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Abstract: Soil lead (Pb) is well known as a threat to human health and ecosystem. Although 
relatively insoluble, lead bullets in shooting range soil can be readily released into soluble forms 
through natural weathering processes and thus pose significant human and environmental risks. In 
this study, laboratory experiments were conducted to investigate if the Pb bullets in shooting range 
soil can be stabilized through surface coating of phosphate-based materials. Results indicated that 
FePO4 or AlPO4 coatings, insoluble metal phosphates, have been successfully formed on the surface 
of the Pb bullets. The EPA Toxicity Characteristic Leaching Procedure (TCLP) test showed that 
FePO4 or AlPO4 surface coating would effectively reduce the Pb solubility or leachability of the 
bullets. The surface coating under pH of <5.5 for 7 days could achieve 92–100% reduction, with 
85–98% by FePO4 coating and 77–98% by AlPO4 coating as compared with the non-coating. 
Leachable Pb concentration in the contaminated shooting range soil was reduced by 85–98% or 
77–98% as a result of the FePO4 or AlPO4 solution treatment. This study demonstrated that the 
FePO4 or AlPO4–based surface coating on lead bullets can effectively inhibit the Pb weathering and 
significantly reduce the Pb release from soil through in situ chemical stabilization, which could be 
potentially applicable as a cost-effective and environmental-sound technology for the remediation of 
Pb-contaminated shooting range soil. 
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1. Introduction 

Lead (Pb) has been listed as the most frequently encountered heavy metal contaminant at the 
Superfund sites by the National Priorities List (NPL) [The Agency for Toxic Substances and Disease 
Registry (ATSDR) 2013 Substance Priority List], which is identified as the most significant potential 
threat to human health, especially to children, due to its toxicity and human exposure potential by the 
United States Environmental Protection Agency (USEPA) and ATSDR [1]. Many studies showed 
that Pb exposure could cause damages to human brain and nervous system and lead to learning 
disabilities and behavior, reproductive, memory, or concentration problems as well as muscle and 
joint pain [2-4]. Lead in environment would also result in decreased survival, poor body condition, 
behavioral changes, and impaired reproduction of wildlife [5,6]. 

Most environmental Pb contaminations are resulted from anthropogenic activities such as 
mining, smelting and shooting activities. There are estimated about 9000 non-military outdoor 
shooting ranges in the United States, and approximately 80,000 tons of Pb were used for bullet and 
shot manufacture in later 1990s [7]. Although relatively insoluble in soil ecosystem, the fired Pb 
bullets are not inert and could be easily weathered and transformed into mobile forms under natural 
conditions. It has been confirmed that the Pb bullets in shooting range soil could last for several 
hundred years and usually release Pb2+ form into ecosystem through weathering reactions [8-12]. 
Smaller Pb particles resulting from abrasion could cause immediate contamination to the 
environment [13]. As a result, many civilian and military shooting ranges were contaminated with 
high Pb levels, usually greater than 10,000 mg Pb/kg soil [13]. For example, Manninen and 
Tanskanen [14] reported up to 54,000 mg Pb/kg soil in a shooting range in Viikinmäki, Finland.  

Current remediation research of Pb-contaminated soil has been focused on in situ chemical 
immobilization using soil amendments, including phosphate minerals/salts [11,12,15-19], phosphoric 
acid [20], iron phosphate nannoparticles [21], poultry waste [22], bacteria [23-25], eggshell, mussel 
shell, cow bone, biochar [26-29], and peat moss [30]. The in situ immobilization is accomplished by 
transforming soluble Pb into insoluble forms through chemical, exchangeable, or adsorptive 
reactions, which significantly reduce Pb solubility, leachability, mobility, or bioavailability. The 
effectiveness of the technology is largely controlled by the dissolution or solubility of Pb solids in 
the soil ecosystem.  

The remediation of Pb-contaminated shooting ranges by the in situ chemical immobilization has 
encountered two challenges: heterogeneity of Pb bullets and relatively large bullet size. In shooting 
range, fired bullets are usually present as isolated, relatively large solids with very slow weathering and 
limited dissolution, which prevents the weathered Pb bullets from the effective dissolution and 
transformation. Thus this remedial technology may not work for the contaminated shooting ranges. 
This study attempts to investigate if the surface coating approach using FePO4 or AlPO4 on the bullets 
can effectively prevent Pb weathering and stabilize Pb in shooting range soil. The hypothesis of this 
approach was that the weathering and Pb release from fired bullets could be inhibited through the in 
situ formation of FePO4 or AlPO4 surface coating on the Pb bullets, which would consequently reduce 
the Pb health and ecological risks and safeguard human and ecosystem from the contamination. 

Iron (Fe) and aluminum (Al) are abundant elements in soil, and phosphate is often applied as a 
fertilizer in soil. Metal phosphates such as zinc, iron, aluminum, and chromium phosphates have 
been widely used as coating materials on the surface of both ferrous and non-ferrous metals because 
of their high corrosion resistance and superior adhesion with the metal substrate [31,32]. FePO4 and 
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AlPO4 are both insoluble phosphates often found in soil and nature as strengite (FePO4·2H2O) and 
variscite (AlPO4·2H2O) [33]. The solubility product (Ksp) of strengite is ~10−33.5 [34] and variscite 
~10−27.7 [35]. If FePO4 or AlPO4 coatings could be successfully formed on the surface of Pb bullets, the 
surface coatings should be able to inhibit the bullets from further weathering and thus stabilize Pb in 
soil. The objectives of this study were: i) synthesize and characterize the FePO4 or AlPO4 materials; ii) 
in situ form and characterize the FePO4 or AlPO4 coatings on the surface of the Pb bullets; and iii) 
determine the effectiveness of the surface coating on the Pb solubility of the bullets and the 
contaminated soil through the EPA Standard Toxicity Characteristic Leaching Procedure (TCLP) test. 

2. Materials and Methods 

2.1. Soil sampling and characterization 

Soil samples were collected from top 30-cm of the high impact areas of a shooting range near St. 
Louis, Missouri. The soil was a clay loam (30.0% silt, 27.5% clay) with pH 7.3 and 3.2% organic 
matter. Scanning electron microscopy (SEM) analyses in conjunction with energy dispersive 
spectroscopy (EDS) indicated very high Pb content (4783 mg/kg) in the soil and a broad range of bullet 
size (µm to mm), suggesting the bullets were under highly weathering or corrosive conditions. Lead 
speciation analysis by the modified sequential extraction procedures [36] showed that the Pb fractions 
of water soluble and exchangeable (WE), carbonate-bound (CB), Fe-Mn oxides-bound (FM), organic 
matter-bound (OC), and residual (RS) forms were 448, 523, 523, 747, and 2541 mg/kg, respectively.  

2.2. FePO4 and AlPO4 synthesis 

FePO4 and AlPO4 were synthesized following the procedures described by Liu [37]. For the 
FePO4 synthesis, 5.75 g NH4H2PO4 and 6.56 g FeCl3·6H2O were separately dissolved in 50 mL 
MilliQ (18 MΩ·cm) water. The two solutions were then dripped at the same rate into a beaker 
containing 50 mL 0.65 M H3PO4 solution, followed by adding 1.0 M Na3PO4 solution to adjust the 
pH to 1.3. The mixture was stirred for 2 h, and the FePO4 solids were separated from the mixture 
using centrifugation at 3000 rpm for 20 min. The solids were washed twice with MilliQ water and 
heated at 850 °C for 6 h. For the AlPO4 synthesis, 2.88 g NH4H2PO4 and 9.76 g AlCl3·6H2O were 
individually dissolved in 50 mL MilliQ water, followed by same procedures of FePO4 synthesis, but 
the pH of the mixture was adjusted to 2.2. 

2.3. Coating procedure 

The FePO4 and AlPO4 solutions were prepared separately by adding 2.7 g FePO4 and 3.0 g 
AlPO4 in 30 mL MilliQ water. Concentrated phosphoric acid was added slowly to dissolve the solid, 
and MilliQ water was added to the final volume of 50 mL (0.36 M FePO4 or 0.45 M AlPO4, pH~0.6). 
Five lead bullets (0.49 g each) were immersed into the FePO4 or AlPO4 solutions for 7 days. To 
assess the pH effect on coating, the solution pH value was adjusted with 1.0 M Na3PO4 to 1.0, 2.0, 
3.0, 4.0, and 5.0, respectively. 

For soil treatment, the coating solutions with various concentration of FePO4 or AlPO4 were 
prepared by dissolving 0.1 g to 3.0 g of FePO4 or AlPO4 in 50 mL of phosphoric acid solution. 1.0 g 
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of the collected soils was added in the solutions for 7 days. TCLP test was performed following the 
treatment for both coated bullets and treated soils to evaluate the efficacy of lead stabilization. 

2.4. TCLP procedure 

Lead stabilization by the surface coating was assessed by the modified toxicity characteristic 
leaching procedure (TCLP, EPA Method 1311 [38]). To prepare the leaching solution, 5.7 mL of 
glacial CH3COOH and 64.3 mL of 1.0 M NaOH were added to 500 mL of MilliQ water. The mixture 
was diluted to 1.0 L with MilliQ water and the final pH was measured at 4.93. 

Five uncoated or coated bullets were placed into a rotary agitation tube with 10 mL of the TCLP 
solution. The tube was agitated on a shaker for 18 hrs at a speed of 30 rpm under room temperature. 
The supernatant was filtered through a 0.45 μm pore-size polycarbonate filter (Fisher Scientific) and 
analyzed for the Pb concentration. The same TCLP procedures were applied to 1.0 g of untreated or 
coated soil. TCLP test was performed with triplicate per sample. 

2.5. Analytical methods 

2.5.1. X-ray diffraction analysis 

The crystal structures of the synthesized FePO4 and AlPO4 were determined with Rigaku Mini 
Flex X-ray diffractometer (XRD) with Cu Kα (1.54 Å) radiation. The samples were scanned from 
20° to 80° (2θ) at scan rate 1°/min and step size of 0.02°. The crystalline phases were identified 
through comparing the collected XRD patterns with PDF2-2004 database of the International Center 
for Diffraction Data using a JADE software (www.ICDD.com). 

2.5.2. SEM and XPS analysis 

The coated bullets and soils were characterized by an FEI Quanta 600 FEG scanning electron 
microscope (SEM) under the high vacuum model. The samples were imaged with an 
Everhart-Thornley secondary electron detector (ETD) at 10 kV and working distance around 10 mm. 
Energy dispersive spectroscopy (EDS) analyses were performed at 10 kV for the AlPO4-coated 
samples and at 20 kV for the FePO4-coated samples. 

X-ray photon spectroscopy (XPS) analyses were performed by a Kratos Axis 165 photoelectron 
spectroscopy system. To reduce the sample charging effects, the samples were placed on a 
conductive carbon tape in sample holders. Charge neutralizer was used to further reduce the charging 
effects. The analyzed area was set to be 120 microns, and the samples were positioned at 0° take-off 
angle. The analysis was performed under ultra high vacuum level of at least 1.0 e−8 Torr. For a best 
elemental resolution, monochromatic Al source was used for the excitation. Single sweep and high 
sensitivity broad surveys were used for elemental identification. Multiple sweeps with low sensitivity, 
but high resolution were performed for elemental scans. The number of sweeps was determined by 
the strength or signal/noise ratio for each element. Surface sputtering was performed with a Perkin 
Elmer differential gun using argon, charged at 2000 volts with an emission level of 10 mA, and 12 
milli-pa at a sputter rate of 12 angstroms/minute on Au surface. Sputtered scans were 0, 5, and 
10-minute for the FePO4-caoted samples and 0 and 5-minute for the AlPO4-caoted samples. The 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAAahUKEwiL2rTusZTGAhXDNogKHSXhDkk&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FToxicity_characteristic_leaching_procedure&ei=_i2AVYvjEMPtoASlwrvIBA&usg=AFQjCNFr_j5KmnOLiKf602Am8OW08aS4YA&bvm=bv.96041959,d.cGU
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAAahUKEwiL2rTusZTGAhXDNogKHSXhDkk&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FToxicity_characteristic_leaching_procedure&ei=_i2AVYvjEMPtoASlwrvIBA&usg=AFQjCNFr_j5KmnOLiKf602Am8OW08aS4YA&bvm=bv.96041959,d.cGU
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quantification was determined by the specific Kratos Axis Vision Processing software with 
appropriate Relative Sensitivity Factor for this particular XPS system. 

2.5.3. Colorimetric lead analysis  

A modified dithizone colorimeteric method in the presence of triton X-100 procedure by 
Hu et al. [39] was used to determine the Pb concentration in aqueous solution with the detection limit 
of 0.1 mg/L.  

3. Results  

3.1. Synthesized coating materials and coating surface characterization 

The XRD pattern of the synthesized FePO4 (Figure 1A) matched the single-phase hexagonal 
rodolicoite, with a P321 space group (PDF# 29-0715). The strong, sharp peaks, i.e., 100, 102, 104, 
and 200, were indicative of good crystallinity of the synthesized FePO4. A few diffraction peaks, i.e., 
P1, P2, and P3 (Figure 1A), might be resulted from the impurity in the chemicals used for the 
synthesis. The XRD pattern of the synthesized AlPO4 (Figure 1B) matched the single-phase 
orthorhombic berlinite with a C2221 space group (PDF# 72-1161). The strong narrow peaks of 111, 
021, 112, and 220 also demonstrated good crystallinity of the synthesized AlPO4. 

 

Figure 1. X-ray diffraction patterns of synthesized FePO4 and AlPO4 as well as PDF 
of standard rodolicoite and berlinite. 
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The SEM comparison between the uncoated bullet (Figure 2a) and the coated bullets (Figure 2b 
and 2c) indicated a successful surface coating coverage. The crystals of the AlPO4-coated surface spot D 
in Figure 2b (Figure 2d) were seed-like tiny particles or patches on the surface with primarily elemental 
composition of Pb, P, O, and Al at the point 1 and 2 (Figure 2d-1 and 2d-2). The coating spot E 
(Figure 2e) on the FePO4-coated surface (Figure 2c) contained two types of iron phosphate crystals: 
platelets and needle-like crystals, primarily containing Pb, P, O, and Fe at the point 3 and 4 (Figure 2e-3 
and 2e-4). The solution pH for the Figure 2b and 2c coatings were 1.2 and 0.9, respectively. 

 

Figure 2. SEM micrograph and EDS patterns (a) uncoated lead bullet; 
(b) AlPO4-coated bullet; (c) FePO4-coated bullet; (d) micrograph of the D spot and 
elemental composition of the point #1 and #2; and (e) micrograph of the E spot and 
elemental composition of the point #3 and #4. 

XPS patterns on the AlPO4-coated bullet surface demonstrated both Al (III) and PO4 (III) 
characteristic peaks (Figure 3a, 3b) including Al (III) 2p (74.8 ev), and P 2p (134.0 ev), which was 
consistent with the values of AlPO4 in the NIST XPS database (http://srdata.nist.gov/xps/ 
selEnergyType.aspx). The pattern on the FePO4-coated surface showed Fe (III) and PO4 (III) 
characteristic peaks including Fe (III) 2p (712.4 ev), and P 2p (133.9 ev) (Figure 3c, 3d), which was 
also in a good agreement with those of FePO4 in the NIST XPS database. In addition, characteristic 
peaks of Pb, O, and C were also identified in the patterns for both coated surfaces. 
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Figure 3. XPS patterns of 0-minute (a) and 5-minute (b) sputtered scan for the 
AlPO4 coating surface; 0-minute (c) and 5-minute (d) sputtered scan for the FePO4 
coating surface. 

3.2. TCLP Pb leachability 

TCLP leachable Pb from uncoated bullets was 1059 μg/g Pb. The surface coatings by both 
FePO4 and AlPO4 significantly reduced the Pb leachability. The FePO4 coating resulted in the 
leachable Pb ranging from 6.2 to 82.2 μg/g Pb under the coating solution pH of <5.5 (Figure 4a). The 
reductions were 92% to 99% in compared with the uncoated bullet, while the AlPO4 coating had the 
leachable Pb from 0 to 59.5 μg/g Pb (Figure 4b), with the reductions of 94% to 100%.  

TCLP leachable Pb concentration from the shooting range soil before the coating was 2865 μg/g 
of soil. The coating treatments with various dosages of AlPO4 or FePO4 (0.2–6.0 g/100 mL) have 
resulted in reduced leachable Pb in the soil. Leachable Pb in the soils treated with high FePO4 dosage 
(≥2.0 g/100 mL) was 3.4%~0.9% of the untreated soils, as compared to 8.6%~5.0% for the soil 
treated with relatively low dosage (<2.0 g/100 mL) (Figure 5a), while leachable Pb in the soils 
treated with high AlPO4 dosage (≥2.0 g/100 mL) decreased to 2.7%~0.9% of the untreated soils, in 
contrast to 13.8%~12.7% of the soils treated with relatively low dosage (<2.0 g/100 mL) (Figure 5b). 
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Figure 4. TCLP leachable Pb concentration of (a) FePO4-coated and (b) 
AlPO4-coated bullets under various coating pH values.  

 

Figure 5. TCLP leachable Pb concentration of the shooting range soil treated with 
various concentrations of (a) FePO4 and (b) AlPO4 coating. 
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4. Discussion 

4.1. Characterization of FePO4/AlPO4 coating 

Characterization of the FePO4/AlPO4 coating on lead bullets was performed to determine 
morphological features, elemental compositions, and mineral phases of the coating layers. The 
elemental composition in Figure 2d-1 included Al, P, O, and Pb. The binding energies of Al, P, and 
O further suggested that AlPO4 coating was successfully formed on the bullet surface. Similarly, the 
elemental composition in Figure 2d-2 included Fe, P, O, and Pb. The binding energies of Fe, P, and 
O further implied that the synthesized coating was FePO4. The synthesized materials were confirmed 
by XRD as rodolicoite (FePO4) or berlinite (AlPO4) (Figure 1a and 1b). Thus it was reasonably 
speculated that the coating on the bullet surface was as strengite (FePO4·2H2O) or variscite 
(AlPO4·2H2O) based on the synthesis conditions. These two hydrated minerals could be transformed 
to rodolicoite or berlinite at high temperature (850 °C) [37]. The low pH conditions of the coating 
process would also facilitate the formation of lead phosphates, and coexistence of Pb and P in 
Figures 2d-1 to 2e-4 implied the formation of lead phosphates on the surface. Although previous 
studies have indicated that the successful Pb immobilization was heavily dependent on the formation 
of pyromrphites, in this study, the lead phosphate formation on the surface would not be a primary 
mechanism for the Pb stabilization based on the experimental conditions. 

4.2. Pb leachability of coated bullet 

TCLP tests for the lead bullets treated with the FePO4 or AlPO4 solution at various initial pHs 
(0.6–5.5) indicated that the FePO4 or AlPO4 coating could effectively prevent the Pb dissolution and 
leaching from the bullets under acidic conditions (Figure 4a and 4b). It was speculated that the Pb 
stabilization was achieved as the FePO4 or AlPO4 surface coatings act as an inhibitive barrier to 
prevent bullet from direct contacts with oxygen and water and consequently inhibit further 
weathering. The formation of metal phosphate coating usually can be divided into four 
steps—ionization, hydrolysis, oxidation, and crystallization [40]. Thus the concentration of the 
coating materials becomes the most important factors governing the extent and speed of coating film 
growth. Many studies revealed that the corrosion resistance by metal phosphate coating increased 
with phosphate salt content in coating solutions [41,42]. In general, the higher phosphate salt 
concentration would result in faster phosphoric reactions during coating process, which could lead to 
the formation of thick, fine-grained coating film. Leachable Pb was found to increase with increasing 
the pH of the coating solutions (Figure 4). This might reflect the pH effect on the FePO4 or AlPO4 
content that was favored under acidic conditions. At relatively low pH values, more metal 
phosphates were dissolved in the coating solutions. By contrast, as the pH value increased, the less 
solid metal phosphate dissolved. As a result, thinner, less coating was formed, leading to higher 
leachable Pb. Nevertheless, even under pH > 5, the surface coating could still reduce leachable Pb by 
over 90% (Figure 4). 

4.3. Soil treatment efficacy 

In compared to untreated soil, leachable Pb concentration in the soil treated with FePO4 or 
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AlPO4 solution was reduced by 85–98% and 77–98%, respectively (Figure 5a and 5b). The reduction 
could be attributed to two possible mechanisms: the first was the formation of FePO4 or AlPO4 
coating layers on the weathered lead bullets as well as Pb-bearing soil particles. In shooting range 
soil, leachable Pb primarily came from lead bullets that were in contact with soil constituents and 
subject to oxidation, carbonization, and hydration reactions, ultimately leading to the weathered crust 
around the bullets. Hydrocerussite, cerussite (PbCO3), and small amount of massicot (PbO) are 
predominantly present in the weathered crusts [10]. The solubility product (Ksp) of massicot and 
cerussite is 1012.72 and 104.65 [10,43]. The solubility calculated with Mineql+4.6 indicated two 
minerals are highly soluble under acidic conditions (pH < 6, in equilibrium with atmospheric CO2), 
with a value of ~100.7 M for massicot and ~10−4 M for cerussite. Whereas, the simulated solubility of 
FePO4 (strengite, Ksp = 10−33.5) [34] or AlPO4 (variscite, Ksp = 10−27.7) [35] were ~10−9 and ~10−6 M 
at pH 6, respectively. Therefore, FePO4 or AlPO4 coating layers are much more resistant to leaching 
under acidic conditions, which was confirmed by our TCLP data (Figure 5). The second mechanism 
could be attributed to the reactions of dissolved or adsorbed Pb ions with phosphate ions, leading to 
the formation of lead phosphates, i.e., pyromorphite. This mechanism is dominant for conventional 
Pb immobilization in literature [10,20,30].  

TCLP test demonstrated a slight decrease in leachable Pb in the soil after treatment with 
increasing the coating solution concentration from 0.2 g to 6.0 g of FePO4 or AlPO4/100 mL 
(Figure 5). Generally, the higher the coating concentration, the smaller the FePO4/AlPO4 crystals. As 
a result, higher phosphate concentration could result in more uniform coating on the lead fragments, 
which is conducive to the reduction of leachable Pb. Meanwhile, the pyromorphite formation appears 
to be kinetically limited rather than thermodynamically constrained at pH < 8 [44]. The 
pyromorphite formation in soil is affected by the dissolution rate of soil-adsorbed Pb2+ and supply of 
soluble phosphate [20,45]. Under the coating pH conditions, soil-adsorbed Pb can be easily desorbed 
and transformed to insoluble lead phosphates in higher phosphate concentration. In addition, the 
study by Ruby et al. [46] suggested that the Pb2+-laden mineral phases formed under acidic 
conditions tend to be more stable in acidic conditions, such as PBET solution (pH 2.0~3.0). It should 
be more efficient to use FePO4/AlPO4 solutions with lower pH values for soil treatment at initial 
stage, because more dissolved Pb2+ was available, more stable lead phosphates was formed, leading 
to more uniform coating on soil Pb fragments.  

4.4. Environmental impacts 

The application of FePO4 or AlPO4 for the remediation of Pb-contaminated shooting soil should 
be environmental-sound. Soil naturally contains abundant Fe and Al in the constituents, and 
phosphorus is often applied to soil as al fertilizer for plant growth. FePO4 and AlPO4 are existing 
inorganic minerals with various crystal phases in the soil system and non-toxic to human beings and 
animals. FePO4 is one of a few molluscicides approved for use in organic farming, while AlPO4 has 
even been used for medical treatment. The application of FePO4 or AlPO4 could potentially cause the 
elevation of P level in surface aquatic system through runoff and leaching, which has been 
environmentally concerned because of water quality and potential eutrophication [47,48]. However, 
the P leaching in soil ecosystem could be minimized due to strong adsorption by soil minerals [49]. 
Another potential negative impact of the FePO4 or AlPO4 treatment is the Al release to the 
environment under acidic conditions, threatening the aquatic life and plants. Theoretically, FePO4 
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and AlPO4 are insoluble in pH 3 to 8 as simulated with Mineql+4.6. Studies also showed that FePO4 
and AlPO4 are hardly soluble in natural soil ecosystem [33]. Consequently, FePO4 or AlPO4 coating 
would be potentially effective technique to prevent Pb release from weathered bullets in shooting 
range. For practice and successful implementation of this application, maintaining aerobic condition 
of soils is critical, because Fe(III) may be reduced to Fe(II) under anoxic conditions [50], which 
increases the solubility of the compound and destabilize the coating. However, anoxic conditions of 
soil do not affect the AlPO4 stability. Thus, AlPO4 coating would be more stable than FePO4 coating 
under anoxic soil environment. 

5. Conclusion 

Surface coatings using FePO4 and AlPO4 were tested for the Pb stabilization of shooting bullets 
in the contaminated soil. The two metal phosphates were synthesized and successfully coated on the 
surface of lead bullets. When bullets were treated with FePO4 or AlPO4 coating solutions for 7 days 
under pH range of <5.5, the TCLP leachable Pb was substantially reduced by 92–100%. Treatment 
with FePO4 or AlPO4 coating solutions on Pb-contaminated shooting soil also demonstrated 
significant reduction of the leachable Pb, with the reduction of 85–98% for FePO4 and 77–98% for 
AlPO4. Lead stabilization was achieved by forming FePO4 or AlPO4 coating on the surface of lead 
fragments that protected bullets from being exposed directly to oxygen and water, consequently 
inhibiting the weathering and corrosive process. During the coating processes, lead phosphates such 
as pyromorphites could also be potentially formed. This study demonstrated that application of 
AlPO4 and FePO4 coating technology would be a cost-effective and environmental-sound solution to 
remediate Pb-contaminated shooting soil, especially under lower pH and aerobic conditions, and 
safeguard human and ecosystem from the contamination. 
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