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Abstract: Spatially-explicit state-and-transition simulation models of land use and land cover 
(LULC) increase our ability to assess regional landscape characteristics and associated carbon 
dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest 
age and land-use distribution, a state-and-transition model can more effectively simulate the pattern 
and spread of LULC changes. This manuscript describes the methods and input parameters of the 
Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation 
model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. 
The methods and input parameters are spatially explicit and describe initial conditions (strata, state 
classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived 
from harmonization of multi-temporal data characterizing changes in land use as well as land cover. 
Harmonization combines numerous national-level datasets through a cell-based data fusion process 
to generate maps of primary LULC categories. Forest age was parameterized using data from the 
North American Carbon Program and spatially-explicit maps showing the locations of past 
disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the 
location of future LULC transitions. Based on distance-decay theory, maps were generated to guide 
the placement of changes related to forest harvest, agricultural intensification/extensification, and 
urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by 
showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean 
California as a regional subset to highlight local to regional aspects of land change, which 
demonstrates the utility of LUCAS at many scales and applications. 
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scenarios 

 

1. Introduction 

Human activities are continually transforming the land surface, emphasizing the trade-offs 
between the use of natural resources and preserving ecosystem functions [1,2]. Changes in land use 
and land cover (LULC) include human-driven processes and biophysical processes, which can be 
monitored and assessed with spatial data and models. Changes such as the clearing of forests for 
agriculture or urban development directly affect the exchange of greenhouse gases between 
terrestrial ecosystems and the atmosphere at local-to-global scales [3-5]. LULC change has been 
recognized as a necessary component for global change assessments, [6-8] triggering an increased 
need for developing scalable models with infrastructure that address multi-disciplinary concerns.  

Spatially-explicit LULC change models are developed to describe past, present and future 
landscape conditions, often used to communicate theories and concepts about possible outcomes 
related to human and environmental interactions. These models take many forms; the National 
Research Council has recently conducted a review and broadly categorizes the models as: machine 
learning and statistical, cellular, sector-based economic, spatially disaggregated economic, agent 
based, and hybrid [9]. Models operate with different rule sets and parameters, often sharing 
components as well as limitations. For example, the machine learning and statistical approach 
expresses land change through a selection of statistically explanatory variables, using logistic 
regression, neural networks or weighted relationships [10,11]. These models assume stationarity and 
often lack the potential to capture variability in future patterns. 

Agent based models include parameters that reflect the collective behavior of human actors (e.g. 
land managers, farmers, developers) and how they interact with given landscape characteristics [12]. 
Most case studies are done from the bottom up to address local decisions and management [13,14]. 
Due to the complex process involving decision rules, surveys, and public opinion, the Agent Based 
Model is rarely used at the national or global scales. The CLUE (Conversion of Land Use and its 
Effects) model is a cellular model that is used from local to global scales, taking a top-down 
approach to allocate change often based on scenarios [9,15]. Suitability maps and neighborhood 
interactions of current conditions guide the allocation of change.  

Markov-chain models were one of the first approaches to modeling the continuation of LULC 
historical trends [16]. A transition matrix of the historic time period is used to derive transition 
probabilities for different conversion types. However, there are a number of limitations using 
traditional Markov-chains for LULC analysis. The primary drawbacks involve stationarity of the 
transition matrix across time and space and difficulty pulling out the causal factors driving change [17]. 
Many advances have been made to combine Markov-chains with cellular models to improve 
simulation rules and spatial patterns [18,19]. 

State-and-transition simulation models can be considered a Markov chain, where the probability 
of a state transitioning at any given time depends only on the present state. However, modern 
state-and-transition simulation models (e.g. VDDT, ST-Sim) have adapted beyond the technical 
definition of the Markov chain in order to reflect the complex spatial relationships between states on 
a given landscape. Our research uses the ST-Sim software package, openly available through APEX 
Resource Management Solutions (www.apexrms.com). ST-Sim provides a combination of stochastic, 
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deterministic and empirical methods to predict how variables transition from one state to another 
within a selected time period [19]. A grid of simulation cells is classified into states that represent the 
landscape. Probabilities are assigned to possible transitions between states, and the landscape is then 
simulated through time using Monte Carlo simulation methods. In addition to tracking state classes 
and transitions, ST-Sim also tracks the age and time-since-transition for every simulation cell. 
External factors like climate change and harvest rates can have probabilities that change at different 
times in the simulation period; therefore, age-dependent transitions are a key parameter that makes 
ST-Sim non-stationary and a suitable option for capturing variability in future projections.  

The U.S. Geological Survey (USGS) recently developed a custom version of ST-Sim known as 
the Land Use and Carbon Scenario Simulator (LUCAS), to model future projections (2000‒2100) of 
LULC and the associated impacts on carbon dynamics in the conterminous U.S. LUCAS takes an 
integrated approach where changes in LULC are modeled using state-and-transition simulation and 
carbon stocks and flows are modeled using a stock and flow model, yet these processes are 
parameterized uniformly and operate synchronously. By using a consistent framework (scale, 
temporal period, classification scheme, and model criteria) we demonstrate how a combination of 
biophysical processes and anthropogenic drivers can be modeled within a single platform. The 
spatial scale of 1-km resolution makes it possible to incorporate downscaled global emissions 
scenarios at very coarse resolutions, with regional summaries of historical LULC trends at fine 
resolutions [8,20]. All input parameters were seamlessly created for the conterminous U.S., which 
allows the inputs and outputs to be subset by any zone of interest from management to ecological. 
Spatially-explicit results link local, regionalized change to national and global change estimates, 
which contribute to the transferability of data and modeling methods to various scales.  

The goal of this manuscript is to outline the methods and parameters used to develop LUCAS. 
Special attention is given to the spatially-explicit source data incorporated into the LULC sector of 
the model. In particular, we use a harmonization process where over 20 national-level spatial datasets 
undergo a data fusion process resulting in the LULC conditions used to initialize the model. The 
initial conditions consist of a set of cell based rasters including a strata map of ecoregional zones [21], 
a state class map of LULC, and a forest age map. Spatial multipliers are additional maps that use 
neighborhood effects and landscape suitability to guide specific transitions. The initial carbon stock 
maps are introduced, while a full methodology of the stock and flow model is given in Sleeter et  
al. [22]. The results analyze the spatially-explicit input parameters with a sensitivity analysis, by 
showing how LUCAS responds to variations in the model input. Although this research has been 
conducted for the conterminous U.S. for multiple scenarios, we use Mediterranean California as a 
subset to highlight the utility of LUCAS at the regional scale and show one scenario, A1B, from the 
Intergovernmental Panel on Climate Change - Special Report on Emission Scenarios (IPCC-SRES) [23]. 

2. Methods and model parameters 

2.1. Study area 

The study area encompasses four Level III ecoregions covering most of California (Figure 1). 
The ecoregions are characterized by a mild climate of hot, dry summers and cool, moist winters with 
precipitation occurring from frontal storms off the Pacific Ocean [21]. Extending north to south from 
the Klamath Mountains to the Baja peninsula and east to west from the Sierra Nevada Mountains to 
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the Pacific Ocean, the landscape is characterized by shrubland vegetation of chaparral, mixed with 
grassland and open oak woodlands, agriculturally productive valleys and high urban population 
agglomerations. We include the Sierra Nevada ecoregion in our analysis to model forested land cover 
to demonstrate how harvesting associated with forest cover affects the carbon cycle. Using all four 
ecoregions captures all dominant human land uses in the state of California and allows for the 
examination of mitigation scenarios relative to forest harvest and agriculture extensification. 

 

Figure 1. Initial Conditions: Strata/State Classes (A) and Forest Age (B). The strata 
consists of four U.S. EPA level III ecoregions (Sierra Nevada, Southern and Central 
California Chaparral and Oak Woodlands, Central California Valley, and Southern 
California Mountains) [21]. The state classes for the year 2000 are from a harmonized 
LULC product. 

The ecoregions in the study area experienced 25,605 km2 of LULC change between 1973 and 
2000. The Central California Valley Ecoregion ranked the 6th highest changing ecoregion in the 
Western U.S. [24] with 7401 km2 of change. The other ecoregions ranked 10th (Southern and Central 
California Chaparral and Oak Woodlands), 18th (Southern California Mountains), and 19th (Sierra 

A  B
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Nevada), with 13,009 km2, 1413 km2, and 3782 km2 of LULC change between 1973 and 2000, 
respectively. The dominant LULC classes include grassland/shrubland (39.3%), forest (28.6%), 
agriculture (19.7%), and developed (6.3%). The overall spatial change was highest in the Central 
California Valley Ecoregion, estimated at 12.9% between 1973 and 2000. Overall change in the 
Southern and Central California Chaparral and Oak Woodlands Ecoregion was estimated at 9.7%. 
The Southern California Mountains and Sierra Nevada ecoregions had 5.1% and 5.0% overall spatial 
change, respectively. The most common types of LULC change across the study area were related to 
wildland fire and regrowth of vegetation after fires. The second most common types of change were 
linked to agricultural expansion and contraction in response to economic and climatic conditions. 
The third major type of change has been development, primarily conversion of agriculture to 
developed land in the Southern and Central California Chaparral and Oak Woodlands. 

2.2. Initial conditions 

The initial conditions for the LUCAS model describe the strata, LULC state classes, and forest 
stand age present at the start of the model simulation period (2000). The initial conditions need to be 
identified through a set of spatially-explicit input datasets, where the land use and land cover and 
forest age for each ecoregion (strata) are defined. Each component is explained in detail within this 
section of the manuscript.  

2.2.1. Strata 

The strata file is used to divide the landscape into contiguous zones such as ecoregions, 
management areas, vegetation types, or administrative boundaries. Each stratum has a unique 
pathway diagram and every cell within the entire landscape is assigned to its strata at the start of a 
simulation. Ecoregions originally developed by Omernik [21] and later modified by the U.S. 
Environmental Protection Agency [25] provide the strata used in the LUCAS model (Figure 1). 
Ecoregions are areas that share common characteristics relative to biophysical settings, management 
strategies, and socio-economic factors. Ecoregions have been demonstrated to be an effective 
framework for characterizing changes in U.S. land cover [26]. Stratifying the landscape allows the 
model to better simulate the spatial variability between ecoregions. If forest harvest rates are high in 
the Sierra Nevada, but nonexistent in the Central California Valley, we are able to parameterize the 
pathways and transition probabilities regionally to reflect that assumption.  

2.2.2. State Classes 

Initial state classes (Figure 1A) were set in LUCAS by using a circa-2000 LULC dataset that 
was created by harmonizing existing multi-temporal LULC datasets [27]. The methodology uses the 
principal of convergence of evidence to reclassify areas mapped by multiple national-scale LULC 
datasets. Datasets were combined through a cell-based data stacking process that determined the 
most likely cell classification based on input dataset agreement. This process allows for classification 
errors in some of the input datasets. Harmonization methods [28,29] were necessary because a wide 
range of national-scale land use/land-cover classification efforts exist, yet major differences between 
these data arise because of different methodologies, class definitions, and mapping objectives.  



673 
 

AIMS Environmental Science  Volume 2, Issue 3, 668-693. 

The current methodology used over 20 national LULC datasets that were readily available from 
various archives (Table 1). The datasets ranged in vintage from 1992 to 2011. The harmonization 
process (Figure 2) begins by identifying cells that are persistent land cover and do not change over 
the 19-year harmonization period. Based on previous USGS research [24], the amount of persistent 
cover should approximate 90% of the conterminous U.S. land surface between 1992 and 2011. Most 
differences from this amount are due to classification errors in the input datasets. In developing the 
harmonized dataset, only 54% of 30-m raster cells had 100% agreement between input datasets. 
Expanding the rules of cell inclusion to cells where a clear majority of the input datasets were in 
agreement led to 82% of the U.S. classified as persistent cover. Persistent cover increased to 90% of 
the land surface when cells were assigned a cover type even though the input dataset agreement was 
evenly split between two classes. For example, in the western U.S., areas changing from grassland to 
shrubland or classification confusion between pasture/hay and cultivated crops correspond to areas 
that were transitional between cover types or spectrally similar to cultivated crops. The remaining 10% 
of the land surface was cells that experienced a change in land cover or cells that had substantial 
disagreement between datasets and could not be classified based on dataset agreement. These latter 
cells tended to correspond to areas that were difficult to map because they contained mixed spectral 
responses, such as riparian areas. Data from the National Land Cover Database 2001 [30] was used 
to populate remaining unclassified cells. The resulting dataset was then visually inspected for quality 
assurance. Artificial boundaries and other processing artifacts in the input data were minimized by 
harmonization. The addition of three disturbance classes (forest harvesting, wildland fire, and surface 
mining) increased the utility of the harmonized dataset for land change analysis and modeling. 

Table 1. Datasets used in the harmonization process to create a circa-2000 land use and land 
cover dataset for setting state classes in the LUCAS model. 

Data Sources Description 

National Land Cover 
Database (NLCD) 

Six datasets available (1992, 2001, 2006, 2011, Retro 1992, & Retro 
2001) [30, 31, 32, 33] 

LANDFIRE geo-spatial 
layers 

Six datasets available (Existing Vegetation Cover (2001 refresh, 2008 
refresh, & 2010 refresh) and Existing Vegetation Type (2001 refresh, 
2008 refresh, & 2010 refresh)) [34] 

Cropland Data Layer 
(CDL) 

Six datasets available (2008‒2013) [35] 

National GAP Land Cover  One dataset available (2001) [36] 

Annual datasets available 
on vegetation disturbance 

Global Forest Cover (2000‒2012) [37]; 
LANDFIRE Disturbance (1999‒2010) [38]; 
WELD Land Cover Land Cover Change (2006‒2010) [39]; 
Monitoring Trends in Burn Severity (1984‒2012) [40] 
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Figure 2. Conceptual diagram of the harmonization process showing the major 
output components. 

The harmonized LULC product was subsequently recoded to match the state classes defined for 
the LUCAS state-and-transition simulations. LUCAS uses state classes to represent eight broad-scale 
LULC classes. The classification scheme used is based largely on the classification system 
developed by Anderson et al. [41] with some small differences (Table 2). The classification scheme 
represents a hybrid between use and cover, with some classes purely describing land cover, and 
others a mixture of cover and use. For example, development describes built-up features of the land 
surface and includes features such as paved surfaces, infrastructure, and housing, as well as 
vegetated areas predominated by a relatively high intensity anthropogenic use (e.g. golf courses). All 
areas of mechanical disturbance in the harmonized dataset (i.e. forest harvesting) were recoded to 
forest, while areas of natural disturbance in the harmonized dataset (i.e. wildfire) were recoded to 
grassland/shrubland or forest, based on the underlying land cover from the National Land Cover 
Database (NLCD). Further aggregation involved merging the cultivated crops and hay/pasture 
classes into a single agriculture class, merging the herbaceous and woody wetlands classes into a 
single wetlands class, and merging all four NLCD developed classes (open space, low intensity, 
medium intensity, and high intensity) into one developed class.  
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Table 2. Descriptions of the land-use/land-cover classes used to set the state classes in the 
LUCAS state-and-transition-simulation model. 

LULC State 
Class 

Description 

Water Water includes estuaries and bays, canals/aqueducts, lakes, reservoirs, rivers and 
streams. Cells are classified as water if vegetation and/or soils make up less than 
25% of the area. 

Developed Development includes residential, industrial, commercial, transportation, and areas 
such as parks or other open spaces surrounded or otherwise dominated by an urban 
landscape.  

Barren Barren includes bare rock, gravel, sand, silt, clay, or other earthen material, with little 
or no “green” vegetation present. Vegetation, if present, is widely spaced and scrubby; 
lichen cover may be extensive. 

Forest Forests are distinguished from other vegetated surfaces based on having a tree-crown 
areal density greater than 20%. However, within the forest class we also include areas 
of recent harvest and natural disturbance, where tree cover may not meet this 
threshold.  

Agriculture Agricultural lands are characterized as any area used for the production of food and 
fiber, including cultivated cropland, pasture, orchards and vineyards, nurseries and 
ornamental horticulture areas, and confined livestock feeding operations. 

Grassland/ 
Shrubland 

Areas dominated by a combination of grasses (herbaceous vegetation) and shrubs 
(natural semi-woody vegetation, less than 6 m tall). These areas are not subject to 
intensive management such as tilling, but can be utilized for grazing. 

Wetlands Wetlands are those areas where the water table is at, near, or above the land surface for 
a significant part of most years.  

Perennial 
Ice/Snow 

All areas characterized by year-long cover of ice and/or snow. 

2.2.3. Forest age 

Initial conditions include a forest age parameter (Figure 1B) that is used in the simulation of 
forest harvesting and wildfire. In addition to tracking the state of each simulation cell, ST-Sim can 
also track the age of each cell. Each simulation cell is assigned an initial forest age for the year 2000, 
the initial year of time-step 1. By incrementing this age by one for each time-step of the simulation, 
the age can be tracked over time [19]. In addition, a maximum and minimum age limit can be 
specified for each state of forest use. Once the age for a forest simulation cell reaches the upper limit 
or a harvest age for its current state and strata, the forest cell becomes eligible for harvesting. For 
example, if the minimum age at which a forest cell can be harvested is 50 years, the forested cell 
would not be eligible to harvest until the cell reaches 50 years. Once a forested cell undergoes a 
harvest, the cell age is reset to zero. Age-based transitions are one of the major parameters in the 
ST-Sim software, which make the model non-stationary over time. Forest age is also one of the 
primary variables that allows LULC change and carbon stock and flow to be related. Carbon 
attributes (e.g. stocks, flux rates, automatic flows and event-based flows) all have an age factor.  
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An initial 2000 forest stand age map was generated from a combination of sources. The primary 
source came from the North American Carbon Program (NACP), where Pan et al. [42] used Forest 
Inventory and Analysis (FIA) data, historical fire data and the images from the National Aeronautics 
and Space Administration, Landsat Ecosystem Disturbance Adaptive Processing System project [43] to 
develop a national stand age dataset at 250-m resolution. We also used Vegetation Change Tracker [44] 
data to track forest disturbance. The spatially-explicit data from Pan, et al. [42] provides forest age 
for the year 2006 for all forested areas in the U.S. and Canada at 1-km resolution. These data were 
recalculated to represent forest age at the year 2000, which is the start of our scenario simulations. A 
general stand age distribution for each forest type (evergreen, deciduous, and mixed) was generated 
for each ecoregion. The ages were then reduced by enough years to get back to the 2000 start date. 
Cells with negative values at that point (meaning they had been harvested in the intervening years) 
were reassigned so that cell age at harvest generally matched the rest of the distribution (e.g. if the 
bulk of nearby forest in the study area was 60‒80 years old in 2005, most harvested forest was 
randomly assigned an age somewhere in that range). For ecoregions with large extents of old growth 
forest, in some cases, forest was assigned to age ranges up to 350 years. USGS Land Cover Trends 
harvest rates [24] were used as a quality control to make sure the stand age by ecoregion had a high 
correlation. Vegetation Change Tracker provided the year of disturbance for the period 1984–2000. 
The disturbance year was converted to a separate 2000 stand age map by subtracting year of 
disturbance from the starting age of 2000. The disturbance age map was overlaid onto the Pan et.al. [42] 
stand age map to provide finer detail on known forest disturbance relative to the regionally stratified 
landscape.  

2.3. Spatial multipliers 

Spatial multipliers, also referred to as probability surfaces or suitability maps, are cell-based 
maps that allow external drivers such as landscape characteristics and neighborhood effects to 
influence the spatial patterns of LULC change. In the ST-Sim software, spatial multiplier values 
range from 0-1, where 0 prohibits a transition from occurring and 1 identifies areas that are the most 
suitable for transition. Spatial multiplier cells with the highest value (probability) are the most likely 
to convert to another state class, while cells with the lowest value are the least likely to transition. 
For example, a map of soil fertility might be incorporated in a spatial multiplier to indicate cells with 
a higher probability of agricultural expansion. 

Within the LUCAS framework, the spatial distribution of future change across simulation cells 
is largely determined by spatial multipliers for four specific state class transitions (Table 3). These 
input parameters are critical: without them, landscape changes occur in a random pattern, and while 
area targets are achieved in each time-step, cell placement has no spatial significance relative to 
existing LULC or external drivers of change. For this research, the spatial multipliers were static 
over time, meaning that only one set of maps/cell values were input into LUCAS at the model 
initialization. ST-Sim provides users the capability to insert additional spatial multiplier values at 
selected time-steps; however, as yet, we have not used this feature. 
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Figure 3. Spatial multipliers representing four major transition types (Forest 
Harvest, Agriculture Contraction, Development and Agricultural Expansion. 
Values range from 0–1, where 0 prohibits a transition from occurring and 1 identifies 
areas that are the most suitable for transitioning. 

In our development of spatial multipliers (Figure 3), distance-decay theory was used as one of 
the ways to describe the effect that distance has on spatial interactions. The distance-decay theory 
states that the interaction between two locales declines as the distance between them increases [45]. 
For example, any gains or losses in the agricultural state class are more likely to occur in raster cells 
adjacent to, or within a short distance of, existing agricultural land uses. An important objective of 
this paper is to present source data and methods that are easily transferable to other projects. With 
this in mind, the primary source of the spatial multipliers is each existing state class and the distance 
calculated “to” the existing state class. A Euclidean distance algorithm was used measuring the 
straight-line distance from every cell to the nearest source cell of the four major transition types in 
Mediterranean California (Forest Harvesting, Agricultural Contraction, Development and 
Agricultural Expansion) (Table 3). The “distance-to” rasters were stratified into bins measuring 1‒2 
km each, displaying a distance-related gradient away from the particular state class. 
Distance-weighted rasters were then merged with additional contributing variables (i.e. soil condition, 
protected areas, population density, historical harvest and fires) to augment probabilities and further 
refine where changes were most suitable on the landscape. For example, the incorporation of the 
USGS Gap Analysis Program (GAP) Protected Areas Database [46] led to prohibited all LULC 
conversions (zero probabilities for these cells) on protected lands such as national parks. The spatial 
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multipliers for each transition were developed at a 1-km resolution for the conterminous U.S., with 
seamless boundaries between ecoregions. All of the spatial inputs for LUCAS are developed 
nationally, but can be subset to any area of interest.  

Table 3. Descriptions of the spatial multipliers chosen to represent spatially constrained LULC 
conversions. Spatial multipliers remain static over time.  

Multiplier Description Source Data 

Forest 
Harvesting 

Sets probabilities for allowable forest harvesting 
transitions based on distance to historical “tree 
loss” (1984–2009 cumulative harvest from 
Vegetation Change Tracker). Conversions on 
protected lands were restricted (GAP 1 & 2). 
Small forest patches and historic fire cells from 
the Monitoring Trends in Burn Severity dataset 
were removed prior to the creation of the 
Euclidean distance surface.” 

Vegetation Change Tracker 
[44] 
PAD-US-GAP [46] 
Monitoring Trends in Burn 
Severity [40] 

Agricultural 
Contraction 

Sets probabilities of conversion to 
grassland/shrubland based on distance to 
existing grassland/shrublands and low crop 
capability. A majority filter of eight cells was 
applied to minimize the effect of small 
grassland/shrubland patches on modeled 
changes. Conversions on protected lands (GAP 
1 & 2) were restricted. 

Harmonized LULC [27]  
Crop Capability 
(USDA-NRCS-Soil Survey) 
[47] 
PAD-US-GAP [46]  

Development Sets probabilities of conversion to developed 
land with the highest probabilities occurring on 
land closest to existing, high density 
development (> 80 people/km2). Distance to 
development was calculated and cells > 20 km2 
away from existing development were excluded. 
A majority filter of eight cells was also applied. 
Distance to development and distance to high 
population density were multiplied to produce 
final probability map. Conversions not allowed 
on protected lands (GAP Status 1 & 2 & 3). 

Harmonized LULC [27]  
PAD-US-GAP [46] 
Gridded Dasymetric 
Population Density – USGS 
[48] 

Agricultural 
Expansion 

Sets probabilities of conversion to agriculture 
based on distance to existing agriculture and 
high crop capability. Emphasis placed on 
agricultural cells in the harmonized dataset that 
remained agriculture throughout the 1992–2011 
time period. Restricts conversion on protected 
lands (GAP 1 & 2). 

Harmonized LULC [27]  
Crop 
Capability(USDA-NRCS-Soil 
Survey) [47] 
PAD-US-GAP [46] 
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2.4. Initial carbon stocks 

Initial carbon values (kgCm2) for pools of forest biomass, deadwood, litter, and soil organic 
carbon are used by the LUCAS model to assess the linkages between LULC change and carbon 
dynamics within one modeling framework. The stock and flow model tracks the flow of carbon 
between pools on forest cover cells. In addition, the stock and flow model has a spatially-explicit 
component where the initial carbon stocks are represented in raster form. To accomplish this, two 
types of flows are calibrated (automatic and event-based). Automatic flows occur every year (e.g. 
growth rates based on age, mortality, litterfall, etc.), whereas event-based flows are triggered by 
LULC disturbance (e.g. wildfire, harvest, etc.). Event-based flows invoke an additional set of flow 
values to account for the types of LULC change. Annual simulations output from LUCAS allow the 
user to visually analyze carbon stock over time in relation to different amounts of disturbance 
(wildfire and harvest). Under a range of scenarios, conditional questions can be addressed (e.g. If 
X/per year is harvested in the Pacific Northwest, what are the impacts on carbon balance?).  

For the initial carbon stock raster layers (Figure 4), we used a set of carbon stock density maps 
from the U.S. Forest Service FIA plot data [49]. These maps contain forest carbon estimates for the 
following pools: above ground biomass, below ground biomass, standing deadwood, down 
deadwood, litter, and soil. To be consistent with the carbon pools used in the stock and flow model, 
we combined the two biomass pools into a single living biomass map and the two deadwood pools 
into a single deadwood map. Because these carbon stock maps were created independently from the 
initial state class maps, we had to address situations where some cells were classified as forest but 
did not have matching spatial correspondence with the values from the FIA maps. To resolve this, we 
assigned the average carbon densities, summarized by ecoregion, to any forest cells not classified as 

 

Figure 4. Initial carbon stock density maps (Biomass, Deadwood, Litter, Soil 
Organic) modified from U.S. Forest Service FIA plot data [49] to meet the input stock 
and flow parameters defined by LUCAS.  
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forest in the FIA data. Figure 4 shows the four carbon pools associated with forest cover. For more 
information regarding the derivation of carbon flow values between pools and the integration of the 
stock and flow model with the state-and-transition framework, see Sleeter et al. [22]. 

2.5. Area targets and scenarios 

There are circumstances in LUCAS in which transition pathways are not represented using 
probabilities; rather a deterministic or fixed target is used. Transition targets, or area targets, are 
specified for each transition type and can vary at each time-step. The area targets for LUCAS were 
generated based on a downscaling method by Sleeter, et.al (2012) [20], which translates global 
gridded LULC projections from the Intergovernmental Panel on Climate Change—Special Report on 
Emission Scenarios (IPCC-SRES) [8,23,50] to regional scales (ecoregions) for the conterminous U.S. 
For our spatially-explicit modeling approach, we used area targets incremented at 5-year horizons 
until 2100 to enumerate amounts of change over time between state classes. Extensive calibration 
has been conducted both qualitatively by regional experts and quantitatively by assessing how much 
land is available by ecoregion, for each state class, to meet land-use demands over time. Conversions 
from one state class to another are based on the area target for the given time-step and the number of 
simulation cells eligible for the transition pathway during each time-step of the simulation [19]. 
Historic rates of change by ecoregion [24] serve as a baseline for future conditions. Future scenarios 
(i.e. A1B), from global assessment models were downscaled to be compatible with the spatial 
framework of LUCAS [20]. 

We developed multiple scenarios to model within LUCAS for the conterminous U.S. These 
included narratives and spatial data from the global community: IPCC-SRES (A1B, A2, B1, B2), 
Representative Concentration Pathways (8.5, 6.0, 4.5, 2.6) [51]; and extrapolations of historical 
trends based on findings from USGS Land Cover Trends such as: “business as usual” (1992‒2000), 
“drought” (1986‒1992), and “random” (1972‒2000) [24]. The following section shows results from 
the A1B scenario. A1B is characterized in the United States as strong economic growth in a global 
market, rapid technological innovation, medium population growth, yet strong increase in 
urbanization. The high demand for food, biofuels and wood products leads to the intensification of 
agricultural and forestry land uses.  

To conceptualize the input parameters discussed in the methods section relative to the full 
functionality of LUCAS, we categorize the major components recommended to replicate our efforts 
(see Figure 5). 
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Figure 5. Conceptual diagram of LUCAS. Green = External data sources; Yellow = 
Scenarios based on historical trends or future global assessments; Blue = Spatially 
Explicit Parameters; Red = Future scenarios parameterized for LUCAS integration; 
Purple = State-and-transition simulation model functions; Orange = LUCAS integrated 
model; Black = Output options. Diagram modified from Wilson, et.al. (2014) [52]. 

3. Results and Discussion 

3.1. LUCAS verification 

There are two questions commonly addressed when verifying and validating the performance of 
a spatially-explicit model: (1) did the model code achieve the intention of the modeler (verification) 
and (2) how accurate was the spatial allocation or distribution of change across the landscape 
(validation). Model verification, different than model validation, tests the model code to verify 
whether the input commands were properly executed. Since the LUCAS model uses annual area 
targets for each transition group (e.g. agriculture to developed), we verified the model’s performance 
by comparing the input area targets for scenario A1B with the modeled output at each 5-year 
time-step.  

Three common transition groups (Grass-shrub to Agriculture, Forest Harvest, and Agriculture to 
Developed) are analyzed and expressed in Figure 6. The X-axis represents the input area targets (km2) 
at 5-year intervals that are expected to occur during the 100-year simulation. The Y-axis represents 
the output results at the same 5-year interval, modeled in LUCAS. By looking at the graphs in Figure 
6, it is clear that there is a very high correlation between the A1B area targets and the modeled output 
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for each transition group tested. The R2 values indicate a near perfect correlation, verifying that the 
code within the model is apportioning the exact annual increments of LULC change on the landscape. 
The spatial accuracy of cell placement, is not analyzed with these graphs.  

  

 

Figure 6. Model verification—Verify that the model code is executing the correct 
amount of change per time-step, given the area target input values. Very high 
correlations indicate that the model is performing the specified commands. 

3.2. 100-year comparisons 

One way to gauge the spatial impact of LUCAS is through observation and visualization. State 
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class maps by strata are easy to export for selected years. Figure 7A shows an initial conditions state 
class map of the year 2000 for Mediterranean California. Figure 7B shows the A1B scenario modeled 
out to the year 2100. The A1B scenario specifies a strong, open global market and rapid technological 
innovation, leading to high demand for wood products and agricultural intensification [20,23]. The 
primary observable change between Figure 7A and B is the increase in developed/urban area (shown 
in red). The Oak Woodlands had the largest amount (~ 19,000 km2) of land transition to developed 
land uses. From the maps, it is observed that the pattern of urban spread increases around the existing 
major metropolitan areas of the San Francisco Bay Area and Los Angeles/San Diego. The influence 
of the spatial multipliers, with protected lands set to zero, prohibits future urban development on 
areas not eligible for conversion. An example of the limited urban development is apparent in the 
East Bay hills (Figure 7), due to the network of open space/parks that are protected, yet adjacent to a 
sprawling urban agglomeration. Within the Central Valley ecoregion, developed lands increase (~ 
7500 km2) and are visible in Figure 7, north to south along the I-99 corridor. The Southern California 
Mountains and Sierra Nevada show very low net change in urban expansion.  

Table 4. Zonal statistics of the LUCAS 100-yr change amounts output by state class area and 
stratified by ecoregion. 

*Area km2 Oak Woodlands and Chaparral Sierra Nevada 
State Classes 2000 2100 Net Change 2000 2100 Net Change 
Water 1500 1482 −18 1096 1096 0 
Developed 10,204 29,251 19,047 62 68 6 
Barren 1480 1480 0 3224 3224 0 
Forest 16,265 16,170 −95 33404 33404 0 
Grassland / Shrubland 63,618 39,746 −23,872 14563 14556 −7 
Agriculture 5839 10,829 4990 162 163 1 
Wetlands 863 830 −33 196 196 0 
Ice/Snow 0 0 0 25 25 0 
 Central Valley Southern California Mountains 
State Classes 2000 2100 Net Change 2000 2100 Net Change 
Water 473 339 −134 82 82 0 
Developed 2304 9933 7629 234 1881 1647 
Barren 501 501 0 168 168 0 
Forest 71 71 0 4987 4925 −62 
Grassland / Shrubland 9268 4647 −4621 12190 10571 −1619 
Agriculture 32,067 29,618 −2449 112 146 34 
Wetlands 1267 849 −418 47 47 0 
Ice/Snow 0 0 0 0 0 0 
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Figure 7. A is the state class map of the initial LULC conditions in the year 2000; B 
is the projected state class map in the year 2100 modeled with the A1B scenario.  

The second highest state class change over the 100-year period is the increase in agriculture 
(shown in orange). The California Central Valley is one of the most important agricultural centers in 
the United States [53]. In order to meet the A1B demand/area target for agriculture, offset by the 
losses in agriculture due to urbanization, there is an expansion of the agricultural footprint along the 
eastern edge of the Central Valley into the foothills. Even though the soil quality to the east is not as 
desirable as that of the valley floor, these areas can support high value crops (e.g. vineyards and 
orchards). The Oak Woodlands also shows agricultural intensification (~ 5000 km2), mainly confined 
to coastal valleys. These areas follow a similar pattern, where urban expansion pushes new 
agriculture to the periphery, resulting in new vineyards and orchards [53]. The increased demand for 
agricultural products, tied with urban expansion, drives competition between both land uses. 

Urban expansion and agriculture intensification commonly occurs from the conversion of 
grassland/shrubland. As a result, the grassland/shrubland state class (shown in yellow) results in 
massive declines in the Oak Woodlands (−23,872 km2) over the 100-year model period. The slight 
changes seen in the forest state class in Table 4 can be attributed to unidirectional change (e.g. 
urbanization). State class output cannot be used to visualize changes in forest use and disturbance. In 
order to look at significant changes related to forest cover and use, harvest and wildfire impacts must 
be measured over the 100-year simulation period (see Figure 8).  
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3.3. Sensitivity analysis  

Sensitivity analysis is a technique by which the researcher evaluates the variation in the model 
output resulting from specific amounts of variation in model input, parameter values, or structure [9]. 
LUCAS uses Monte Carlo simulations to address uncertainty by processing multiple iterations with 
the same input parameters, showing a range of possible outcomes. The variability of transition can be 
measured for each transition group by using a powerful function in ST-Sim called the annual average 
probability distribution. This distribution measures how many times, on average, a particular cell 
transitioned from one class to another. The value is equal to the sum of the number of times the cell 
transitioned across all time-steps and iterations divided by (the number of time-steps * number of 
iterations). We use this distribution to summarize and visualize our output maps and test how the 
model responds to a changed input parameter.  

Areas of forest that have been harvested or disturbed due to wildfire do not transition out of the 
forest class; rather, forest age is reset to zero once the disturbance occurs. This allows us to visualize 
changes in forest age structure and the spatial distribution of disturbance. Figure 8A shows the net 
change in forest age over the 100-year simulation period using 20 Monte Carlo simulations. Net 
change marks the difference between the forest age at the beginning of the simulation (2000) and the 
forest age at the end (2100). The result is a difference map showing the spatial distribution of forest 
age across the landscape. Positive values indicate a net increase in average age, while negative 
values indicate a net decrease in average age. The net difference in age over time is an indicator of 
disturbance intensity. Age difference values of greater than 100 (dark green on Figure 8A) reveal 
forest cells that were left undisturbed (did not undergo harvest or wildfire) for the entire simulation 
period.  

Figures 8B‒C show the average annual transition probability of forest wildfire and forest 
harvest from 2000‒2100. Figure 8C illustrates the spatial variability and intensity of harvest over the 
100-year period. The Sierra Nevada ecoregion had the highest historical forest cutting rates within 
Mediterranean California [24]. Future harvest under scenario A1B, shown in Figure 8C, follows that 
same trend. The region is largely protected through establishment of national parks and wilderness 
areas, which prohibit forest harvest activities. Therefore, much of the harvest occurs on private 
timberlands, which are mostly located at lower elevations. Protected areas are, however, prone to 
wildfire. Patch characteristics are used to influence the size distribution of the two disturbance types. 
Based on historic patch size and patterns, wildfires tend to be larger and more contiguous, while 
forest harvest is fragmented. One area that stands out with a high transition probability for wildfire is 
the Big Sur coast, south of Monterey Bay. Another notable wildfire simulated by LUCAS occurs 
west of Yosemite National Park. Interestingly, this is the same area that experienced the large “Rim 
Fire” of 2013.  
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Figure 8. Forest Disturbance between the year 2000 and the year 2100. A shows the 
net difference in Forest Age from the initial age (2000) to the ending age (2100). Green 
cells represent forest cover that had a net increase in age—less disturbance; and areas in 
red depict forest cover that had a net decrease in age—heavy disturbance. B shows the 
average annual transition probability for Forest Wildfire, and C shows the average annual 
transition probability for Forest Harvest. 

To test the significance of the spatial multipliers, we compared results from LUCAS with and 
without the use of spatial multipliers as input parameters. A simple sensitivity analysis was 
conducted to evaluate the range of uncertainty in model results by using different inputs. The three 
maps in Figure 9 show the evaluation of the probability of forest harvest around Lassen Volcanic 
National Park in northern California. Figure 9A represents the forest harvest spatial multiplier, with 
higher probabilities of harvest in red and lower probabilities in green. Black cells in Figure 9A 
represent GAP classes 1 and 2, which are protected areas prohibited from transitioning. The forest 
harvest spatial multiplier is described in detail in Table 3. Figures 9B‒C show a 100-year simulation 
with 20 Monte Carlo simulations of forest harvest with and without the influence of the spatial 
multipliers as input parameters. Black cells in Figures 9B‒C simply represent non-harvested cells. In 
Figure 9B, forest harvest occurs throughout the park in a random transition frequency pattern over 
the 100-year period. The higher frequency cells are not clustered and appear more evenly dispersed; 
therefore, it becomes difficult to draw conclusions about spatial and temporal harvest intensity. The 
random pattern reflects the high uncertainty of where forest harvest occurs. The high values in Figure 

A  B  C 
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9C correspond to the general pattern of high frequency hotspots in the spatial multiplier map (Figure 
9A). The influence of the spatial multiplier map on cell placement also restricts forest cells from 
harvest in Lassen Volcanic National Park.  

 

Figure 9. Annual Average Transition Probability of Forest Harvest around Mt. 
Lassen Volcanic National Park, CA., from 2000‒2100 with 20 Monte Carlo 
simulations. A represents the spatial multiplier created for forest harvest transitions; B 
represents the 100-year simulation with spatial multipliers as input parameters; C 
represents the 100- year simulation without spatial multipliers as input parameters.  

The transition group, Agriculture to Developed is one of the most common transitions in the 
Mediterranean California study area. Figures 10A‒B show the average annual transition probability 
of agriculture transitioning to developed within the 100-year, 20 Monte Carlo simulation period for 
scenario A1B. Both maps reflect the same input area target (i.e. the projected amount of agriculture 
to developed annually); however, Figure 10A was run without spatial multipliers as input parameters, 
and Figure 10B was run with spatial multiplier input parameters. One of the obvious differences 
between the two maps is the higher uncertainty shown in Figure 10A, which illustrates a random 
diffusion of transition occurrence across the landscape, emphasizing the impacts of not using spatial 
multipliers as parameters. Figure 10B, influenced by spatial multipliers, constrains transitions to the 
developed-agriculture interface. 
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generally confined to coastal valleys such as Sonoma/Napa, Salinas, and San Luis Obispo. Due to the 
fact that agriculture land use has a much smaller existing footprint in this ecoregion, yet the Oak 
Woodlands has a high level of urbanization in the A1B scenario, the model frequently selects the 
same agriculture cells to transition to developed land use. Consequently, the results in Figure 10A 
show clusters of higher average annual change probability in the Oak Woodlands relative to the 
dispersed pattern in the Central Valley. In Figure 10B, given the input of spatial multipliers, and the 
A1B area targets, the Oak Woodlands has an even tighter pattern around existing developed. The 
ability of LUCAS to visually and statistically summarize 100 years of transitions within one spatial 
map helps the end user test the sensitivity and uncertainty of different spatially-explicit variables.  

4. Conclusion 

The Land Use and Carbon Scenario Simulator, referred to as LUCAS, was developed to 
quantify the impacts of future LULC change on carbon storage and flux in the conterminous U.S. 
LUCAS uses a state-and-transition simulation model fully integrated with a terrestrial carbon stock 
and flow model. In this manuscript we have presented methods and results to describe the 
spatially-explicit input parameters used to develop LUCAS. Many spatial models of LULC change 
are identified in the introduction highlighting the strengths and limitations of different approaches in 
relation to input parameters, leading to the rationale of why we chose a state-and-transition 
simulation model as the foundation of this research. The overarching goal is to create an adaptable 
modeling environment that can implement data from various disciplines, at any scale, local-to-global. 
Transferability and scalability is an important aspect to this research and one we continue to explore.  

Defining the initial landscape conditions is a fundamental first step to spatially parameterizing a 
state-and-transition simulation model, and a step that should be well thought out. By synthesizing 
multiple national datasets through the harmonization process, we were able to address a large 
problem in the mapping and modeling community. There are always inconsistencies with the way 
LULC is defined, monitored and spatially formatted. Most of these issues stem from multiple 
disciplines with divergent objectives and applications. We used a unique harmonization method to 
converge a wide range of temporal, spatial and classification schemes, resulting in consistent 
definitions and rules. The original harmonization map was produced at a 30-m resolution with 21 
LULC classes, which was then recoded into eight broad-scale LULC classes and resampled to a 
1-km resolution. The importance of this process ensures that the initial conditions map in LUCAS 
can be scalable from 30-m to 1-km resolution based on a set methodology.  

Strata, defined by ecoregions, allow for regional comparisons of future projections with an 
archive of historical trends for reference conditions. Strata provide an important linkage to connect 
area targets from downscaled global scenarios to ecoregions of the United States. LUCAS also uses 
strata to analyze region-specific drivers of change. Forest age is one of the most important 
parameters used to track and estimate disturbance from anthropogenic land-use change, like harvest, 
and natural disturbances, like wildfire. Both strata and forest age have attribute options in the model, 
(e.g. time-since-transition, patch characteristics) that provide non-stationarity to some of the input 
processes.  

Spatial multipliers were developed in a simple way by applying a weighted distance between 
specific transition groups, reinforcing the fundamental relationship between spatial interaction and 
distance-decay. If a modeler had limited source data and wanted to create spatial multipliers for a 
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state-and-transition simulation modeling project, the individual state classes and the distance 
relationships between them could assist the development of a simple set of spatial multipliers. Lastly, 
as part of the initial conditions, we introduce the spatially-explicit carbon stock density maps, and the 
associated source data. The unique carbon parameters (e.g. flux rates between pools, automatic and 
event-based flows etc.) used in the stock and flow model, are discussed in detail in Sleeter et al. [22].  

When modeling future scenarios with exogenous data sources, the spatial accuracy of change 
projections are difficult to validate due to the fact that the modeled time period is in the future, and 
the set of scenario assumptions driving the change may not be grounded with current trends. We 
recognize that a formal validation of the spatial accuracy of LUCAS is needed to substantiate its 
relevance in the science community. While development of the input parameters has been our 
primary focus, we plan to improve accuracy measures to promote visibility. It is critical to model the 
uncertainty around projections of future outcomes. Monte Carlo iterations increase the model’s 
capacity to spatially measure uncertainty around projections of future outcomes. Our results illustrate 
the uncertainty of specific input parameters with a sensitivity analysis by summarizing the annual 
average transition probabilities over the 100-year simulation period. We demonstrate the positive 
influence of the spatial multipliers for spatial allocation and landscape patterns. Our research 
provides a well-defined set of spatially-explicit input parameters combined with freely available 
modeling software (ST-Sim) as a methodology for producing future projections of LULC and carbon 
dynamics for the conterminous U.S. 
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