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Abstract: Beijing, China’s cultural political, and economic center, is facing critical water pollution-

related challenges warranting global attention. This study used remote sensing and geographic 

information systems to analyze the impact of urbanization on wastewater discharge in Beijing. Two 

influencing factors—urban index and environment index—were created from remote sensing image 

classifications to better reflect the impacts from urbanization and green-cover changes on wastewater 

discharge. The impacts of urban land uses on the volume of wastewater discharge were examined in 

localized areas (i.e., the so-called unit watersheds delineated from topography and stream segments). 

Geostatistical results showed that urbanization was primarily responsible for spatial variations of 

wastewater discharge. While vegetation helped ameliorate the pollution, increased urban areas on the 

outskirts of the city resulted in accelerated wastewater discharge. Analytical findings of this study 

could provide spatially explicit information for policy-makers to initiate and adjust protocols and 

strategies for protecting water resources and controlling wastewater emission, thus improving quality 

of living environments in Beijing. 
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1. Introduction 

Water nourishes life. Useable fresh water comprises less than 1% of the Earth’s total water 

resources, and water quality has been increasingly degraded by anthropogenic activities. China is 

facing critical water resource shortages and severe water pollution issues, creating serious public 
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health concerns [1-4]. This issue has attracted increasing attention since the 1990s, [5] along with 

China’s rapid economic growth and industrialization process [6]. Furthermore, lead levels in Chinese 

rivers are approximately 44 times higher than water quality standards in the 2007 National Academy 

of Sciences (NAS) report [7]. Beijing, the capital and a megacity of China, faces especially severe 

water pollution hazards. In one of Beijing’s drinking reservoirs, lead levels over the past three years 

were 20 times higher than World Health Organization’s (WHO) standards [8]. Contamination in 

water bodies can cause long-term human health risks, creating significant consequences in economic 

development, thereby damaging its environmental sustainability [3,4].  

Conventional studies of water pollution in China have focused on in-situ sampling of a 

particular area [2,9-13] and have mainly contributed to identifying water pollution sources and 

controlling contaminators [14-17]. Both point source [18] and non-point source water pollutions [5] 

have been examined. In these studies, water samples collected from a local scale water system were 

often used to analyze parameters including temperature, pH, turbidity, etc. by employing physical-

chemical experiments. These experiments are often labor intensive and time consuming. Miyun 

Reservoir is the most important drinking water source for the highly urbanized capital. Previous 

studies, such as Wang et al. (2002), studied non-point source water pollution using a hydrological 

model and Material Flow Analysis (MFA) to demonstrate that agricultural activities, including soil 

erosion and pesticide and fertilizer runoff, were primary sources of pollution [20]. Zhao et al. (2010) 

investigated heavy metal pollution due to urban runoff and road-deposit sediment [24].  

With the popularity and development of Remote Sensing (RS) and Geographic Information System 

(GIS) technologies, an increasing number of studies have focused on water quality and pollution from a 

spatial perspective. Common examples include mapping water distribution, modeling sewer networks, 

detecting leakage, identifying and quantifying point and non-point water pollution sources, managing 

drinking water quality, as well as monitoring water pollution levels [13,14,25,26]. The Soil and Water 

Assessment Tool (SWAT), a very powerful watershed-based model, has been commonly applied to 

simulate environmental impacts of human and natural processes including land management, climate 

change, and agricultural activities [27]. Statistical methods including linear regression [28,29] spatial 

regression [6] and statistical hypothesis testing [30,31] have been widely applied to measure 

contamination levels and analyze relationships between water contamination levels and relevant 

factors [13]. Inverse Distance Weighting (IDW) is another common GIS-based spatial estimation method 

employed for analyzing water pollution [32,33].  

For human-induced water pollution, industrial wastewater discharge, agricultural irrigation 

(with extensive use of pesticides and fertilizers), and urban sewage are ranked the top three 

pollution-contributing sources due to their high toxicities and untraceable characteristics [4,6,18,34]. 

In urban environments, municipal sewage significantly influences the quality of water bodies along 

with the urbanization process--especially considering China has the largest population density and is 

experiencing rapid social development. Vegetation coverage, including parks, forests, grasslands, etc., 

could have a positive influence on surface and ground water quality [35,36]. Researchers have 

identified over a dozen influencing factors to evaluate human and natural impacts to water quality [3,4]. 

Wang et al. (2008) investigated water crises associated with human activity in rural areas of China [18]. 

Huang et al. (2008) employed remote sensing images and technologies merely to analyze Beijing 

land cover/land use changes [37]. However, using both RS and GIS technologies to analyze 

influencing human and environmental factors on water quality in watershed based urban ecosystems, 

still remains limited and merits further study.  
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This study aims to investigate the spatiotemporal variation of wastewater discharge with respect 

to land use change, especially in the watershed-based urban area of Beijing.  

2. Materials and Methods 

2.1. Study Area 

The study area covers the administrative district of China’s capital city, Beijing. Northwest 

regions are dominated by mountains, forests, bare land, agricultural land, and water. South and 

southeast areas are highly urbanized and generate high levels of wastewater discharge. They are 

composed of 16 urban districts, in addition to suburban and rural townships totaling of 16,411 km
2
; 

1268 km
2
 of which is urbanized. Total population reached 21.5 million in the southern and 

southeastern regions in 2014 with 18 million living in urban districts [38]. According to the Beijing 

Municipal Water Affairs Bureau and the Beijing Municipal Bureau of Statistics (2011), there are 425 

rivers, 41 lakes, and 88 reservoirs in Beijing (Figure 1). In Li’s report (2013), nearly half of the 88 

river systems in the study area were listed in the worst water quality category [39]. While 60% to 70% 

of urban areas are outfitted with wastewater treatment plants, their limited capabilities leave a 

significant amount of water untreated, resulting in direct discharge into river systems.  

 

Figure 1. Study area and major water bodies, watershed boundaries and locations 

of wastewater discharge data collection sites. 
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2.2. Data 

Five types of data were collected and analyzed, including water pollution, socioeconomic, 

hydrologic, and RS and GIS (Table 1). Hydrologic and RS data, including Landsat 5 TM, Landsat 8 

OLI, and 30 meter resolution digital elevation model (DEM) from Shuttle Radar Topography 

Mission (STRM) were obtained from U.S. Geological Survey (USGS) at a Clearinghouse [40]. DEM 

data were used to generate watersheds around Beijing. Ground truth data points were randomly 

collected through imagery in Google Earth around the similar date of the TM and OLI images 

(Google Earth was chosen for its abundance of high resolution images around Beijing, China). A 

total of 210 random points over different classes were generated for validation of image 

classification. Beijing’s socioeconomic information was obtained from China City Statistical 

Yearbooks, in which urbanization was represented by population density [41,42]. The wastewater 

discharge data was provided by Beijing City Drainage Refco Group Ltd., available from 2004 

onward. This study thus examines urbanization of the study area and wastewater-induced water 

pollution from 2004–2014. Figure 1 shows the point data for a total of 59 sewage data sites at 

multiple locations. Points are displayed in graduated colors and sizes to indicate the pollution 

influencing power on surrounding areas. The higher the discharged wastewater volume, the larger 

the influencing power.  

Table 1. Data sets utilized in this study. 

Data Data Type Data Source Description 

RS image Raster Landsat 5 TM 

Landsat 8 OLI 

(Path 123 Row 032) 

Google Earth image 

Sep 4, 2004 

Oct 6, 2014  

 

Dec 5, 2005; April 20, 2015 

GIS layer Vector/Shape file China Data Center Administrative division and 

major rivers in Beijing  

Water Pollution 

records 

Point Shape file Beijing city drainage Refco 

Group Ltd 

Total treated sewage 

wastewater in 2004 and 2014 

Hydrologic data Raster SRTM 1 Arc-Second Global  DEM data 

2.3. Methods  

This research was built upon the following analytical structure (Figure 2). Two Landsat images 

were first classified into the following seven land cover and use types: water, forest, agricultural land, 

bare soil, low-density urban area, medium-density urban area, and high-density urban area. Accuracy 

assessment was performed using ground truth points collected in Google Earth. Two influencing 

factors, urbanization index and environmental index, were developed with a class-specific weighting 

system and remote sensing satellite image classification. Those indices were statistically analyzed 

with wastewater discharged volume records to examine relationships between water quality and 

human activities on urbanization and natural land cover types.  
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Figure 2. Flow charts of data analysis structure. 

2.3.1. Satellite image classification and change detection 

Two satellite images of Beijing, dated September 4, 2004 (Landsat 5 TM) and October 6, 2014 

(Landsat 8 OLI) were clipped to the study area. With an unsupervised/supervised hybrid classification 

approach [43,44], 200 unsupervised clusters were generated and assigned one of the following seven 

classes: water, forest, agriculture, bare land, low-density urban area, medium-density urban area, and 

high-density urban area. Both row crops and perennial grasses were included as part of the agriculture 

class their differences were insignificant for this study. ‘Bare land’ influenced by human activity and 

naturally ‘open land’ were classified into low-density urban area to avoid overlap with the natural 

barren land. For accuracy assessment, the error matrix was extracted to evaluate classification results 

by using the following parameters: overall accuracy, commission/omission errors, and Kappa 

coefficient. The accuracy, or agreement, represented the likelihood that image pixels were assigned 

correct ground truth classes (i.e., correctly classified). Commission errors indicate overestimation, 

i.e., pixels that belong to a different land type but are assigned the present/current class. Omission error 

reveals underestimation, meaning the classified pixels belong to a specific land type but were assigned 

an incorrect class by the classification. Kappa coefficient (ranges between 0 and 1, or 0 to 100%) is a 

discrete multivariate indicator for classification accuracy. Higher Kappa indicates a higher accuracy of 

classification results.  

Validated classification results were used to display the land use changes over this study period, 

and a change detection was performed to extract the changes between 2004 and 2014. Changes in 

urban area were the primary interest of this study. When quantifying the changes, corresponding bands 

from 2004 and 2014 images were compared in ArcMap using the Image Analysis tool. The changes 

were cell based, and every cell contained a digital number (DN) ranging from 0 to 255. The changes 
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were then calculated and quantified by DN values before applying a graduated colored scheme to 

visually display change detection results.  

2.3.2. Watershed delineation 

The Hydrology model in Arc Toolbox provides functions to construct stream polylines from 

DEMs. Said hydrology model calculates water flow direction and accumulation based on elevation 

change. With respect to watershed delineation in ArcMap, all cells exhibiting flow accumulation 

values above an assigned threshold value were considered a channel—a path which contains moving 

water (or connects two bodies of water). After assigning the threshold value, all upstream area of 

180,000 m
2
 or more, was defined as a channel. The area within one cell was 900 m

2
, and the area 

within 200 cells was 180,000 m
2
. Therefore, it was determined that any cell with an upstream area of 

200 cells was a channel. Next the Raster Calculator was employed to create a layer of those cells 

meeting this criteria. Considering the study area size, more than 50 different cell sizes were tested to 

optimize the resulting watershed. Testing these values indicated a threshold of 25,000 cells, or 22.5 km
2
 

produced the best results for the catch water area of our study.  

The Beijing DEM data were further divided into unit watersheds according to stream 

distributions. Each junction point of two or more streams was considered an outlet for one unit of 

watershed, which contained no more than one river segment. Therefore, each watershed unit was 

assumed to be a piece of relatively homogeneous land with similar topographical features and water 

quality. The Network Analyst module in ArcMap automatically generated the junction points in the 

river network, allowing for delineation of 790 unit watersheds within the whole study area (Figure 3).  

The striped areas in the northwest corner resulted from lack of stream data. These areas were 

excluded from data analysis. 

 

Figure 3. The DEM, stream outlet points, and self-delineated unit watersheds of the 

study area. 
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After obtaining classification results, pixel numbers of the seven land use types within each 

watershed unit were counted. These counted cells were then used to calculate the urban and 

environmental index. 

2.3.3. Urban index, environmental index and spatial analysis 

Sewage discharge was expected to be positively related to urban areas and negatively to natural 

lands, with respect to human-induced wastewater. For this reason, two indices were created from 

image-classified land covers to evaluate the spatial-temporal influence of anthropogenic activities on 

water quality--specifically, total sewage value. Within each watershed unit, both urban index (IURB) 

and environmental index (IENV) were calculated from the classification results as follows: 

I = (∑ i × j)/(t × ∑j)           (1) 

where i represents the area of a specific class, j is the score associated with class i, and t is the area of 

the watershed unit. The score of each class represents its influence on either an urban area (IURB) or 

natural environment (IENV). The scores of each class in each index are summarized in Table 2.  

Table 2. Scores of different land classes in two indices. 

Class(i) Urban Score(jURB) Environment Score(jENV) 

Water 0 2 

Forest 0 3 

Bare Land 0 0 

Low Density Urban 1 0 

Medium Density Urban 2 0 

High Density Urban 3 0 

Agriculture Land 0.5 1 

The IURB, score value in Table 2 represents the weight of each land cover contributing to urban 

environments. Urban lands contribute more to urban environments. For example, high-density urban 

area was marked with 3. The greater the influence, the larger the weighted score was. Agriculture 

also carries an urban score considering human forces involved. Human impacts regarding other 

classes such as water, forest, and bare land are limited, and therefore, their scores were defined as 0.  

For IENV, the score of jENV value in Table 2 quantifies the contribution of each land cover to 

natural environments, especially green cover. Forest, water bodies, and agricultural land were 

assigned weighted scores of 3,2,1 respectively, while bare land, low urban density area, medium 

urban density area, and high urban density area were assigned 0. The agriculture land was given 

a score of 1 considering crops had higher vegetation coverage compared to other land types, 

especially urban and bare land. Urban and environment indices in every watershed unit were 

calculated employing the same procedures as used in the following example: the sample  

watershed unit contains a total area of 22 cells (t = 22 × 30 m × 30 m = 19,800 m
2
) from the 

Landsat images, including 10 cells (9000 m
2
) of high density urban area, 5 cells of medium 

density urban area (4500 m
2
), and 7 cells of forest (6300 m

2
). According to equation 1, the IURB 

would be (9000 × 3 + 2 × 4500)/19,800 × (2 + 3) = 0.36, while the IENV would be 0.32.  

To examine the potential impact of urban areas and human activities to total sewage discharge 

in unit watersheds, the simple linear regression approach below was developed: 
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logY = aX + b+ ε           (2) 

where the dependent variable, Y, represents the volume of total sewage discharge collected at each 

data location (ton/day); 59 in total. X is indicated by both environment index (IENV) and urban index 

(IURB) for each year of the study. Logarithmic function was applied with a representing the slope of 

the relationship between sewage discharge and indexes, b a constant number serving as the intercept 

of the regression, and ε, the error term. 

Forty of the fifty-nine records were split into training samples, while the remaining 19 were 

used as validation samples. Regressions were applied using the training samples, which generated 

the estimation functions for relationships (slope a) between wastewater discharge volume and urban 

and environment indices. The 19 samples were used for statistical validation through Root Mean 

Square Error (RMSE) as seen below. 

     = 
                           

 

 
        (3) 

Error for each point refers to the difference between actual wastewater discharge volume and 

the predicted volume from the regression result. Final validation results yielded the averaged 

calculation from 5 experiments, the results of which are summarized in Table 5. 

Finally, the inverse-distance-weighted (IDW) method was applied to create a continuous spatial 

layer to predict areas influenced by sewage discharge based on observed wastewater data. The IDW 

results were examined to demonstrate the overlap between predicted wastewater discharge and urban 

area distributions.  

3. Results and Discussion 

3.1. Classification and urban area changes 

Beijing is highly urbanized in the central and southeast areas [40]. The north and southwest 

regions of Beijing are mountainous and are mostly covered with forests and agricultural lands 

(Figure 4A). The hybrid classification procedure resulted in an overall classification accuracy of 78% 

and 80% for 2004 and 2014, respectively (Tables 3 & 4). Some error developed due to ambiguity 

between mountain shadows and water and bare lands. Additionally, the delineation between low-

density, medium-density, and high-density urban land was somewhat subjective resulting in possible 

additional bias. For urban lands specifically, the three urban classes presented 67–95% producer’s 

accuracy and 65–100% user’s accuracy in two years. Overall, the high-density urban category was 

better classified than low-and-medium-densities. The high commission and omission errors in low-

and-medium-density urban classes may result from the similar spectral signatures between these two 

classes due to their commonly mixed pixels. 

The change detection analysis focused on changes in urban areas, providing better insight of 

increases in the three urban classes in Beijing from 2004 to 2014 (Figure 4B). The more intense 

urban area changes were expressed through deeper tones of blue. Urbanization has been expanding 

from Beijing’s urban core in the southwest of the study area. The development of Beijing Capital 

International Airport can also be identified in the Figure 4B in the central east area with the darkest 

blue tone.  
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Figure 4. The 2004 class map and the 2004–2014 urban area changes intensity in 

Beijing. 

Table 3. Accuracy assessment of image classification in 2004. 

Class Producer 

Accuracy 

Omission 

Error 

User’s 

Accuracy 

Commission 

Error 

Conditional 

Kappa 

Water 80% 20% 80% 20% 0.78 

Forest  74% 26% 87% 13% 0.81 

Bare soil 86% 16% 73% 27% 0.68 

Agricultural land 76% 24% 81% 19% 0.76 

Low urban 80% 20% 67% 33% 0.65 

Medium urban 71% 29% 65% 35% 0.61 

High urban 88% 12% 79% 21% 0.77 

Overall Accuracy 78.16% 

Overall Kappa 0.73 

Table 4. Accuracy assessment of image classification in 2014. 

Class Producer 

Accuracy 

Omission 

Error 

User’s 

Accuracy 

Commission 

Error 

Conditional 

Kappa 

Water 94% 6% 88% 12% 0.87 

Forest  82% 18% 79% 21% 0.68 

Bare soil 100% 0% 88% 12% 0.86 

Agricultural land 60% 40% 78% 22% 0.73 

Low urban 67% 33% 80% 20% 0.79 

Medium urban 67% 33% 70% 30% 0.67 

High urban 95% 5% 78% 22% 0.75 

Overall Accuracy 80.09% 

Overall Kappa 0.75 
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3.2. Urban and environment indices 

A total of 790 watershed units were delineated in the study area. Urban index and environment 

index for each unit were calculated in both years. The example maps of the two indices are 

demonstrated through Figure 5. As expected, the indices corresponded with and reflected the urban 

land use (IURB) and natural land cover (IENV) patterns of Beijing. The high urban index values were 

observed in the central and southeast area (Figure 5A), while high environment index values were 

observed in the north and southwest (Figure 5B). Urban index values ranged from 0.0008 to 46.15 

(between 2004 and 2014). Environment index values ranged from 0.08 to 50. Changes of urban areas 

were observed through increasing index values, from the highest level to the lowest, specifically 

0.0008 to 0.02, and 41.03 to 46.15, respectively (Figure 5C). Natural land cover changes could be 

observed from the environment index, in which the lowest level dropped from 0.25 to 0.08 between 

2004 and 2014 (Figure 5D).  

 

 

Figure 5. The two indices and their changes between 2004 and 2014. A: the 2004 

Urban Index (IURB); B: the 2004 Environment Index (IENV); C: the 2004-2014 Urban 

Index Changes. D: the 2004-2014 Environment Index Changes. 

A B 

C D 
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3.3. Wastewater discharge patterns and urban area change impacts 

Logarithmic transformation was applied on data to scale large values to a comparable 

magnitude while preserving relative ranking. Therefore the influence of the significant disparity of 

wastewater discharge volume can be eliminated and better regression results achieved. Logarithmic 

transformation was applied to minimize bias caused by the magnitudes of wastewater discharge volume 

at different locations. For instance, some locations’ wastewater discharge was around 2000 tons per day, 

while other locations were 200,000 tons or more per day due to different land types and urbanization 

intensities. Table 5 shows averaged regression and validation results from 5 experiments. Figure 6 

shows regression plots of one experiment to indicate relationships between wastewater discharge 

volume and urban and environment indices. All regressions were significant at p < 0.0001 level 

(Table 5). 53% of the variance (R
2 

= 0.53) of wastewater discharge was explained through both 

urban and environment conditions in 2004. The 2014 models showed 29% and 41% of the variance, 

respectively through urban and environment indices. Regression errors (RMSE) ranged from 0.75 to 

1.13 in two years. Urban index and environment index were comprehensive indicators of land cover 

types that influence human and natural environments. Positive relationships were found between 

wastewater discharge volume and urban index in both 2004 and 2014. Environment index, however, was 

negatively associated with wastewater discharge, as demonstrated in Figure 6. Because environment 

index was calculated from natural land types, such relationships indicated less wastewater discharged in 

less urbanized areas. Previous studies have proved that vegetation coverage in cities positively 

contributed to better water quality [36]. Upstream regions of the study area exhibited better water quality 

than downstream regions, supporting results found in Li et al.’s research [3].  

 

Figure 6. Regression results of the correlation between IURB, IENV and sewage 

discharge. 
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Table 5. Regression Results. 

logY a b p-values Multiple R-

Squared 

Adjusted R-

Squared 

RMSE 

IURB2004 0.14 2.65 <0.0001 0.53 0.51 1.12 

IENV2004 −0.18 5.50 <0.0001 0.53 0.52 1.13 

IURB2014 0.16 2.64 <0.0001 0.29 0.27 0.75 

IENV2014 −0.15 5.98 <0.0001 0.41 0.39 0.81 

After confirming the regressions were statistically valid, spatial distributions of wastewater 

discharge were predicted using the IDW interpolation technique (Figure 7). IDW analysis was 

continued to further visualize display of spatial distribution between wastewater discharge and 

urbanization over the leveled change detection results. Across the study area, one large hot spot (in 

light gray) was identified together with several small, scattered hot spots. These high-discharge areas 

were in agreement with the urban areas in the classification maps in Figure 4A & Figure 5A. The 

largest hot spot, for example, is located within the urban core of Beijing. Associated with regression 

results and the IDW map, the expansion of urban areas from 2004 to 2014 influenced the sewage 

discharge. Thus water pollution crises may increase due to the increasing wastewater discharge of 

this megacity. According to our wastewater discharged data, the sewage discharge increased 40 % 

(from 2.55 million tons per day to 4.25 million per day), while the overall treatment rate increased 

only from 53.9% to 86.1%. There was still 0.34 million tons of untreated wastewater discharged per 

day. These results matched the records in Wu et al. in 2016, which reported an amount of half a 

million tons of wastewater discharged every day in Beijing [45]. 

 

Figure 7. The IDW-interpolated wastewater discharge map overlaid on urban areas. 
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This study contributes to water quality literature in urban environments by investigating the 

relationships between wastewater discharge and different land uses associated with human activities 

from a spatial perspective. Results confirmed that highly urbanized areas contributed to more severe 

sewage discharge, while increasing vegetation cover could help leverage the pollution problem. The 

research findings will provide valuable references for governmental agencies in protecting water 

resources as well as improving the health of citizens. This study may be biased from the imperfect 

classification accuracy from satellite images, which could affect the indices and therefore the 

regression results. For example, shadows from clouds and skyscrapers may be misclassified as water, 

mixed forest or agriculture land, and the delineation between urban classes, especially the low 

density and medium density urban areas. To minimize said bias, clearest images (cloud free) of the 

year were selected to eliminate shadows as much as possible. A hybrid classification method was 

used for this purpose as well. However, additional sources could cause the classification error, such 

as geometric error, incomplete atmospheric correction etc. Furthermore, none of the classification 

methods are perfectly accurate. Most importantly, classification is very limited by RS image 

resolution. In future, other classification methods and higher resolution image data will be 

considered to improve the accuracies. When more detailed wastewater data sets become available, 

waterborne disease data could be further examined to investigate the health outcome of urban 

wastewater discharge. Analyzing water pollution problems is very complicated and challenging, 

especially considering the interwoven factors from both natural and human influences. Only a few 

major human factors and physical conditions were focused on. Except the analyzed land types, 

factors including influences from soil pollution characters, local government control, law force 

intervention, etc. were not included but may improve the results. This model is simplified to make 

the first step analysis combining the RS and GIS methods. There are numerous scenarios worth 

analyzing in the future.  

4 Conclusions 

This study extracted urban land use changes of Beijing, China from satellite images in 2004 and 

2014 and explored its impacts on wastewater discharge of the city. Classification, accuracy 

assessment, and change detection were performed using remote sensing images and Google Earth. 

Watershed units were delineated from DEM by identifying junction points between stream segments. 

Urban Index (IURB) and Environment Index (IENV) were created according to the weighed influence 

from different land cover types. At such level, larger volumes of wastewater discharged in a more 

urbanized area, and also increased with urbanization, while negative association exited between IENV 

and wastewater. With the IDW technique, hot spots of high wastewater discharge locations were 

mapped across the study area, which deserves strong attention from local authorities in protecting the 

city’s water quality and public health. This study indicated that, while point collection of pollution 

data is often insufficient for sophisticated examination, its integration with satellite imagery 

improves the spatial representations of pollution sereneness across a large city. Considering time and 

cost consumption, this is a great stepping stone for a national scale water analysis utilizing satellite 

images in future. 
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