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Abstract: The efficient utilization and conversion of inexpensive invasive raw materials into 

bioethanol following a biorefinery approach is a priority in the research field of renewable fuel. With 

this purpose, Acacia dealbata wood samples were pretreated with 1-ethyl-3-methylimidazolium 

acetate under optimized conditions, and the resulting solids were employed as a substrate for 

enzymatic hydrolysis. Enzymatic assays were performed according to a complete factorial 

experimental design, in which the effects of two independent variables (liquor to solid ratio and 

enzyme to substrate ratio) on the kinetics and yields of the xylan and cellulose saccharification were 

assessed. The Response Surface Methodology was employed for optimizing the experimental 

conditions. High sugar concentrations (around 80 g/L), and favorable polysaccharide conversions 

(CCG = 79.4% and XnCX = 77.9%). were predicted by the model under the selected operational 

conditions (6 g liquor/g substrate, 22 FPU/g). The results reported in this work compare well with 

other studies dealing with either other ionic liquids or classical pretreatments, using the same raw 

material or other woody substrates. 

Keywords: Acacia dealbata wood; ionic liquid; pretreatment; enzymatic hydrolysis; biomass 

biorefinery 
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Abbreviations  

LSR: liquor to solid ratio; ESR: enzyme to substrate ratio; EHS: enzymatic hydrolysis substrate;  

FPU: filter paper units; IU: international units; t: reaction time. 

 

1. Introduction  

Nowadays, there is an increased scientific and commercial interest in the development of viable 

biorefining strategies suitable for converting renewable raw materials into biofuels and platform 

chemicals, boosted by environmental concerns, depleting fossil resources and public awareness [1,2]. 

This goal can be achieved in biomass biorefineries, conceived as integrated chemical and 

biotechnological processes enabling the selective separation and the efficient utilization of the major 

feedstock components [3,4]. 

The feedstock cost is one of the economic bottlenecks in the biotechnological production of 

chemicals and fuels. Acacia dealbata, an invasive Australian woody legume, has become a serious 

environmental problem because it modifies the structure of different native ecosystems and threatens 

native aboveground [5]. Acacia dealbata is an attractive biorefinery raw material from 

environmental, economic and chemical points of view, because it is renewable, cheap, abundant, and 

rich in polysaccharides [6]. To our knowledge this promising raw material has not been yet 

extensively studied. Therefore further research is required to develop different green biorefinery 

schemes. 

Owing to their complex chemical and structural nature, the woody materials are not directly 

suitable for bioconversion into fuels and chemicals [7]. The recalcitrance of lignocelullosic materials 

can be reduced by a suitable pretreatment [8], which is one of the key stages of biorefineries.  

Desirably, pretreatments should meet a number of requirements, including [9–12]: (i) be simple 

and cost effective; (ii) allow high carbohydrates recovery; (iii) result in high digestibility of the 

polysaccharides in the subsequent enzymatic hydrolysis; (iv) avoid the formation of inhibitory 

byproducts hindering the subsequent hydrolysis and fermentation; (v) lead to high concentration of 

released sugars in the liquid fraction; (vi) be able to produce high quality lignin with small amounts 

of waste. 

Several types of pretreatments have been explored in the last decades, and they have been 

extensively reviewed along with their key advantages and disadvantages [13,14]. In recent years, 

ionic liquids (ILs) have received attention as promising green solvents for the fractionation of 

lignocellulosic biomass [8,15–18]. In particular, halogen-free ILs of low viscosity can dissolve 

polysaccharides efficiently [19]. The ILs bearing an acetate group, like 1-ethyl-3-methylimidazolium 

acetate (EMIMAc), are promising solvents due to its favorable properties, including low melting 

temperature, low viscosity, non-toxicity and non-corrosive character [20,21]. Additionally, EMIMAc 

showed high capacity to reduce the crystallinity of cellulose and significantly improve the enzymatic 

saccharification of lignocelullosic materials [22].
 

Unlike chemical processes, the use of enzymes has the following advantages [23–25]: (1) 

operation can be performed under moderate pressure and temperature in non-corrosive media; (2) 

operation is ―clean‖, since no pollutants or substances hazardous to the environment or human health 

are used; (3) hydrolysis is specific, avoiding the generation of glucose degradation products; (4) high 
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hydrolysis yields can be achieved; and (5) no fermentation inhibitors are generated. 

The objective of this work was to optimize the recovery fermentable sugars in the enzymatic 

hydrolysis of Acacia dealbata wood pretreated with EMIMAc. An experimental plan (in which the 

liquor to solid ratio (LSR) and the enzyme to substrate ratio (ESR) employed in enzymatic 

hydrolysis were employed as independent variables) was carried out to assess their effects on the 

kinetics and yields of enzymatic hydrolysis, using the Response Surface Methodology. The model 

predictions enabled the identification of the optimal operational conditions.  

2. Materials and Method 

2.1. Raw material 

Acacia dealbata wood samples were collected locally, debarked and chipped. Air-dried Acacia 

dealbata wood samples were milled (Retsch SM1 74075 instrument, Germany) and sieved (Retsch 

AS200 Basic, Germany operating at an amplitude of 80 for 30 min) to select the fraction of particles 

with size in the range 0.25–1 mm. The resulting material was mixed in a single lot to avoid 

compositional differences, an assayed for composition using the methods listed below. Table 1 shows 

the chemical composition of the selected fraction of Acacia dealbata wood (expressed in g 

component/100 g oven-dry wood ± standard deviation). 

Table 1. Chemical composition of Acacia dealbata wood and the substrate used in 

EH assays 

 Content 

Component Acacia dealbata wood 

(g /100 g dry wood) 

EHS
* 

(g/100 g dry EHS) 

Cellulose 43.0 ± 1.31 46.2 ± 1.55 

Xylan 15.6 ± 0.44 13.7 ± 1.04 

Acetyl groups 3.26 ± 0.17 2.30 ± 0.39 

Klason lignin 22.4 ± 0.83 21.9 ± 0.33 

Extractives 5.10 ± 0.34 - 

Ashes 0.63 ± 0.02 - 

Others (by difference) 10.0 15.9 

* Pretreated with EMIMAc at 150 ºC, 30 min and 20% of solid loading 

2.2. Processing of Acacia dealbata 

Wood samples and EMIMAc (from Sigma Aldrich) were dried overnight in an oven at 70 ºC to 

remove moisture. Pretreatments were performed in stirred round-bottom flasks in absence of 

agitation, operating under the conditions (150 ºC for 30 min at 20% solid loading) reported as 

optimal in an earlier study [6]. Temperature was controlled using a PID module. At the end of the 

treatments, cellulose was precipitated by adding water (as an anti-solvent) to the media under 

vigorous stirring. After 30 min, the suspension was filtered and the solid fraction was thoroughly 

washed with distilled water and dried overnight at 50 ºC, to yield the enzymatic hydrolysis substrate 

(EHS), which was assayed for composition and employed in saccharification experiments. The 
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composition of EHS (expressed in g component/100 g oven-dry EHS ± standard deviation) is also 

given in Table 1. 

2.3. Enzymatic hydrolysis 

Table 2 summarizes the experimental plan designed to assess the effects of the considered 

independent variables (LSR and ESR) on the enzymatic hydrolysis of EHS. Experiments were 

carried out in Erlenmeyer flasks with orbital agitation (150 rpm) using commercial enzymes 

(‗‗Celluclast 1.5 L‘‘ cellulases from Trichodermareesei and ‗‗Novozym 188‘‘ β-glucosidase from 

Aspergillus niger), kindly provided by Novozymes (Madrid, Spain). The cellulase activity of 

‗‗Celluclast 1.5 L‘‘ was measured using the Filter Paper assay and expressed in terms of 

FPU/mL [26]. The β-glucosidase activity of ‗‗Novozym 188‘‘ was measured by the PNPG assay [27] 

and reported as IU/mL. Experiments were performed at 48.5 ºC in media containing 0.05 N citric 

acid–citrate buffer (pH = 4.85), keeping a cellobiase to cellulase ratio of 5 IU/FPU. At given 

hydrolysis times, samples were withdrawn from the reaction media, centrifuged, filtered and 

analyzed by HPLC (see below).  

Table 2. Experimental design employed to assess the enzymatic hydrolysis of 

pretreated Acacia dealbata wood, expressed in terms of the dimensional variables 

LSR and ESR and dimensionless variables x1 and x2. 

  Dimensional independent variables Dimesionless, normalized, independent variables 

Exp. LSR  

(g/g) 

ESR  

(FPU/g) 

X1 X2 

1 6 8 −1 −1 

2 6 19 −1 0 

3 6 30 −1 1 

4 13 8 0 −1 

5 13 19 0 0 

6 13 19 0 0 

7 13 19 0 0 

8 13 30 0 1 

9 20 8 1 −1 

10 20 19 1 0 

11 20 30 1 1 

2.4. Analytical methods 

2.4.1. Analysis of the raw material and pretreated solids 

Wood and EHS samples were milled to particle sizes < 0.5 mm and subjected to the following 

analyses: extractives (TAPPI T-264-om-88m method); moisture (ISO 638:1978 method); ashes 

(T-244-om-93 method); cellulose, xylan, arabinan and acetyl groups (by HPLC determination of the 

glucose, xylose, arabinose and acetic acid contained in liquors from the TAPPI T13m assay); and 
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Klason lignin (by gravimetric determination of the solid from the TAPPI T13m assay). 

Determinations were carried out in triplicate. 

2.4.2. High performance liquid chromatography analysis 

Analyses were performed using an Agilent 1200 series chromatograph with a refractive index 

detector (temperature, 50 ºC). Other analysis conditions were: column, Aminex HPX-87H (BioRad, 

USA); mobile phase, 0.003 mol/L H2SO4 flow rate, 0.6 mL/min. 

2.4.3. Fitting of data 

The experimental data were fitted to the proposed models using commercial software (Solver, 

Microsoft Excel, Microsoft, USA). 

3. Results and Discussion 

3.1. Chemical composition and pretreatment of Acacia dealbata wood 

The data in Table 1 confirm the high polysaccharide content of Acacia dealbata wood (close to 

60%), as well as its limited lignin content (22.4%). Other components of minor importance for the 

purposes of this study include extractives and acetyl groups, which accounted for 5.10 and 3.26 wt% 

of the dry wood, respectively. These results are in the range reported in literature [6,28–30].
 

Table 1 also lists compositional data of EHS. As indicated in an earlier work [6], the EMIMAc 

pretreatment led to favorable polysaccharide preservation, resulting in solid fractions (EHS) with 

increased contents of cellulose and xylan (46.2 and 13.7%, respectively). 

3.2. Enzymatic hydrolysis 

3.2.1 Experimental plan 

The enzymatic hydrolysis is strongly affected by LSR and ESR. To assess their effects, a 

complete, factorial experimental design (in which both variables, whose variation ranges were 

6–20 g/g and 8–30 FPU/g, respectively, were evaluated at three levels) was performed. The same 

general philosophy has been successfully employed in literature to assess the enzymatic hydrolysis 

of a variety of substrates [31–33].
 

Table 2 shows the set of experiments, whose structure corresponds to a complete, factorial, 

centered, experimental design (2
3
 plus two additional replications at the central point of the 

experimental domain). The dimensionless, normalized, independent variables (x1 and x2), with 

variation ranges (−1, 1), are linearly related to the dimensional independent ones (liquor to solid ratio 

(LSR) and enzyme to substrate ratio (ESR)), respectively. The dimensionless ones of independent 

variables were calculated following the equation: 

x1 = 2   
𝐿𝑆𝑅𝑖−𝐿𝑆𝑅𝑚𝑒𝑎𝑛

𝐿𝑆𝑅𝑚𝑎𝑥 −𝐿𝑆𝑅𝑚𝑖𝑛
     (1) 
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x2 = 2   
𝐸𝑆𝑅𝑖−𝐸𝑆𝑅𝑚𝑒𝑎𝑛

𝐸𝑆𝑅𝑚𝑎𝑥 −𝐸𝑆𝑅𝑚𝑖𝑛
     (2) 

where the subscripts i is the considered experiment, mean is the average value of the variable min 

and max and min and max mean minimum and maximum values of the respective variation ranges, 

respectively. 

In order to allow a generalized interpretation of the effects caused by the reaction time, 

concentration profiles were determined for enzymatic assays performed under the conditions of 

experiments 1–11. As representative examples, Figure 1 shows the concentration profiles determined 

for glucose and xylose in assays 1, 2, 3, 6, 9 and 11, as well as the conversions calculated from them 

(the cellulose conversion into glucose, denoted CCG, and the xylan conversion into xylose, denoted 

XnCX). The concentration profiles of both components follow similar patterns, beyond the obvious 

differences resulting from the relative cellulose and xylan contents of EHS. The highest 

concentrations of glucose and xylose reached after 48h of hydrolysis, varied in the ranges of 

18.5–71.1 g/L and 6.59–18.4 g/L, respectively. 

The highest glucose concentration (71.1 g/L) was obtained in experiment 3, operating at LSR = 

6 g/g and ESR = 30 FPU/g after 48h of hydrolysis, whereas high xylose concentrations were reached 

at prolonged reaction times in experiments 1–3 (Figure 1d). In comparison, limited sugar 

concentrations were noticed in experiment 9 (18.5 g glucose/L and 6.59 g xylose/L at the end of the 

assay). 

 

Figure 1. Time courses of cellulose and xylan conversions (CCG and XnCX) and 

glucose and xylose concentrations obtained in selected enzymatic hydrolysis assays 

(experiments 1, 2, 3, 6, 9 and 11) 
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The susceptibility of EHS to enzymatic saccharification was confirmed by the high conversions 

(above 70%) reached after 24 h in almost all the experiments (see Figures 1a and b). High xylan 

conversions were reached in the zone of the experimental domain defined by LSR in the range 13–20 

g/g and ESR ≥ 19 FPU/g. Complete xylan conversion was achieved in experiment 11 (performed at 

LSR = 20 g/g and ESR = 30 FPU/g) after 48 h of hydrolysis. In comparison 24.0 g glucose/L 

(corresponding to 95.8% cellulose conversion into glucose) was achieved at the end of 

experiment 11. 

In comparative terms, experiment 3 (performed at LSR = 6 g/g with ESR = 30 FPU/g) provided 

high sugar concentrations at all hydrolysis times (for instance, 50.7 g glucose/L after 12 h, 

corresponding to 64.9% cellulose hydrolysis; or 89.1 g total sugars/L after 48 h, corresponding 91.0 

and 76.2% hydrolysis of cellulose and xylan, respectively (see Figure 1). On the other hand, 

operating at the intermediate LSR with the highest enzyme charges assayed (experiment 8) led to 

lower sugar concentrations (46 g/L at 48 h) but to saccharification conversions, in the range 

92.6–98.6 %, which are quite close to the highest values obtained. 

3.2.2. Generalized interpretation of data 

Different equations have been proposed in the literature to describe the effects of the reaction 

time on enzymatic hydrolysis of cellulosic substrates. Among them, the model suggested by 

Holtzapple, et al. (1984) [34] stands out for its simplicity and ability to provide a close interpretation 

of experimental data [12, 35]. The form of the equation is: 

𝐺 = 𝐺𝑚𝑎𝑥
𝑡

𝑡 +𝑡1/2G
     (3) 

where G is the glucose concentration achieved at time t, Gmax is the maximum glucose concentration 

that would be reached at an infinite reaction time, and t1/2G is the time needed to achieve G = Gmax/2. 

Based on the similar shape of the concentration profiles, the same equation has been employed in the 

mathematical modeling of xylose generation along the experiments: 

𝑋 = 𝑋𝑚𝑎𝑥
𝑡

𝑡 +𝑡1/2X
     (4) 

where X is the xylose concentration achieved at time t, Xmax is the maximum xylose concentration 

that would be reached at an infinite reaction time, and t1/2x is the time needed to achieve X = Xmax/2. 

In this work, the concentration profiles determined for glucose and xylose in the various 

experiments were fitted to the Holtzapple‘s model, with the restrictions Gmax ≤ GPOT and Xmax ≤ XPOT. 

Table 3 shows the results determined for the parameters Gmax, t1/2G, Xmax and t1/2X. The high values 

reached by the parameter R
2 

when fitting the data from the various experiments (average 

value > 0.995) confirmed the suitability of the proposed model for data interpretation. 

According to the data in Table 3, the t1/2G varied in the range 4.45–16.05 h, reaching its highest 

values in experiments performed at the lowest enzyme charge considered (8 FPU/g). However, as 

can also be seen in the cited table, lower values were found for the t1/2X, within the range 

2.04–11.51 h. 

As a general trend, for a given LSR, increased ESR led to decreased t1/2, whereas the lowest 

values of t1/2G and t1/2X (4.45 and 2.04 h, respectively) corresponded to experiments 11 and 2. On the 
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other hand, average values of 4.90 h and 3.43 h were obtained for t1/2G and t1/2X, respectively, in 

assays carried out at ESR = 30 FPU/g (experiments 3, 8 and 11). 

Concerning variables Gmax and Xmax (see Table 3), the highest results (76.5 and 20.2 g/L, 

respectively) were obtained in experiments 3 and 1, confirming the high susceptibility of both 

substrates towards enzymatic saccharification (also reflected in the fast hydrolysis kinetics observed 

in the initial reaction stages).  

Table 3. Kinetics parameters deduced from experiments 1–11. 

Experiment y1 or t½G
*
  

(h)  

y2 or Gmax
**

  

(g/L)  

y3 or t½X
*
  

(h)  

y4 or Xmax
**

  

(g/L)  

1 15.5 65.60 5.49 20.20 

2 5.07 64.20 2.04 19.00 

3 5.43 76.50 3.86 18.80 

4 16.05 36.70 11.51 11.50 

5 7.91 35.90 4.89 11.40 

6 7.56 37.10 4.66 11.00 

7 7.95 36.70 4.48 10.80 

8 4.92 37.10 3.34 11.50 

9 12.1 22.70 8.03 7.58 

10 8.07 24.50 3.79 7.58 

11 4.45 24.50 3.10 7.58 

* time needed to achieve 50% Gmax or Xmax 

** maximum glucose or xylose concentration predicted for time = ∞ 

3.2.3. Dependence of the kinetic parameters on LSR and ESR 

The set of variables Gmax, t1/2G, Xmax and t1/2X allows a generalized interpretation of the 

enzymatic hydrolysis, and have been included in this study as dependent variables (denoted y1, y2, y3, 

and y4, respectively), which were correlated with the independent variables (LSR and ESR) by 

empirical modelling. 

A great amount of experimental work would be needed to assess the effects of each independent 

variable on each dependent variable in a systematic way. Alternatively, the Response Surface 

Methodology can serve for optimization based on relatively small experimental designs. This 

approach was employed in the present study. 

The interrelationships between dependent and independent variables were established by the 

following empirical equation: 

 

(5) 

 

where yj (j = 1, 2, 3 and 4) are the dependent variables (Gmax, t1/2G, Xmax and t1/2X, respectively); 

xi or xk (i or k: 1–2, k ≥ i) are the dimensionless normalized, independent variables measuring the 

values of LSR and ESR; and b0j...bikj are regression coefficients calculated from experimental data by 

multiple regression using the least-squares method. Table 4 lists the values determined for the 
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regression coefficients, as well as, for the statistical parameters measuring the correlation (R
2
) and 

significance of models (based on Fisher‘s F-test). 

Table 4. Regression coefficients and significance (based on t-test) and statistical 

parameters measuring the correlation and significance of models obtained for 

variables y1 to y4 in set of experiments 1–11. 

Regression Coefficients 

Coefficient y1 or t½G 

(h) 

y2 or Gmax 

(g/L) 

y3 or t½X 

(h) 

y4 or Xmax 

(g/L) 

b0j 7.78
a
 36.01

a
 4.77

a
 11.09

a
 

b1j −0.23 −22.42
a
 0.51 −5.89 

b2j −4.81
a
 2.16 −2.53

a
 −0.23 

b12j 0.61 −2.27 0.71 0.34 

b11j −1.17 9.15
a
 −1.98

b
 2.16

a
 

b22j 2.74
b
 1.75 2.52

b
 0.34 

Statistical Parameters Measuring the Correlation and Significance of the Models 

R
2
 0.937 0.989 0.889 0.997 

Fexp 14.80 89.43 8.01 471.16 

Significance level (%) > 99 > 99 > 98 > 99 
a 
Coefficients significant at the 99% confidence level   

b 
Coefficients significant at the 95% confidence level   

The values of coefficients and the model predictions obtained for the various dependent 

variables are discussed in the following paragraphs. 

A) t1/2G—The values of the regression coefficients listed in Table 4 describing the behavior of 

variable t1/2G (denoted y1), show that ESR and its quadratic term were the most influential terms 

affecting the model response. To facilitate the interpretation of results, Figure 2 shows the calculated 

dependence of t1/2G on LSR and ESR. The variation pattern was defined by the lowest values (4.2–4.8 

h) of the dependent variable at the higher enzyme loadings assayed, in both extremes of the LSR 

considered, and by a marked drop with ESR. On the other hand, the highest values of t1/2G (> 15 h), 

were predicted for operation at the lowest ESR at intermediate or low LSR. The latter variable 

caused just limited effects on t1/2G. 

B) Gmax—According to the values of the regression coefficients (see Table 4), all of the 

independent variables affected significantly Gmax (denoted y2), the major effects being associated to 

linear and quadratic terms of LSR. Figure 3 shows the calculated dependence of Gmax on LSR and 

ESR. Decreased LSR resulted in steadily increased of Gmax, which reached its maximum value 

(73.8 g/L) operating at the highest ESR with the lowest LSR. On the other hand, the minimum Gmax 

value (22.7 g/L) was found operating at ESR = 19 FPU/g with LSR = 20 g/g. Favorable values of 

Gmax (in the range of 60–73.8 g/L) were predicted for LSR around 6 g/g, no matter the ESR 

considered. 

C) t1/2X—Similarly to the variation pattern observed for t1/2G, the most influential terms 

affecting t1/2X (or y3) were ESR and its quadratic term. In this variable, LSR (through the quadratic 

term of the equation) was more influential than in the case of t1/2G. This fact is reflected in Figure 4, 

which shows the calculated dependence of t1/2X on LSR and ESR. Increased ESR led to decreased 
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t1/2X, up to reach minimum values close to 2 h in the range 22–26 FPU/g. Operation at higher ESR 

resulted in a slight increase of the dependent variable. Regarding the effects caused by LSR, the 

maximum values of t1/2X were achieved in both extremes of the response surface operating at 

medium LSR. Similarly to the behavior observed for t1/2G, short t1/2X were predicted for operation at 

LSR around 6 or 20 g/g and high enzyme loadings (22–26 FPU/g). 

D) Xmax—All the independent variables caused significant effects on Xmax (denoted y4). Among 

them (similarity to the case of Gmax) the most influential one was LSR (through its linear and 

quadratic terms). Figure 5 shows the calculated dependence of Xmax on LSR and ESR, which 

presented general variation patterns related to the ones described above for Gmax. However, operating 

at LSR about 6 g/g, increased enzyme loadings resulted in slightly decreased Xmax, (but in increased 

Gmax). The maximum Xmax value (20.1 g/L) was predicted for the lowest LSR (6 g/g) and enzyme 

loading (8 FPU/g), whereas the maximum Gmax was achieved at higher ESR. Interestingly, Xmax > 16 

g/L were predicted for operation at low LSR (6–8 g/g) in the whole ESR range considered. 

 

Figure 2. Dependence of the kinetic parameter t1/2G on both the liquid to solid ratio 

(LSR) and the enzyme to substrate ratio (ESR). 

 

Figure 3. Dependence of the kinetic parameter Gmax on both the liquid to solid ratio 

(LSR) and the enzyme to substrate ratio (ESR). 
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Figure 4. Dependence the kinetic parameter t1/2X on liquid to solid ratio (LSR) and 

enzyme to substrate ratio (ESR). 

 

Figure 5. Dependence of the kinetic parameter Xmax on both the liquid to solid ratio 

(LSR) and the enzyme to substrate ratio (ESR). 
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conditions, the values predicted for the dependent variables (Gmax = 68.9 g/L, t1/2G = 5.56 h, 

Xmax = 19.0 g/L and t1/2X = 1.93 h) are close to the optimal ones found in this work. 

3.2.4. Generalized interpretation of kinetic data and evaluation of the predictive ability of the 

models 

The empirical modeling performed in this study allowed the prediction of the kinetics of 

glucose and xylose generation by enzymatic hydrolysis along the whole experimental domain, 

through the following calculation scheme: (i) for given values of LSR and ESR, the dimensionless 

independent variables (x1, x2) can be calculated using equations 1 and 2; (ii) the dependent variables 

(Gmax, t1/2G, Xmax and t1/2X) can be then calculated using equation 5 and the set of regression 

coefficients (listed in Table 4); and (iii) with this information, the concentrations of glucose and 

xylose achievable at the desired hydrolysis time can be calculated using equations 3 and 4. 

Figure 6 allows an evaluation of the correspondence between the predicted and experimental 

values of the concentrations of glucose and xylose concentrations after 7, 12, 24 and 48 h of 

enzymatic saccharification. The close agreement between calculated and experimental data confirms 

the validity of the models for quantitative calculations and modelling. 

 

Figure 6. Correspondence between predicted and experimental values of glucose (a) 

and xylose (b) concentrations achieved in hydrolysates after 7, 12, 24 and 48 h of 

enzymatic saccharification 
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4. Conclusion 

Samples of A.dealbata wood were pretreated with EMIMAc under operational conditions 

reported as optimal (150 ºC, 30 min and 20% of solid loading), and the pretreated solids (EHS) were 

employed as substrates for enzymatic hydrolysis. The effects of the reaction time were assessed for a 

set of experiments, from which kinetic parameters measuring the kinetics of cellulose and xylan 

hydrolysis were calculated. These parameters were employed in a Surface Response Methodology 

assessment to describe their dependence on two selected operational variables (LSR and ESR). High 

sugar concentrations and polysaccharide conversions were obtained operating at low LSR and 

medium to high ESR. 

Unlike other classical pretreatments, such as acid pretreatment, alkaline pretreatment or steam 

explosion, the pretreatment with EMIMAc showed high capacity to disrupt the structure of 

crystalline cellulose allowing the preservation of high contents of cellulose and hemicelluloses in the 

raw material and the coproduction of high glucose and xylose concentrations by enzymatic 

hydrolysis under the optimized conditions cited above. 

The best EHS behaved as susceptible hydrolysis substrates are being successfully employed for 

further optimization of fermentation process producing ethanol by simultaneous saccharification and 

fermentation (SSF) strategies. On the other hand, alternative recycling strategies for EMIMAc are 

also under study.  
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