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Abstract: Expansion of Pinus L. (pinyon) and Juniperus L. (juniper) (P-J) trees into sagebrush 

(Artemisia L.) steppe communities can lead to negative effects on hydrology, loss of wildlife habitat, 

and a decrease in desirable understory vegetation. Tree reduction treatments are often implemented 

to mitigate these negative effects. In order to prioritize and effectively plan these treatments, rapid, 

accurate, and inexpensive methods are needed to estimate tree canopy cover at the landscape scale. 

We used object based image analysis (OBIA) software (Feature Analyst
TM 

for ArcMap 10.1
®
, ENVI 

Feature Extraction
®
, and Trimble eCognition Developer 8.2

®
) to extract tree canopy cover using 

NAIP (National Agricultural Imagery Program) imagery. We then compared our extractions with 

ground measured tree canopy cover (crown diameter and line point intercept) on 309 plots across 44 

sites in Utah. Extraction methods did not consistently over- or under-estimate ground measured P-J 

canopy cover except where tree cover was >45%. Estimates of tree canopy cover using OBIA 

techniques were strongly correlated with estimates using the crown diameter method (r = 0.93 for 

ENVI, 0.91 for Feature Analyst
TM

, and 0.92 for eCognition). Tree cover estimates using OBIA 

techniques had lower correlations with tree cover measurements using the line-point intercept 

method (r = 0.85 for ENVI, 0.83 for Feature Analyst
TM

, and 0.83 for eCognition). All software 

packages accurately and inexpensively extracted P-J canopy cover from NAIP imagery when the 

imagery was not blurred, and when P-J cover was not mixed with Amelanchier alnifolia (Utah 

serviceberry) and Quercus gambelii (Gambel’s oak), which had similar spectral values as P-J.  
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1. Introduction 

Pinus L. (pinyon) and Juniperus L. (juniper) (P-J) expansion has become a serious problem for 

rangeland habitat management in the western United States over the last century [1,2]. As these 

woodlands expand and infill in shrub-steppe ecosystems, herbaceous understory decreases and soil 

erosion increases [3-6]. A reduction in shrub-steppe ecosystems poses a problem for sagebrush 

(Artemisia L.) obligate species such as sage-grouse (Centrocercus urophasianus Bonaparte) [7], as 

well as numerous other wildlife species supported by sagebrush. Increased fuel loads can also lead to 

catastrophic wildfires and subsequent weed dominance [8-11]. One way land managers mitigate 

these negative effects is to apply tree reduction treatments. Remote sensing techniques, as opposed to 

ground measurements (which can be time consuming and labor intensive) may aid land managers in 

planning and prioritizing tree reduction treatments by providing a way to rapidly assess tree canopy 

cover across a landscape.  

Remote sensing technologies, particularly object-based image analysis (OBIA) has been shown 

to be an effective alternative to ground measurements in sagebrush ecosystems with P-J 

encroachment [12-15], in assessing P-J above ground biomass [16], in evaluating P-J expansion over 

time [17], and in assessing pretreatment P-J cover in a post-hoc study [18]. OBIA segments pixels 

within an image into homogenous objects that can then be classified into different land cover 

categories. There are multiple OBIA software packages, however, studies that compare the 

efficiency of different packages with ground measurements are limited [19,20].  

For this study, three potentially useful OBIA software packages (ENVI Feature Extraction 4.5
®

 

(Exelis Visual Information Solutions, Boulder, Colorado), Feature Analyst
TM 

(Visual Learning 

System’s Inc. 2002) for ArcMAP 10.1
®
 and Trimble eCognition Developer 8.2

®
 (Trimble Germany 

GmbH, Munich, Germany)) were selected to evaluate their ability to extract P-J canopy cover from 

NAIP imagery. These packages were selected because of their availability and effectiveness shown 

in estimating vegetation cover in past studies [12-17,20-24]. ENVI Feature Extraction allows the 

user to extract information about each object from imagery based on spatial, spectral, and textural 

characteristics. The user selects objects that represent the desired landscape feature to be classified 

and then the software uses a nearest neighbor algorithm to classify each image [25]. Feature 

Analyst
TM

 utilizes similar extraction techniques as ENVI Feature Extraction but instead of selecting 

image objects, the user digitizes around landscape features that represent the desired classification 

categories [26]. eCognition Developer allows the user to create a list of rules that segment the 

imagery into objects, and then classifies the objects of interest based on spatial, spectral, and textural 

characteristics [27].  

Although these software packages have many similarities (i.e., classification based on multiple 

spatial and spectral parameters), they also have substantial differences in affordability and ease of 

use. Hence, our objective was to evaluate which OBIA software package best extracts P-J canopy 

cover from National Agricultural Imagery Program (NAIP) imagery, when compared to two ground 

P-J canopy cover measurements (line-point intercept and crown diameter). NAIP imagery was used 

because of its extensive coverage, and free availability to land managers and researchers. Because of 



767 

 

AIMS Environmental Science  Volume 3, Issue 4, 765-777. 

the variable amounts of P-J woodland canopy cover found across a landscape, we also compared 

how well the different OBIA techniques extracted P-J canopy cover when broken into categories 

based on total tree canopy cover (low tree canopy cover <15%; intermediate tree canopy cover 

15–45%; and high tree canopy cover >45%). 

2. Materials and Methods 

2.1. Study sites 

Study sites are located within the state of Utah in the Great Basin and Colorado Plateau 

physiographic provinces (Figure 1) on lands managed by either the Bureau of Land Management 

(BLM) or US Forest Service (USFS). Within each of our 44 study sites we systematically selected 3 

to 9 plots (0.1-ha or 30 × 33 m
2
) for sampling that represented a range of P-J tree canopy cover 

categories: low (<15%), intermediate (15–45%), and high (>45%) using ArcMap. Plots were then 

verified in the field to assure that the desired tree cover gradient was achieved. Not all study sites had 

all tree canopy cover categories, so the number of plots ranged from a minimum of three (1 tree 

cover category × 3 plots = 3) to 9 (3 tree cover categories × 3 plots = 9). The only exception to this 

sampling scheme was for three sites originally treated and measured in a previous study known as 

SageSTEP [28]. On those sites, 61 plots were measured across the range of tree canopy cover 

categories.  

 

Figure 1. Map of the 44 study sites across Utah. 
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2.2. Ground measurements 

Tree canopy cover was measured using the line-point intercept and crown diameter methods on 

each 0.1-ha plot in 2011 and 2012. For the line-point intercept method, five, 30-m transects were 

sampled per plot [9,28]; sampling transects were placed on a baseline transect at the 2, 7, 15, 23, and 

28 m marks and laid out across the plot. On each 30-m sampling transect, a pin flag was dropped 

every 0.5-m and the presence/absence of P-J canopy cover was recorded for that point. To calculate 

tree canopy cover for each plot, the total number of points with P-J canopy cover present were 

summed and divided by 300 (60 points × 5 transects = 300 points per plot).  

The crown diameter method was used to measure every tree >0.5-m in height that had at least 

half the tree trunk within the established plot. The longest canopy diameter (or maximum foliage 

spread: Dia1) and the measurement perpendicular to the longest diameter (Dia2) were measured 

using a plastic, telescoping measuring rod. Canopies that extended outside the plot boundary were 

fully measured if the tree trunk was within the established plot. When tree canopies overlapped, 

individual tree canopy diameters were measured as described above. Measurements were used to 

calculate the crown area (A) for each tree using the following equation:  

A = π/4 (Dia1 * Dia2) 

Tree canopy cover for each plot was calculated by dividing the total tree canopy cover for a plot 

by the total area of the plot (1000 m
2
). 

2.3. Imagery acquisition 

Digital ortho quarter quad tiles (DOQQs) of the study sites were acquired from the National 

Agricultural Imagery Program (US Department of Agriculture 2008) in 2010 as part of a retrospective 

study evaluating vegetation response to pinon and juniper tree shredding treatments [29]. All images 

were collected in 2006 with the exception of the South Creek site, which was collected in 2009 (2006 

imagery was not available). All DOQQs have 1-m spatial resolution. The spectral resolution bands 

used in our analysis were red, green, and blue for all sites. The 5–6 years difference between 

ground-measurements (collected in 2011 and 2012) and imagery acquisition (2006) is presumed to 

be minimal for tree canopy cover; our sites had minimal disturbance within the above stated 

timeframe, and Juniperus osteosperma (Torr.) Little (Utah juniper) is considered a slow growing tree 

(http://www.fs.fed.us/database/feis/plants/tree/junost/all.html#126). Of the 44 study sites, NAIP 

imagery at 4 sites was too blurred to perform the classification. Additionally, 2 sites had shrubs 

Amelanchier alnifolia (Nutt.) Nutt. ex M. Roem. var. utahensis (Koehne) M.E. Jones (Utah 

serviceberry) and Quercus gambelii Nutt. (Gambel’s oak) that had similar spectral characteristics as 

P-J canopies on NAIP imagery. Hence, our study sites were reduced to 38.  

2.4. Image processing 

We evaluated eCognition, ENVI Feature Extraction, and Feature Analyst
TM

 independently to 

estimate OBIA P-J canopy cover using DOQQs. Through trial and error, we found better agreements 

between OBIA and ground-measured cover estimates when we clipped DOQQs into smaller areas 

based on visual estimates of the P-J tree canopy cover categories described above (Figure 2). Smaller 
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sized imagery led to faster processing times when classifying tree cover for all three OBIA software 

packages. For each OBIA we distinguished two classes: (1) a ―tree‖ class, consisting of P-J trees, and 

(2) an ―other‖ class which primarily included all other vegetation types, bare ground, and shadows. 

These methods are further described below in the corresponding section for each software package.  

 

Figure 2. Example of NAIP imagery from one research site that was clipped into 

two smaller images (area within red boxes) based on P-J canopy cover prior to 

classification.  

Prior to extracting P-J canopy cover from DOQQs for our comparisons, global positioning 

system (GPS) coordinates of each 0.1-ha plot were collected using a Delorme PN-60 GPS unit with 

accuracy to within 3 meters (http://delorme.com, accessed 5 June 2015). GPS coordinates were 

collected in the middle and bottom left corner (downslope of the middle point) of each plot. The 2 

points collected were used to reference the individual plot locations on the DOQQs; as well as create 

a shapefile of the individual plots in ArcMap that were used to clip the classified imagery so 

measurements would be made on the same experimental unit for both OBIA and ground-measured 

tree canopy cover.  
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2.5. eCognition developer 

Trimble’s eCognition Developer software (Trimble Germany GmbH, Munich, Germany) 

utilizes OBIA techniques that allow the user to develop rule-sets to classify objects of interest. We 

used a multiresolution segmentation algorithm [30] and spectral difference algorithm to create image 

objects with a median scale of 3-m
2
. The spectral difference algorithm reduces the complexity of the 

image objects by merging them according to their mean image layer intensity values [27]. After the 

segmentation was completed, we combined brightness values (spectral parameter) and relative 

border (a contextual feature which the user can use to enlarge or reduce objects based on neighboring 

image objects; [27]) to classify P-J canopy cover. 

Because of eCognition’s ability to easily refine parameters within a rule-set, we used training 

plots (32, 0.1-ha plots or 12% of the total sample plots) to create a rule-set to extract P-J canopy 

cover, and validation plots (239, 0.1-ha plots or 88% of the total sampled plots) to test the accuracy 

of the rule-set. For each clipped DOQQ, a training plot that best represented the variation found 

within the clipped image (i.e., had similar vegetation and bare ground cover, and brightness values) 

was used to define thresholds for each parameter (brightness value and relative border) used to 

extract P-J canopy cover within the rule-set. Thresholds were refined for each parameter until the 

extracted P-J canopy cover and ground canopy cover measurements (crown diameter method) were 

±1%. Because of the hierarchical nature of eCognition, once P-J canopy cover was classified, all 

remaining unclassified objects were classified as ―other‖. 

After the thresholds for each parameter were developed using the training plot(s), the rule-set 

was applied to the DOQQ. The classified DOQQs were then clipped by validation plot in ArcMap, 

and tree canopy cover was calculated for each plot. To calculate tree canopy cover, the area of each 

polygon that represented the ―tree‖ class within the plot was divided by the total area of the plot. 

Only validation plots were used for the statistical analysis. Training and validation plots were an 

unnecessary step with ENVI Feature Extraction and Feature Analyst
TM

 as they did not use rule-sets, 

therefore we only used them with eCognition.  

2.6. Feature AnalystTM and ENVI Feature Extraction 

Feature Analyst
TM

 (Visual Learning System’s Inc. 2002) for ArcMAP
®
 10.1, and ENVI Feature 

Extraction (ENVI Zoom 4.5, Exelis Visual Information Solutions, Boulder, Colorado) have similar 

processing methods and both use an object-based image analysis approach to segment an image into 

homogenous objects. For each clipped DOQQ, Feature Analyst
TM

 classified ―tree‖ or ―other‖ using 

50 image objects per class that were digitized or defined by the user. For ENVI Feature Extraction, 

objects were automatically created using spectral characteristics and then defined by the user as 

either ―tree‖ or ―other‖. The selected image objects (ENVI Feature Extraction) and digitized objects 

(Feature Analyst
TM

) captured the variation found within the imagery for these two categories. For 

example, within the ―other‖ category, shadows, bare ground, and vegetation other than P-J trees were 

selected. Following the digitization of classes, Feature Analyst
TM

 then uses an automated feature 

extraction (AFE) model which takes into account the shape, size, color, texture, and pattern of the 

image objects [26] to classify the imagery. Likewise, ENVI Feature Extraction takes into account 

spectral values of each defined object and utilizes the Nearest Neighbor algorithm (computes the 

Euclidean distance from each segment in the segmentation image to every object that was defined [25]) 
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to classify the image. Following classification, we digitized (Feature Analyst
TM

) or selected (Feature 

Extraction) 10 examples of errors (or misclassified objects) and re-ran the classification in order to 

refine the P-J tree canopy cover classification. This correction process was cycled through 5 times – 

until 100 objects had been digitized/selected for each class. Once the smaller DOQQ had been 

classified, we clipped the DOQQ by validation plot using ArcMap so all measurements (OBIA and 

ground) would be made on the same experimental unit. We then extracted the area of each polygon 

that represented the ―tree‖ class within a plot, and divided that area by the total area of the plot. 

2.7. Accuracy assessment 

Erdas Imagine 11.0 (Erdas Inc., Atlanta, GA) was used to run an accuracy assessment on each 

clipped DOQQ, which tested our tree cover classification’s reliability for each OBIA technique. We 

randomly selected sixty points per clip (30 points per class × 2 classes (―tree‖ and ―other‖) × 48 

clipped images = 2880), and using the unclassified NAIP imagery and expert knowledge we decided 

if each point was correctly classified or not. The total points (correct and incorrect) for each class 

(―tree‖ or ―other‖) for all the sites were then summed, and an error matrix was produced which 

includes a measurement of overall accuracy of the classified images, a kappa statistic (indicating 

percentage-wise the reliability of the classification in comparison to a randomly assigned cover type 

for each pixel), and producer’s (omission) and user’s (commission) errors [31]. 

2.8. Statistical analysis 

To assess the relationship between ground measured tree canopy cover and OBIA canopy cover 

estimates, we used a Pearson Correlation. Additionally, a partial correlation by tree canopy cover 

category (low, intermediate, and high) was also used to evaluate the relationship between the 

methods. To determine whether tree canopy cover estimates were different between OBIA methods 

and ground measurements by tree canopy cover, we used a one-way ANOVA. Mean differences for 

each tree cover category were compared using the Tukey-Kramer HSD (p < 0.05). Since actual tree 

canopy cover is unknown, the statistical analysis in this study should be used conservatively. 

3. Results and Discussion 

Our study suggests that OBIA techniques and NAIP imagery is a viable method for estimating 

pinyon and juniper canopy cover across Utah. Strong correlations were found between all OBIA 

techniques and ground measurements estimating P-J canopy cover (Figure 3). The crown diameter 

method had stronger correlations with OBIA techniques than those found with the line point intercept 

method. The correlations between tree canopy cover estimates using Feature Analyst
TM

, eCognition, and 

Feature Extraction with the crown diameter method were r = 0.93, r = 0.92, and r = 0.91, respectively. 

Line point intercept methods were slightly lower with r = 0.85 with Feature Extraction, and r = 0.83 

for both eCognition and Feature Analyst
TM

. Correlation coefficients (r) between all methods can be 

found in the supplementary material (Table S1, S2, and S3).  
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Figure 3. Pearson correlation of tree canopy cover (%) between OBIA methods 

(eCognition, Feature Extraction, and Feature Analyst
TM

) and ground 

measurements (crown diameter and line point intercept).   

Because tree canopy cover varies greatly across a landscape, tree canopy cover categories (low 

<15%, intermediate 15–45%, and high >45% tree canopy cover) were evaluated to identify potential 

constraints to OBIA techniques. For low tree canopy cover, the average range of estimated percent 

tree canopy cover across all methods was between 9.6 and 10.9%, with no significant difference 
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between methods (Figure 4). Average estimated tree canopy cover for the intermediate category 

ranged from 25.5 to 29.6%. For the high category, the average estimated percent tree canopy cover 

ranged from 40.9 to 50.4%. The line point intercept method estimated tree canopy cover significantly 

lower (p < 0.05) than all other methods for both the intermediate and high tree canopy cover category 

(Figure 4).  

 

Figure 4. Comparison between methods to estimate P-J canopy cover by 

category (low <15%, intermediate 15–45%, and high >45%) ± SE. Methods 

include: CD = crown diameter, LP = line point intercept, FE = ENVI Feature 

Extraction, eCog = eCognition Developer, and FA = Feature Analyst
TM

. Letters 

that differ within category are significantly different from one another 

according to Tukey-Kramer HSD (p > 0.05).  

This difference between OBIA techniques, the crown diameter method, and the line point 

intercept method are somewhat expected. The line point intercept method measures trees along a 

portion of the plot and then is extrapolated for the entire area, which lead to lower tree canopy cover 

estimates than our other methods. With the crown diameter method, every tree that was rooted within 

the plot was measured, which may include canopy cover that extended beyond the designated 0.1-h 

plot that was extracted during our image processing for our OBIA. On the other hand, canopy cover 

from trees not rooted within the plot, but with canopy that extended within the plot boundary were 

measured using OBIA techniques, but not with the crown diameter method.  

The crown diameter method also measured each tree in its entirety; hence, when tree canopies 

overlapped this increased the crown diameter method estimations of tree canopy cover, but was not 

captured in the OBIA techniques or line point intercept method. Lastly, smaller trees (<1 m canopy 

diameter) were likely undetected using our OBIA techniques. This limitation is in part due to the 

pixel resolution of the imagery selected but also, likely due to interference by surrounding shrubs and 

herbaceous vegetation which theoretically, should make our OBIA tree canopy cover estimates lower 

than the ground-based measurements. Although OBIA techniques and the crown diameter method 



774 

 

AIMS Environmental Science  Volume 3, Issue 4, 765-777. 

were not significant different (p > 0.05), these differences in estimating tree canopy cover may 

explain some of the variation captured in the Pearson correlations (Figure 3).  

Additional variation from plot to plot may be due to imagery limitation (shadows, blurry 

imagery), and what vegetation was found at each plot. Across all sites, the overall accuracy for our 

OBIA classified imagery was 94%, 92%, and 91% for ENVI Feature Extraction, Feature Analyst
TM

, 

and eCognition, respectively (Table 1). The average kappa statistics were 0.88 for ENVI Feature 

extraction, 0.84 for Feature Analyst
TM

, and 0.83 for eCognition 0.83 (Table 1). These kappa statistics 

indicate a strong agreement between OBIA classification and ground reference data [32]. However, 

the most common misclassified objects were shadows and patches of darker green shrubs such as 

Purshia tridentata (Pursh) DC. (antelope bitterbrush) and Cercocarpus ledifolius Nutt. (curl-leaf 

mountain mahogany). During image processing and OBIA, additional errors likely occurred. The 

accuracy of the GPS units used to mark plot locations were within 3-m. Although this seems minimal 

on a landscape scale, 3-m may be substantial when extracting tree canopy cover on a plot level, 

especially with increasing P-J canopy cover.  

Table 1. Error matrix comparing object-based image analysis classification 

accuracies of cover classes (tree and other) for (A) eCognition, (B) Feature Analyst, 

and (C) ENVI Feature Extraction.  

(A) eCognition         

Classified Data Tree Other Row Totals User’s Accuracy 

Tree 1223 29 1252 98% 

Other 217 1411 1628 87% 

Column Total 1440 1440 2880  

Producer’s Accuracy 85% 98%   

Overall Accuracy: 91% Kappa Statistic: 0.83 N = 2880  

(B) Feature Analyst    

Classified Data Tree Other Row Totals User’s Accuracy 

Tree 1247 35 1282 97% 

Other 193 1405 1598 88% 

Column Total 1440 1440 2880  

Producer’s Accuracy 87% 98%   

Overall Accuracy: 92% Kappa Statistic: 0.84 N = 2880  

(C) ENVI Feature Extraction    

Classified Data Tree Other Row Totals User’s Accuracy 

Tree 1299 39 1338 97% 

Other 141 1401 1542 91% 

Column Total 1440 1440 2880  

Producer’s Accuracy 90% 97%   

Overall Accuracy: 94% Kappa Statistic: 0.88 N = 2880  

N = number of points evaluated.   

Bold values indicate correct number of points classified within the cover class 
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When evaluating the OBIA software used in this study, no one OBIA program was more 

accurate at classifying P-J canopy cover than another. ENVI Feature Extraction and Feature 

Analyst
TM

 were relatively easy to learn and use, and the software was less expensive than eCognition 

Developer. However, with eCognition Developer the user is able to create rule-sets that can be 

applied to multiple sites with similar spectral, spatial, and contextual properties with minimal 

adjustments to feature parameters. Having this ability, it was possible to classify tree canopy cover in 

each clipped image in as little as 20 minutes, as opposed to 40–45 minutes with the other two 

software packages. ENVI and Feature Analyst
TM

 require the user to train the program on an 

image-by-image basis which added the additional time to classify tree canopy cover.  

4. Conclusion 

OBIA techniques combined with NAIP imagery is an efficient method to extract tree canopy 

cover on a landscape scale. Although some variations were found on a plot-by-plot level, the overall 

accuracy of the remotely-sensed cover is acceptable for estimating P-J canopy cover, which may be 

useful for land management planning. These methods also allow for baseline measurements of P-J 

canopy cover to be captured and used to evaluate temporal changes due to disturbances and climate 

regimes. 
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