

Notes: AS—Asia, LA—Latin America, PAC—Pacific Islands, SSA—Sub-Saharan Africa  

Another key aspect of SEMs involves the estimation of fit statistics that enable the researcher to 

judge the fit of the model as a whole to the data provided and compare equally plausible models [39]. 

An additional feature of SEM is its utilization of maximum likelihood (ML) missing value routine that 

calculates pathway coefficients based on all available data points; when cases are missing information 

on select variables, those cases are dropped from those pathway estimations, but retained for others 

when the data are available [40]. Thus, SEM allows us to maximize our sample of nations by retaining 

cases that might be missing data on one or two control variables included in the models [40].   

In SEM, we simultaneously estimate a system of linear equations that correspond to our hypotheses 

about the correlations in our observed data [39]. For empirical identification, it is important that the 

models estimate normally [39]. We utilize SEM software in AMOS and Mplus; in both statistical 

packages, the path diagram displayed in Figures 1 and 2 all estimate normally. The assumptions of SEM 

include multivariate normality, completely random missing data, sufficiently large sample, and the 

correct model specification [40]. To protect against the negative consequences of multivariate 

non-normality we also ran the analyses using the robust ML estimator (MLR) implemented in Mplus [41]. 

These estimates with the MLR estimator are robust to non-normality [41]. The results were consistent with 

those achieved with the ML procedure. Although data should be completely missing at random, the use of 

the maximum likelihood (ML) estimator also provides consistent estimates under the assumption of 

missing at random, which is an easier condition to satisfy [42]. Additionally, we fail to see any pattern to 
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the missing data to suggest that the data are not missing at random. Third, the positive asymptotic 

properties of the ML estimation procedure (consistency and efficiency) are known when the sample size is 

relatively large. As our sample is relatively small (N = 67), we re-ran our analyses with bootstrap standard 

errors as well as a robust ML (MLR) procedure and obtained estimates and model fit statistics for 

Figures 1 & 2 that are consistent with the ML estimator. Model specification errors occur with the 

omission of relevant variables. If this occurs, the errors and the exogenous variables in the model correlate, 

leading to biased estimates [40]. To avoid this, we draw on prior research to select a wide range of 

variables. Our review of the literature engages perspectives on development, health, and the environment 

into our structural model. We test all theoretically informed paths as shown in Figures 1 and 2 below. 

3.3. Variables included in the analysis 

The key dependent variable in the analysis is the malaria prevalence rate. We created the malaria 

prevalence variable using data on the estimated number of malaria cases from the World Health 

Organization [1] and total population level from the World Bank [43] for the year 2013. We weighted 

the number of malaria cases for each nation by its total population, and then multiplied by 100,000 to 

form the prevalence rate. 

As the malaria parasite requires particular climate conditions, latitude represents an important 

exogenous, environmental condition to consider. We transformed the latitude scores into absolute 

values to capture distance from the equator [43].  

We examine deforestation as a prominent form of environmental degradation that is likely to be 

directly associated with increasing malaria prevalence. The natural deforestation rate represents an annual 

percent change score, calculated using FAO estimates of natural forest area, from 2012 to 2013 [43]. These 

data come from the Global Forest Resource Assessment (GFRA) and represent point estimates for natural 

forest stock measured in thousand square hectares for 2012 and 2013. The natural forest area measure 

includes land area that is more than 0.5 hectares which contains trees higher than 5 meters and a 

canopy cover of more than 10%. We multiply the change score by -1 to capture rate of forest loss. 

We consider both agriculture and rural population growth as key drivers of forest loss. We therefore 

include a measure of rural population growth, which accounts for the annual percent change in the rural 

population for the year 2012 [43]. We measure specialization in agriculture using data on the percent of the 

economy that comes from agricultural production, or agriculture as a percent of GDP [43]. 

To assess the influence of economic development, we include GDP per capita. This represents 

the total annual output of a country‘s economy divided by its population, measured in current 

international dollars for the year 2012 [43]. More specifically, GDP per capita is the total market value 

of all final goods and services produced in a country in a given year, equal to total consumer, 

investment, and government spending, divided by the mid-year population. It is converted into current 

international dollars using Purchasing Power Parity (PPP) rates, providing a standard measure 

allowing for comparisons of real price levels between countries [43]. 

Public health conditions are important non-economic factors that are likely to influence malaria 

rates in less-developed nations. We therefore measure public health conditions using a latent construct 

comprised of the following indicators: number of physicians, the fertility rate, access to clean water, 

and secondary schooling for the year 2012. Physicians, secondary schooling, access to clean water and 

the fertility rate represent some of the most prominent predictors of malaria rates, as well as other 

health outcomes in developing nations (e.g., [14-16]). The variable medical doctors measures the 
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number of physicians in a nation per 100,000 people. The fertility rate is an estimate of the number of 

children an average woman would have if current age-specific fertility rates remained constant during 

her reproductive years. Percent access to clean water refers to the percentage of the population using an 

improved drinking water source. Improved drinking water sources include piped water located inside 

the user‘s dwelling, plot, or yard, and other improved drinking water sources, such as public taps or 

standpipes, tube wells or boreholes, protected dug wells, protected springs, and rainwater collection. 

Secondary school enrollment represents a gross enrollment ratio, which calculates the ratio of total 

enrollment, regardless of age, to the population of the age group that officially corresponds to 

secondary level education. We acquired all of these measures from the World Bank [43]. 

Additionally, we include a regional indicator for Sub-Saharan Africa, as many Sub-Saharan 

African nations have an especially high level of malaria and the highest concentrations of P. 

falciparum, which is one of the severest strains of the parasite. We measure this as a dummy variable, 

where countries coded with a ‗1‘ indicate location in Sub-Saharan Africa and those with a ‗0‘ indicate 

that a nation is located in a different region of the world [43]. 

4. Results 

Table 2 displays the bivariate correlation matrix and univariate statistics for all of the variables 

used in the analyses. The magnitude of the bivariate correlation coefficients in Table 2 demonstrates 

that many of the predictor variables in the sample are highly correlated, such as the indicators for 

public health conditions variables. This further warrants the use of the SEM analytical technique given 

its superior handling of inter-correlated independent variables through the creation of latent constructs 

and direct and indirect pathways that circumvents the tendency to bias coefficient estimates [39]. 

Table 2. Correlation matrix and univariate statistics 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 

1. Malaria Prevalence  1.00           

2. Latitude  −0.365 1.00          

3. GDP per capita  −0.591 0.175 1.00         

4. Sub-Saharan Africa  0.652 −0.274 −0.563 1.00        

5. Secondary Schooling −0.582 0.157 0.777 −0.650 1.00       

6. Medical Doctors  −0.531 0.367 0.698 −0.658 0.664 1.00      

7. Clean Water −0.409 0.195 0.592 −0.621 0.656 0.457 1.00     

8. Fertility Rate 0.754 −0.304 −0.757 0.730 −0.793 −0.650 −0.658 1.00    

9. Agriculture % GDP 0.608 −0.220 −0.753 0.445 −0.672 −0.506 −0.606 0.605 1.00   

10. Rural Pop Growth 0.465 −0.196 −0.726 0.533 −0.633 −0.563 −0.487 0.738 0.530 1.00  

11. Deforest-ation Rate 0.391 −0.158 0.490 0.174 −0.267 −0.140 −0.177 0.354 0.346 0.316 1.00 

Mean 12433 13.49 4148.2 0.582 55.86 0.401 76.38 4.08 23.94 1.23 0.526 

Standard Deviation 13996 8.40 3243.8 0.497 22.26 0.533 15.04 1.41 12.92 1.28 1.64 

A preliminary step in the empirical assessment of our complete SEM was to validate empirically 

whether public health conditions represent latent factors that can be appropriately estimated secondary 

school enrollments, trained medical doctors, access to clean water, and the average fertility rate. To test 

this, we initially construct a confirmatory factor analysis (CFA) of the measures and analyze the 
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overall and component measures of fit. By empirical standards, we find evidence at both the 

component and overall model levels to support our predictions that these indicators can be used to 

measure public health conditions. This fits with our substantive interpretations of prior health and 

development research discussed earlier.  

Figures 1 and 2 present the SEM results of malaria prevalence. We test all theoretically and 

substantively informed paths in the path diagram displayed in Figure 1, and then eliminate all 

non-significant relationships to present the most parsimonious model in Figure 2. Before turning to a 

discussion of results, we note the model fit statistics indicate an excellent fit of both models to the data. 

Specifically, for Figure 1, in accordance with empirical standards the chi-square test statistic is 

non-significant (χ
2
 = 33.15 with df = 31); the values of the Incremental Fit Index (0.980), 

Tucker-Lewis Index (0.965), and the Confirmatory Fit Index (0.979) all exceed 0.90; and the root 

mean squared error of approximation (RMSEA) value (0.046) is below the suggested threshold of .10 

for smaller samples [39]. 

 

Notes: ***p < 0.001, **p < 0.01, *p < 0.05 (two-tailed tests); standardized coefficients reported. 

Figure 1. SEM predicting malaria prevalence, saturated Model. 

The results from the trimmed model (where non-significant paths are eliminated) presented in 

Figure 2 are also well within range of the empirical standards for SEMs. The chi-square test statistic is 

non-significant (χ
2
 = 45.08 with df = 37); the values of the Incremental Fit Index (0.968), 

Tucker-Lewis Index (0.966), and the Confirmatory Fit Index (0.981) all exceed 0.90; and the root 

mean squared error of approximation (RMSEA) value (0.048) is below the appropriate threshold.  

It is common when using SEMs to eliminate non-significant paths for the sake of parsimony. 

When looking across the saturated model in Figure 1 and the trimmed model in Figure 2, there are a 

few substantial differences in the path coefficients. The only changes are a small reduction in the 
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magnitudes for effects on malaria prevalence and deforestation in the more saturated model. As the 

substantive findings are essentially consistent across the two models, and as the fit statistics are 

acceptable in the second model as well as the first, we prefer to focus our discussion of the results on 

the findings presented in Figure 2. In the path diagrams, standardized regression coefficients are 

reported and flagged for statistical significance. We also include Table 3, which displays the 

standardized regression coefficients in addition to the unstandardized regression coefficients and 

standard errors for the model in Figure 2. However, we keep our interpretation of the results focused on 

Figure 2, as the path diagram facilitates accessible interpretations.  

 
Notes: ***p <0.001, **p < 0.01, *p < 0.05 (two-tailed tests); standardized coefficients reported.  

Figure 2. SEM predicting malaria prevalence, trimmed model. 

The results presented in Figure 2 suggest that deforestation is associated with increased 

prevalence of malaria in developing nations, which is consistent with our predictions (0.24). In 

addition, we find that economic specialization in agriculture (0.27) and rural population growth (0.28) 

are positively associated with the deforestation rate. Thus, not only do we find empirical evidence for 

links between deforestation and malaria across nations, but also that population growth in rural areas 

and increased emphasis on agriculture contribute to deforestation.  

In addition, we find that public health conditions have a significant, negative association with 

malaria rates in less-developed nations. In particular, secondary school enrollments, medical doctors, 

access to clean water, and the average fertility rate together represent a set of public health conditions 

that are robustly associated with declines in malaria prevalence (−0.66). In addition to public health 

conditions, latitude also explains cross-national variation in malaria prevalence, where nations located 

further from the equator tend to have lower rates of prevalence (−0.18).  

Our results also suggest that GDP per capita or level of economic development and location in 

Sub-Saharan Africa are important underlying factors contributing to variations in the malaria burden 
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across developing nations in indirect ways. It is important to emphasize that the results across Figures 1 

and 2 demonstrate that each of these variables has an indirect association to malaria prevalence. 

Specifically, more economically developed nations tend to have improved public health conditions 

(0.37), which then reduce the malaria burden. In addition, more affluent nations tend to have 

significantly lower levels of rural population growth (−0.51) and increased economic specialization in 

agricultural production (0.70), which in turn are associated with deforestation rates.  

Table 3. Regression results for SEM depicted in Figure 2 predicting malaria prevalence.  

 

 

Standardized 

Regression 

Coefficient 

Unstandardized 

Regression 

Coefficient 

Standard  

Error 

Latitude  Malaria Prevalence −0.179* −294.49 144.13 

Public Health Conditions  Malaria Prevalence −0.658*** −483.02 76.51 

Deforestation Rate  Malaria Prevalence 0.243* 784.28 217.01 

Rural Pop Growth  Deforestation Rate 0.280** 0.334 0.095 

Agriculture % GDP  Deforestation Rate  0.273** 0.087 0.002 

Rural Pop Growth  Public Health Conditions −0.257** −3.78 1.18 

GDP per capita  Public Health Conditions 0.368*** 0.002 0.000 

GDP per capita  Rural Pop Growth −0.508*** −0.001 0.000 

GDP per capita  Agriculutre % GDP −0.604*** −0.003 0.000 

Sub-Saharan Africa  Public Health Conditions −0.501*** 18.99 2.93 

Sub-Saharan Africa  Rurual Pop Growth  0.270** 0.698 0.263 

Public Health Conditions  Secondary Schooling 0.858 - - 

Public Health Conditions  Medical Doctors 0.756*** 0.021 0.003 

Public Health Conditions  Clean Water 0.640*** 0.511 0.088 

Public Health Conditions  Fertility Rate  −0.928*** −0.070 0.007 

Notes: ***p < 0.001, **p < 0.01, *p < 0.05 (two-tailed tests); standardized coefficients flagged for statistical 

significance; unstandardized coefficients reported in in italics; standard errors reported in parentheses.   

We also find in Figure 2 that Sub-Saharan African nations tend to have considerably higher rates 

of rural population growth than other nations (0.27), and that Sub-Saharan African nations also have 

much weaker public health conditions in comparison to other nations (−0.50). Our results also suggest 

that nations experiencing high levels of rural population growth are more likely to have poorer public 

health conditions (−0.26). This fits with prior research identifying that rural populations face 

especially poor access to and quality of a variety of health and social resources, including health 

facilities and education [21]. 

Overall, our results suggest that deforestation is an important factor in explaining cross-national 

variation in malaria prevalence. We also find that anthropogenic forces related to specialization in 

agriculture and rural population pressures are associated with heightened levels of deforestation, 

thereby suggesting that human activities contribute to some level of malaria prevalence. In considering 

the relative weight of impact of latitude versus deforestation in the model, we find in our analyses that 

forest loss is more relevant in explaining cross-national variability in malaria rates than being located 

close to a tropical zone. Thus, human-induced environmental changes may be more significant in 

predicting malaria prevalence than the truly ―natural‖ or inherent environmental conditions. 
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4. Conclusions & limitations 

Nearly 130 million hectares of forest—an area almost equivalent in size to South Africa - have 

been lost since 1990, according to a recent FAO report [4]. Not only does deforestation contribute to 

profound impacts on climate change, biodiversity loss, and changing weather patterns, but this study 

builds on a body of evidence that deforestation also influences malaria transmission. While isolated 

studies have begun to identify links between forest loss and mosquito proliferation or malaria 

prevalence in certain locales (e.g., [5-8]) this study adds to the research on this phenomena by finding 

an association between deforestation and malaria prevalence at the cross-national level. 

In addition, we extend our analysis to also to consider some of the most prominent causes of forest 

loss in developing nations. Our findings suggest that rural population growth and economic 

specialization in agriculture are significant in increasing levels of forest loss in many developing nations. 

Therefore, not only are there potential links between environmental change and malaria, but we consider 

the anthropogenic underpinnings of this form of degradation. Rural population pressures not only affect 

forests, but public health conditions in developing nations as well. Perhaps in some areas, growing rural 

populations who tend to live closer to the natural habitats of mosquitoes may experience further 

compounding risks due to their lack of health resources and proximity to deforested areas. 

One limitation of our study is sample size. Sample size is inherently restricted as it is only 

appropriate to include malaria endemic, non-desert nations in the analyses. Given those parameters, a 

sample of nearly 70 nations is actually robust, and our model adheres to the model fit and other 

parameters appropriate for SEMs. We also re-ran our analyses with bootstrap standard errors as well as a 

robust ML (MLR) procedure and obtained estimates and model fit statistics for Figures 1 & 2 that were 

consistent with the ML estimator. Although the use of cross-national data represents a key contribution 

of this research, there are notable limitations with this approach. Cross-national analyses cannot account 

for the particular sub-national ecological factors that may affect malaria prevalence, such as soil 

conditions, level of rainfall, or temperature variations, as well as the particular vector susceptibilities and 

preferences that vary by region or sub-species of mosquito. These represent topics more appropriate for 

the epidemiological field studies we draw on, and instead we prefer to focus on determining if 

comparative analysis uncovers broad patterns linking deforestation to malaria across nations. In so doing, 

we acknowledge that we cannot assume that deforestation will cause increased malaria rates in every 

nation, region, or area, but rather emphasize that there appears to be a pattern across countries between 

deforestation and malaria prevalence, where the nations with higher rates of deforestation also tend to 

have higher rates of malaria, net of other factors. Our results help to expand the generalizability of case 

studies exploring forest loss and mosquito proliferation across different sites (e.g., [5-10]). Certainly, 

given this complex topic, we hope to encourage further research examining how forest loss influences 

trends in malaria and other mosquito-borne diseases in and across diverse settings.  

Our study makes an interdisciplinary contribution by bringing together ideas and insights from 

across fields of global development and sociology, global health, epidemiology, environmental science, 

and human ecology. We consider many of the social, demographic, economic, and environmental 

predictors found to be important in predicting both malaria prevalence and deforestation from across 

these disciplines. The use of structural equation models (SEMs) allows us to test the interconnections 

and complex pathways among these different types of indicators, and serves to illuminate how 

international inequalities frame the proximate predictors of malaria rates in developing nations, such 

as forest loss and public health conditions. 
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Importantly, we find there is no direct association between GDP per capita and Sub-Saharan Africa 

and malaria prevalence. Although many studies make direct links between rising affluence and malaria 

management, our results suggest that economic growth will be most effective if channeled to improving 

public health conditions or addressing rural population growth. Similarly, the indirect associations 

involving Sub-Saharan Africa imply that there is nothing inherent about this region that explain 

disproportionately high malaria rates; rather our results suggest that Sub-Saharan African nations suffer 

from a lack of public health services and extreme levels of rural population growth. Our results also find 

links between GDP per capita and economic specialization in agriculture, where poorer nations in our 

sample are much more likely to generate a larger share of their economic revenues from food production, 

which in turn are associated with increased deforestation rates and malaria prevalence. Although we do 

not focus on exports specifically, it is important to keep in mind that a notable amount of food produced 

in poor nations is destined for markets in affluent nations [44]. Developing nations are often encouraged 

by supra national organizations and core governments to specialize in agriculture as a means to 

development [36]; perhaps these policy recommendations should be interpreted with caution given the 

potentially contaminant influences on forests and malaria rates.  

Although there have been major improvements in malaria prevention, diagnosis, and treatment in 

many nations over the last several decades [1], malaria remains a leading cause of death and threat to 

health in many regions and countries across the Global South [1,12]. Some patterns in climate change, 

deforestation, and other human-induced changes to the natural environment could alter and amplify 

malaria transmission (e.g., [31]). In addition to the influence of environmental changes, resistance to 

both insecticides and antimalarial medications is increasing [22,23]. As human alterations to the 

natural environment are only intensifying, understanding and mitigating the underlying anthropogenic 

causes of malaria transmission deserves vigilant attention.  
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