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Abstract: Processing to correct atmospheric effects and classify all constituent pixels in a remote 

sensing image is required before the image is used to monitor plant growth. The raw image contains 

artifacts due to atmospheric conditions at the time of acquisition. This study sought to distinguish the 

canopy growth of paddy rice using RapidEye (BlackBridge, Berlin, Germany) satellite data and 

investigate practical image correction and classification methods. The RapidEye images were taken 

over experimental fields of paddy rice at Chonnam National University (CNU), Gwangju, and at 

TaeAn, Choongcheongnam-do, Korea. The CNU RapidEye images were used to evaluate the 

atmospheric correction methods. Atmospheric correction of the RapidEye images was performed 

using three different methods, QUick Atmospheric Correction (QUAC), Fast Line-of-sight 

Atmospheric Analysis of Spectral Hypercubes (FLAASH), and Atmospheric and Topographic 

Correction (ATCOR). To minimize errors in utilizing observed growth and yield estimation of paddy 

rice, the paddy fields were classified using a supervised classification method and normalized 

difference vegetation index (NDVI) thresholds, using the NDVI time-series features of the paddy 

fields. The results of the atmospheric correction using ATCOR on the satellite images were favorable, 

which correspond to those from reference UAV images. Meanwhile, the classification method using 

the NDVI threshold accurately classified the same pixels from each of the time-series images. We 

have demonstrated that the image correction and classification methods investigated here should be 

applicable to high resolution satellite images used in monitoring other crop growth conditions. 
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1. Introduction  

Remote sensing is a useful and convenient tool for qualitative and quantitative determination of 

plant growth conditions. The technique can provide information on the actual status of crop conditions 

by observing a repetitive coverage, where the latter is necessary for change detection studies at a global 

or regional scale, such as crop yield predictions and monitoring crop status and conditions [1,2]. While 

crop conditions can be monitored using various remote sensing platforms, the two primary categories 

are satellite and aerial platforms. Satellites can observe a wide area of thousands of square kilometers 

at once, revisiting it in a regular and timely manner. These unique characteristics render satellites the 

most suitable of the current remote sensing platforms for monitoring crop growth over broad areas. 

Satellites have been used in agricultural remote sensing since the early 1970s [3]. Satellite systems 

with increasingly higher spatial resolution and more frequent revisiting cycles have been developed to 

improve the quality of data. For optimum use of these data, atmospheric correction is required to 

retrieve the rectified surface reflectance from a remotely sensed image by removing the effects of light 

scattering and absorption by aerosols, haze, and gases. While atmospheric correction is necessary as an 

important image processing step in many remote sensing applications, significant difficulty is 

presented during processing due to the complexity of atmospheric conditions in time and space. 

Because accurate reflectances are highly required for many applications, atmospheric correction 

accuracy and development of improved algorithms should be evaluated and these areas of research 

remain very active [4]. 

Atmospheric correction can be divided into two categories: (1) empirical methods; and (2) radiative 

transfer model-based methods. The empirical methods rely on the scene information, i.e., radiance at a 

certain location, and do not use any physical model as done in model-based methods. The most recent 

addition to empirical methods is the Quick Atmospheric Correction (QUAC) method [5]. The 

model-based methods are performed using radiative transfer models. In this procedure, field 

measurements are not required, and only basic information on the scene is required, such as site location 

and elevation, flight altitude, the sensor model, local visibility, and acquisition times. Several model-based 

methods dedicated to retrieving reflectance information from hyperspectral and multispectral data have 

been developed. These methods include ATmosphere REMoval program (ATREM), Atmospheric and 

Topographic Correction (ATCOR), and Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes 

(FLAASH) [6-8]. These methods retrieve surface reflectance using a radiative transfer model. All of the 

model-based methods are quite similar in their basic principles and operation [9]. 

While some features are distinguishable in a panchromatic or single-band image, most features 

are more clearly distinguishable in multispectral and hyperspectral images containing multiple 

wavebands. The reflectance properties of an object depend on the surface features (e.g., color and 

texture) and environmental conditions (e.g., geographic location and atmospheric components). The 

reflectance characteristics of various features in the image that have multiple spectral band 

information (i.e., multispectral and hyperspectral images) are intermixed. Therefore, automated 

techniques are needed that can identify different surface characteristics and categorize all of the pixels 

in an image into homogeneous land cover types or themes. This process is termed classification, and 

the classified data may then be used to produce thematic maps [10]. Classification methods are divided 

into two methods; supervised and unsupervised classification. Supervised classification is the 

procedure most often used as a precursor to quantitative analysis of remote sensing image data. It 

depends upon using suitable algorithms to classify and label the pixels in an image as representing 
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particular ground cover types or classes. A variety of algorithms is available for supervised 

classification [11]. Among the most frequently used classification algorithms are the parallelepiped, 

minimum distance, and maximum likelihood classification methods. 

High resolution satellite images are more suitable for monitoring crop growth conditions in 

precision agriculture than low resolution satellite images. Image correction and classification 

methods are needed to obtain and/or determine accurate conditions of crop growth; however, most 

methods have been developed and evaluated for relatively low resolution imageries. The objectives 

of this study were to identify the canopy growth of paddy rice, and to investigate practical image 

correction and classification methods. We specifically evaluated the three atmospheric correction 

methods, QUAC, FLAASH, and ATCOR, as well as a selected classification method in order to 

obtain an endmember category or class (i.e., paddy) from image data of an area of interest. The 

selected image correction methods were applied to a RapidEye high resolution (6.5 m) image for 

projecting vegetation index (VI) maps for monitoring rice growth conditions. 

2. Materials and Method 

2.1. Study sites and satellite image acquisition 

In this study, RapidEye (BlackBridge, Berlin, Germany) satellite images were acquired so that 

the three atmospheric correction methods (i.e., QUAC, FLAASH, and ATCOR), and three supervised 

classification methods (i.e., parallelepiped, minimum distance, and maximum likelihood) could be 

performed and evaluated. RapidEye images were taken over experimental fields of paddy rice at 

Chonnam National University, Gwangju, and at TaeAn, Choongcheongnam-do, Korea (Figure 1). The 

CNU RapidEye images were acquired on day of year (DOY) 220 in 2013. The TaeAn RapidEye 

images were obtained on DOY 152, 174, 220, and 250 in 2010, and thus represent a time series. The 

CNU RapidEye images were used to evaluate the atmospheric correction methods and the TaeAn 

RapidEye images were used to evaluate the classification methods. 

 

Figure 1. Location map (center) and true-colored RapidEye images of two study 

sites: The Chonnam National University campus, Gwangju (A); and TaeAn, 

Choongcheongnam-do (B), Korea. 
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The RapidEye constellation of five Earth observation satellites are designed to point at several 

look angles, and each of the five satellites travels on the same orbit, enabling acquisition of 

high-resolution images with five spectral bands daily. This allows users to get large-area coverage data 

with a frequent revisit interval [12-13]. RapidEye collects 4 million square kilometers of data per day 

with a 6.5 m ground resolution. The RapidEye system specifications are given in Table 1. RapidEye 

images are offered at two processing levels: (1) basic products (level 1B), which are geometrically 

uncorrected images; and (2) ortho products (level 3A), which are radiometric, geometric, and terrain 

correction images [13]. Level 3A images were used in this study. 

Table 1. Specifications of RapidEye satellite system. 

2.2. Unmanned aerial vehicle (UAV) image acquisition and corrections 

An UAV image obtained on DOY 220 in 2013 was used to evaluate the atmospheric correction 

methods for the RapidEye images. The UAV image was obtained using a multi-copter with 8 rotors, 

and equipped with a miniature multiple camera array (Mini-MCA6, Tetracam Inc., USA). The 

Mini-MCA6 is a lightweight (700 g), multispectral, remote sensing camera, having six independent 

sensors to detect different spectral wavebands: Blue (410–490 nm), Green (510–590 nm), Red 

(610–690 nm), NIR1 (760–840 nm), NIR2 (810–850 nm), and NIR3 (870–890 nm). Each image has a 

pixel resolution of 1280 × 1024 with 10 bit as a raw file format in flash memory. The image taken by 

the Mini-MCA6 requires pre-processing to change the file format, and to merge the multispectral 

wavebands stored in separate sensors into one image. This procedure was performed using the 

PixelWrench 2 software (PW2, Tetracam Inc., USA) supplied with the Mini-MCA system. 

Radiometric correction of UAV images was performed using empirical relationships between 

UAV image-based digital values and corresponding ground-based reflectance. For this process, three 

calibration targets were constructed using aluminum plates (2.4 × 2.4 m each). The plates were painted 

Mission characteristic Information 

Number of satellites 5 

Spacecraft lifetime 7 years 

Orbit altitude 630 km in sun-synchronous orbit 

Sensor type Multi-spectral push broom imager 

Spectral bands (nm) Blue (440–510 nm) 

Green (520–590 nm) 

Red (630–685 nm) 

Red edge (690–730 nm) 

NIR (760–850 nm) 

Ground sampling distance (nadir) 6.5 m 

Pixel size (ortho-rectified) 5 m 

Swath Width 77 km 

On board data storage Up to 1500 km of image data per orbit 

Revisit time Daily (off nadir), 5.5 days (at nadir) 

Image capture capacity 4 million km
2
 per day 

Dynamic range Up to 12 bit 
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black, grey, and white with non-reflective paints. The target plates painted with the color of black, grey, 

and white show average reflectances of 5, 23, and 93%, respectively (Figure 2). The ground-based 

reflectance was measured using a portable multispectral radiometer, MSR16R, containing 16 

wavebands in the range of 450 and 1750 nm (CROPSCAN Inc., MN, USA). It has upward and 

downward sensors to measure incident and reflected radiation, simultaneously. The radiometer, with a 

field of view (FOV) of 28°, measured the canopy reflectance of a 1 m diameter target area from a 

height of 2 m above the nadir position. The UAV-based image reflectance was estimated according to 

linear regression equations, which were determined from the relationships between UAV-based digital 

values and the corresponding ground-based reflectance (Table 2). Geometric correction was carried 

out using an ENVI program (ITT Inc., CO, USA), based on ground control points from the Google 

Earth (Google Inc., CA, USA) image map. 

 

Figure 2. Reflectances as a function of wavebands for three (black, grey, and white) 

calibration plates. 

Table 2. Pearson’s correlation coefficients (r) and linear regression equations 

between CROPSCAN reflectances (y) and UAV-based digital numbers (x) for the 

crop season in 2013. 

Wavelength (nm) r♩ Linear regression 

450 0.999
* 

y = 0.4939x + 0.1958 

550 0.999
* 

y = 0.4705x − 3.8267 

650 0.999
** 

y = 0.5432x − 0.4813 

800 0.999
** 

y = 0.7698x − 4.3484 

880 0.999
** 

y = 1.4032x + 3.4184 

♩ * and ** represent significance at the 95 and 99 % probability levels. Criteria for correlations (Cohen, 

1988): 0.1–0.3: small; 0.3–0.5: medium; and 0.5–1.0: large. 
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2.3. Atmospheric correction methods 

QUAC and FLAASH were employed using the ENVI software (ITT Inc., CO, USA), and 

ATCOR was employed using the ERDAS IMAGINE software (Hexagon Geospatial, GA, USA). 

The specific parameters used for FLAASH and ATCOR are shown in Table 3. QUAC is applicable 

to multispectral and hyperspectral images, and is an in-scene approach that determines atmospheric 

correction parameters directly from the information contained within the scene, without additional 

metadata. Because QUAC does not involve radiative-transfer calculations, it is significantly faster 

than model-based methods. However, QUAC performs a more approximate atmospheric correction 

than other model-based methods. The use of QUAC has some restrictions, particularly its 

requirement for a certain minimum amount of land area in the scene. FLASSH also supports the 

analyses of hyperspectral and multispectral imaging sensors. FLAASH interfaced with MODTRAN4 

corrects images according to the radiative transfer (RT) codes that calculate the radiance of the 

images with some inputs, such as site location, elevation, flight altitude, sun angle, and a few 

atmospheric parameters [9,14-15]. ATCOR has a fast atmospheric correction algorithm for images 

from medium and high spatial resolution satellite sensors. ERDAS IMAGINE offers several versions 

of ATCOR such as ATCOR-2 (specifically designed for use over flat terrain), ATCOR-3 (developed 

for mountainous terrain), and the latest release ATCOR-4 [16]. We used ATCOR-2 in this study. 

ERDAS IMAGINE 2010 (Version 10.0) for ATCOR offers several processing options: (a) a haze 

removal algorithm; (b) atmospheric correction with constant atmospheric conditions; and (c) the 

capability of viewing reference spectra of selected target areas. Haze or cloud removal and 

atmospheric water retrieval settings were kept at ‘default’, which in this case, is recommended by the 

ATCOR user manual [17].  

Table 3. Input parameters for FLAASH and ATCOR2 atmospheric correction 

methods♩
. 

FLAASH  ATCOR2 

Input parameter Value  Input parameter Value 

Acquisition time (UTC) 3:25:01  Acquisition time (UTC) 3:25:01 

Latitude 35.1734°  Latitude 35.1734° 

Longitude 126.8986°  Longitude 126.8986° 

Visibility 40 km  Visibility 40 km 

Ground elevation 0  Aerosol type  Rural, Midlat-summer 

CO2 conc. (ppm) 414.9  Solar zenith 19.8° 

Atmospheric model Midlat-summer  Solar azimuth 163.3° 

Aerosol model Rural  Satellite azimuth 100.42° 

Zenith angle 163.48°     

Azimuth angle 79.58°     
♩
 FLAASH and ATCOR represent Fast Line of Sight Atmospheric Analysis of Hypercubes and Atmospheric and 

Topographic Correction, respectively. 

The RapidEye image taken at CNU on DOY 220 in 2013 was used as a reference for evaluation 

of the atmospheric correction methods. Comparing ground-measured point data and satellite image 

pixel data is difficult because of difference in spatial resolution. In order to make the comparison 
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possible, the surface of interest must be large enough and completely homogeneous for a sufficient 

number of point measurements to be made on the corresponding surface of the satellite image [18]. 

In this context, the UAV image is assumed to meet the general requirement mentioned above. The 

UAV reflectances were compared with the RapidEye reflectances for the evaluation points, which 

were selected on soil, paddy, roof, and road asphalt. 

2.4. Supervised classification method 

Various supervised classification algorithms may be used to assign an unknown pixel to one of a 

number of classes [19]. The parallelepiped, minimum distance and maximum likelihood decision rules 

are among the most frequently used classification algorithms. These three supervised classification 

methods were applied to the TaeAn RapidEye image using the ENVI software. Supervised 

classification requires user-defined training classes in the image before performing the classification, 

and each class is used as a reference for the classifier. The analyst seeks to locate specific sites in the 

remotely sensed data that represent homogeneous examples of known land cover types. Training 

classes are groups of pixels in a region of interest (ROI). Five training classes of urban, soil, paddy, 

forest, and water were selected in this study. 

The parallelepiped classifier divides each axis of multi-spectral feature space forming an 

n-dimensional parallelepiped. Each pixel fallen into a box is labeled as a defied class. Accuracy of 

the classification depends on the selection of the lowest and highest values in consideration of the 

population statistics of each class [20]. The minimum distance classifier is mathematically simple 

and computationally efficient. The minimum distance classifier is used to classify unknown image 

data into classes, which minimize the distance between the image data and the class in multi-spectral 

feature space. The distance is defined as an index of similarity so that the minimum distance is 

identical to the maximum similarity. All pixels are classified to the nearest class, unless a standard 

deviation or distance threshold is specified, in which case some pixels may be unclassified if they do 

not meet the selected criteria [15,20]. Maximum likelihood classification assumes that the statistics 

for each class in each band are normally distributed and calculates the probability that a given pixel 

belongs to a specific class. The maximum likelihood classifier quantitatively evaluates both the variance 

and covariance of the category spectral response patterns when classifying an unknown pixel. The 

maximum likelihood classifier is one of the most popular methods of classification in remote sensing, in 

which a pixe1 with the maximum likelihood is classified into the corresponding class [15,20]. 

2.5. Classification of the paddy rice field using NDVI 

To minimize errors for practical application of growth monitoring and yield estimation of rice, 

paddy fields were categorized using RapidEye imagery and NDVI values. Forest, waterbody, soil, 

and urban areas were removed, with only paddy fields retained using a NDVI threshold method 

proposed by Xiao et al. [21]. They assumed that the unique reflectance characteristics of the paddy 

and other features can be used to categorize paddy rice fields. When a pixel is filled by water, then 

the NDVI is consistently lower than 0.1. Pixels filled with rice tend to have high NDVI values ahead 

of harvest, while evergreen forest areas tend to have consistently high NDVI values, greater than 0.7. 

These NDVI thresholds of 0.1 and 0.7 were applied to identify the waterbody and forest areas from 

the NDVI values of the RapidEye images taken on DOY 152 to 250. Soil areas have similar 
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reflectances in the near-infrared (NIR) and red, but generally the NIR spectral reflectance was larger 

than the red. Thus, a pixel covered by soil tends to have near zero NDVI values of 0.1 to 0.2 [20]. 

Hence, the paddy rice fields were identified by processing with the classification method using the 

NDVI thresholds of 0.1 and 0.7. 

The classified NDVI information for the TaeAn RapidEye image was used for evaluation of the 

classification methods described above. Accuracy of the classified results in terms of the paddy 

fields was determined by overlaying a vegetation index map used to monitor paddy rice growth. This 

was performed using a digitized paddy cover map from the Ministry of Agriculture, Food and Rural 

Affairs, Korea (Figure 3). The accuracy of the classified results was also analyzed by comparing 

with the digitized paddy cover map, and projecting an error distribution map. 

 

Figure 3. Digitized paddy cover map of TaeAn used as standard in this study. 

2.6. Data analysis 

The reflectances of the UAV image were used as standard values, and the RapidEye 

reflectances were compared with the corresponding UAV reflectances. Several statistical analyses 

were used to evaluate whether the results of the comparison were reliable. The data were analyzed 

with two-way analysis of variance (ANOVA) using PROC ANOVA, and with Pearson’s correlation 

coefficients using PROC CORR (SAS version 9.4, SAS Institute Inc., NC, USA). In addition, two 

statistical equations were used to evaluate the performance of the atmospheric correction methods: (1) 

root mean square error (RMSE, Equation 1); and (2) model efficiency (ME, Equation 2) [22]: 

RMSE =  
 

 
          

 
   ,  [1] 

ME =   
         

  
   

           
  

   

,   [2] 
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where Si the ith simulated value, Mi is the ith measured value, Mavg is the averaged measured value, 

and n is the number of data pairs. ME values are equal to the coefficient of determination (R
2
), where 

the simulated value versus the measured values are close to a 1:1 ratio. However, ME is generally 

lower than R
2
, and can be negative when predictions are very biased. 

To evaluate classification accuracy, four measures of the accuracy were tested in this study. The 

overall accuracy, kappa coefficient, producer accuracy, and user accuracy were computed for each 

error matrix. In thematic mapping from remotely sensed data, the term accuracy is used typically to 

express the degree of ‘correctness’ of a map or classification. The four metrics were calculated using 

the post classification error analysis of the ENVI program. The latter can calculate a confusion 

matrix (also referred to as the error matrix or a contingency table), including overall accuracy, 

producer accuracy, user accuracy, and Kappa coefficient using a ground truth image or ground truth 

region of interests. The confusion matrix is the most common form of expressing classification 

accuracy. In this matrix table, classification is given as rows and reference data (ground truth) are given 

as columns for each class type. The overall accuracy is calculated by summing the number of pixels 

classified correctly and dividing by the total number of pixels [23]. However, more specific measures 

are needed because the overall accuracy does not indicate how well individual classes were classified. 

The producer accuracy is the ratio between the number of correctly classified and the column total, and 

represents how well reference pixels of each ground cover type are classified. The user accuracy is the 

ratio between the number of correctly classified and the row total, and represents the probability that a 

pixel classified into a given category actually represents that category on the ground. The user accuracy 

and producer accuracy for any given class typically are not the same [23]. The kappa coefficient (K) 

was generated to describe the proportion of agreement between the classification result and the 

standard reference data after random agreements by chance are removed from consideration. The K 

value approaches 0 with no agreement, whereas it is approaches 1 with near perfect agreement [24].  

3. Results and Discussion 

3.1. Evaluation of atmospheric correction methods 

The performance of each atmospheric correction method was evaluated by comparing the UAV 

reflectance and RapidEye reflectance. Among the three atmospheric correction methods, ATCOR 

produced the best agreement between UAV and RapidEye reflectances (Figure 4). Values of r, RMSE, 

and ME of the comparison for ATCOR were 0.869, 0.055, and 0.732, respectively (Table 4). Although 

ATCOR and FLAASH are both MODTRAN4 model-based methods, ATCOR produced comparatively 

better results for correction performance. In addition, the correction performance indices indicate that 

either FLAASH or ATCOR produces more reliable atmospheric correction than QUAC. The FLAASH 

and ATCOR methods have the option of retrieving the aerosol amount, and estimating the scene average 

visibility. However, when processing data that lacks specific spectral channels, which are required for 

aerosol retrieval, there are no measurements of aerosol optical depth that can be supplied as input 

parameters. While these MODTRAN4 model-based methods are theoretically more sophisticated than 

QUAC, each model’s performance is affected by its ability to accurately characterize atmospheric 

aerosols [25]. Therefore, when unable to perform aerosol retrieval, and satisfy basic assumptions (i.e., at 

least 10 diverse materials or dark pixels in a scene), QUAC may produce equivalent atmospheric 

correction results in comparison with the model-based methods. 
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Figure 4. Comparison of reflectances from RapidEye and unmanned aerial vehicle 

(UAV) images for three atmospheric correction methods, ATCOR (A), QUAC (B), 

and FLAASH (C), and no correction (D). ATCOR, QUAC, and FLAASH represent 

Atmospheric and Topographic Correction, Quick Atmospheric Correction, and Fast 

Line-of-sight Atmospheric Analysis of Spectral Hypercubes, respectively. 

Table 4. Error statistics (Pearson’s correlation coefficients, r; root mean square 

error, RMSE; and model efficiency, ME) of the uncorrected and corrected 

RapidEye reflectances using three correction methods in comparison with the 

unmanned aerial vehicle (UAV) reflectances. 

Correction Methods♩ r
♪
 RMSE ME 

No-correction 0.804
**

 0.076 0.477 

QUAC 0.867
**

 0.077 0.463 

FLAASH 0.862
**

 0.056 0.714 

ATCOR 0.869
**

 0.055 0.732 

♩
 QUAC, FLAASH, and ATCOR denote QUick Atmospheric Correction, Fast Line of Sight Atmospheric 

Analysis of Hypercubes, and Atmospheric and Topographic Correction, respectively. 
♪ ** represents significance at the 99 % probability level. Criteria for correlations (Cohen, 1988): 0.1-0.3: 

small; 0.3-0.5: medium; and 0.5-1.0: large. 
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3.2. Evaluation of classification methods 

When the parallelepiped, maximum likelihood, and minimum distance supervised classification 

methods were applied to the TaeAn RapidEye imagery, the minimum distance method produced 

reasonably acceptable classification results (Figure 5). The overall accuracy for the minimum distance 

methods varied from 90 to 96%, whilst the kappa coefficient varied from 0.5 to 0.7 (Table 5). However, 

the results show that the classified images cannot consistently distinguish between waterbodies and 

paddy fields early in the crop season, as well as between forest areas and paddy fields when the 

vegetation is growing vigorously. Paddy fields have unique features as rice plants are grown on 

flooded lands. Therefore, the reflectances of paddy fields are affected by water when just irrigated 

and transplanted, whilst the reflectances are similar to forest areas when the canopy of the paddy rice 

was closed. Furthermore, the most common source of error may occur during the process of defining 

the training classes. When pixels fall outside the specific class region or within overlapping regions, 

error may occur that result in misclassification. The automatic supervised classification method is 

mathematically simple and computationally efficient, but it has certain limitations that are sensitive 

to accuracy of the training classes [19]. 

 

Figure 5. Time series of classified output images of TaeAn using the minimum 

distance method on day of year (DOY) 152, 174, 220, and 250 in 2010. 
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Table 5. Time series of error matrix of minimum distance classification method. 

DOY Reference class Classification result 

Paddy Non-paddy Producer accuracy 

152 Paddy 82.91  4.14  82.91  

Non-paddy 16.70  95.85  95.85  

User accuracy 61.52  93.88  - 

Overall accuracy = 90.76% 

Kappa coefficient = 0.52 

174 Paddy 83.28  3.96  83.28  

Non-paddy 16.72  96.04  96.04  

User accuracy 61.63  98.39  - 

Overall accuracy = 94.87% 

Kappa coefficient = 0.67 

220 Paddy 99.92  0.08  99.92  

Non-paddy 0.08  100.00  100.00  

User accuracy 61.64  99.44  - 

Overall accuracy = 95.82% 

Kappa coefficient = 0.77 

250 Paddy 83.28  4.01  83.28  

Non-paddy 16.72  95.99  95.99  

User accuracy 61.64  97.12  - 

Overall accuracy = 93.72% 

Kappa coefficient = 0.62 

3.3. Classification of the paddy rice field using NDVI threshold 

To identify paddy fields from RapidEye satellite images more precisely, a NDVI threshold 

method suggested by Xiao et al. [21] was applied in this study. This method classified the paddy 

fields with the overall accuracy of 95.82%, kappa coefficient of 0.77, producer accuracy of 99.92%, 

and user accuracy of 61.64% (Table 6). In order to determine the errors in the classified paddy map, 

an error distribution map was produced by comparing each pixel between the digitized paddy cover 

map and classified paddy map (Figure 6). Soil pixels covered with vegetation were misclassified as 

paddy fields, while paddy field pixels covered with somewhat more water and less vegetation were 

misclassified as non-paddy features. The current classification results correspond closely to those 

reported by Jeong et al. [26]. They also attempted detection of paddy fields using MODIS satellite 

images, and observed different over- and under-estimated pixels of paddy fields. The spatial 

resolutions of MODIS and RapidEye are 500 m and 5 m, respectively. Because a RapidEye image 

has much higher spatial resolution, water or soil in paddy fields can be distinguished more clearly 

using RapidEye images than those using MODIS images. 
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Table 6. Error matrix of NDVI threshold. 

Reference class Classification result 

Paddy Non-paddy Producer accuracy 

Paddy 99.92 0.08 99.92 

Non-paddy 0.08 100 100 

User accuracy 61.64 99.44 - 

Overall accuracy = 95.82% 

Kappa coefficient = 0.77 

 

Figure 6. Map of error distribution between classified paddy fields based on NDVI 

thresholds and digitized paddy cover maps. 

If the NDVI threshold values used in this study could be adjusted to correctly classify more of 

the underestimated pixels as paddy field pixels, the proportion of underestimated pixels would be 

improved. Therefore, it is important to determine a suitable NDVI threshold value. Xiao et al. [21] 

and Jeong et al. [26] used NDVI, enhanced vegetation index (EVI), and land surface water index 

(LSWI) for detection of paddy fields during the inundated period. EVI is an improvement over the 

NDVI index, which reduces atmospheric and variable soil or canopy background effects. LSWI is 

calculated using near-infrared and shortwave infrared, where the latter is sensitive to the water 

content of vegetation and soil, and can be applied to estimate the water content of the surface [26]. 

While using two spectral indices for classifying paddy fields is potentially advantageous over using 

one spectral index, the satellite images used in the current study contain insufficient waveband 

information to calculate two spectral indices. Therefore, only NDVI was used to detect paddy fields 

in this study. If various vegetation indices sensitive to water or chlorophyll content are available, the 

classification accuracy results would be enhanced. 
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4. Conclusion 

Three different atmospheric correction methods, QUAC, FLAASH, and ATCOR were used on 

RapidEye satellite images obtained over paddy fields at CNU, Gwangju, as well as at TaeAn, 

Chungcheongnam-do, Korea. The corrected RapidEye satellite images were then evaluated by comparison 

with UAV images, and classified into representative land cover features using the minimum distance 

method. Of the three atmospheric correction methods, ATCOR gave results that corresponded 

comparatively well with those from the UAV images. We also found that the minimum distance 

classification method performed well, and classified all pixels into the corresponding reference 

endmember classes. However, this method could not classify the same pixels from different time-series 

images. Therefore, NDVI threshold values were used to classify paddy fields from RapidEye images, 

according to the NDVI time-series feature characteristics. As a result, the same pixels could be classified 

from each of the time-series images, although some under- and over-estimated pixels persisted. This issue 

could probably be addressed if suitable threshold values could be determined and applied. We contend 

that the image correction and classification methods validated here are applicable to high resolution 

satellite images for monitoring crop growth conditions in precision agriculture.  
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