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Abstract: State-and-transition simulation modeling relies on knowledge of vegetation composition 
and structure (states) that describe community conditions, mechanistic feedbacks such as fire that can 
affect vegetation establishment, and ecological processes that drive community conditions as well as 
the transitions between these states. However, as the need for modeling larger and more complex 
landscapes increase, a more advanced awareness of computing resources becomes essential. The 
objectives of this study include identifying challenges of executing state-and-transition simulation 
models, identifying common bottlenecks of computing resources, developing a workflow and 
software that enable parallel processing of Monte Carlo simulations, and identifying the advantages 
and disadvantages of different computing resources. To address these objectives, this study used the 
ApexRMS® SyncroSim software and embarrassingly parallel tasks of Monte Carlo simulations on a 
single multicore computer and on distributed computing systems. The results demonstrated that 
state-and-transition simulation models scale best in distributed computing environments, such as 
high-throughput and high-performance computing, because these environments disseminate the 
workloads across many compute nodes, thereby supporting analysis of larger landscapes, higher 
spatial resolution vegetation products, and more complex models. Using a case study and five 
different computing environments, the top result (high-throughput computing versus serial 
computations) indicated an approximate 96.6% decrease of computing time. With a single, multicore 
compute node (bottom result), the computing time indicated an 81.8% decrease relative to using 
serial computations. These results provide insight into the tradeoffs of using different computing 
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resources when research necessitates advanced integration of ecoinformatics incorporating large and 
complicated data inputs and models. 

Keywords: STSM; high-throughput computing; high-performance computing; ecoinformatics; 
sagebrush steppe; juniper encroachment 

 

1. Introduction  

State-and-transition simulation models originated as conceptual representations of the different 
conditions (states) and changes in conditions (transitions) that characterize observations of natural 
ecosystems; modern data and computing capabilities have increased the quantification of these models. 
State-and-transition simulation models (STSM) require information about the initial conditions of 
vegetation to define states, transition paths between these states, and the behavior of these transitions, 
defined as deterministic and probabilistic pathways [1]. After researchers define their states, initial 
conditions, transitions, and pathways, they then use Monte Carlo simulations to measure the 
variability of the results that account for the stochastic properties of the model parameters. More 
complex models will include multiple scenarios that capture different management protocols [2], 
climate scenarios [3,4,5], state-and-transition attribute values (i.e., aggregating state classes and 
transitions to obtain different output summaries), various types of multipliers (e.g., the influence of 
slope on fire spread properties [6]), and stock-flow models (e.g., Intergovernmental Panel on Climate 
Change carbon models [7]). Although not required, STSM may also incorporate Geographic 
Information Systems (GIS) data of state classes, management zones, biophysical strata, and transitions. 

Stochastic state-and-transition simulation models that are non-spatial or spatially explicit predict 
how the vegetation state classes change over time due to vegetation transitions resulting from natural 
and anthropogenic processes. These models include both processes (e.g., spread of fire and invasive 
species, encroachment resulting from attenuating natural ecosystem processes, and climate change [4]) 
and empirical observations (e.g., field observations indicating fire return intervals [8]). The resulting 
aspatial and spatial predictions describe changes such as habitat fragmentation, habitat quality, and 
vegetation composition and structure. State-and-transition simulation models are important because 
they produce information about natural and anthropogenic landscape changes. Researchers use 
scenarios to capture the effects of different practices for managing invasive species (e.g., cheatgrass 
and juniper invasion [9]), grazing practices, fire management [10], and land-use patterns [11]. These 
resulting predictions allow managers to explore effective management scenarios and the effects of 
alternative impacts to the landscape, assuming that the models capture realistic ecosystem processes. 

The overall purpose of this research was to identify and develop different methods for running 
STSM with larger landscapes, higher spatial resolution data sets and models that are more complex. 
Specifically, the objectives of this work fit into two broad categories. The first category, 
understanding modeling and computing challenges, includes identifying (1) technical challenges of 
executing state-and-transition simulation models (2) common bottlenecks and limitations to 
effectively using computing resources, and (3) methods for addressing processing limitations. The 
second category, the integration of alternative computing environments to support 
state-and-transition simulation modeling, addresses (4) evaluating different computing resources that 
execute the decomposed Monte Carlo simulations, (5) developing software that decomposes the 
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state-and-transition simulation model as embarrassingly parallel  Monte Carlo simulations, and (6) 
evaluating the advantages and disadvantages of running state-and-transition simulation models as 
embarrassingly parallel tasks. I discuss objectives 1-3 in the Background, objectives 4 and 5 in the 
Materials and Methods, as well as the Results, and lastly I discuss objective 6 in the Discussion. 

2. Background  

Until recently, scientists mostly relied on aspatial state-and-transition simulation models, and 
the software executed the model instructions in serial; that is, a single task executes before additional 
sequential tasks run, but none executes concurrently and software cannot take advantage of multiple 
processor cores. Representing spatial data in STSMs is necessary for capturing spatial processes [12] 
and multi-scaled processes [13]. In this context, scale refers to the combined effect of spatial extent 
and resolution (grain), while when referring to the scaling of computers and computer infrastructure, 
scaling denotes the expansion of computing resources. Research requiring complex models and 
regional GIS data could encounter unrealistic computation time while using serial computations, 
which usually results in curtailing hypotheses. Specifically, the researcher might change the number 
of states represented in their model, the types of transitions, the number of Monte Carlo simulations, 
and other factors used to define a model. In turn, a researcher may be forced to change the questions 
they investigate due to the computing limitations imposed on their modeling procedures.  

To address this challenge, this study explored decomposing Monte Carlo simulations of STSMs 
into parallel tasks. ST-Sim™, a plugin for ApexRMS SyncroSim™ software (freeware [14]), supports 
decomposition of models on a single multicore machine. This study demonstrated that when a 
vertically-scaled computer, such as a single desktop, cannot sufficiently handle complex models while 
using parallel tasks, scientists can rely on distributed computing environments, also known as horizontal 
scaling. High-throughput (HTC) and high-performance (HPC) computing are methods of distributed 
computing that enable researchers, modelers and analysts to distribute their workload on multiple 
machines, thereby supporting analysis of larger landscapes (spatial extents), higher spatial resolution data 
inputs, more complex models, and sufficient Monte Carlo simulations in a timely manner.  

2.1. Challenges of processing state-and-transition simulation models 

State-and-transition simulation models include a myriad of parameters that may present as 
challenges when executing these models with standard computing resources. For example, models 
often require many Monte Carlo simulations to quantify effects of parameter variability on 
simulation results. They may also include many time-steps, which must reflect an appropriate length 
of time specific to the plant community life cycles. Model scenarios behave independently of each 
other, and researchers evaluate the juxtaposed outcomes to understand relations between parameters 
and community responses. Thus, with additional scenarios, each with a set of Monte Carlo 
simulations and time-steps, the computation time and model complexity increases. When using 
spatial models, large extents and small spatial resolution (grain) can contribute to increased 
computing time. State-and-transition simulation models also support spatial autocorrelation of 
vegetative transitions, such as spreading of fires [15] because with these parameters, models can 
more accurately capture how the landscape is likely to change through time. However, with the 
increased complexity to represent these processes accurately, the greater the computations and the 
need for different computing resources. Thus, expanded ability to represent complex ecological 
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scenarios comes with computational costs that may challenge practicality and efficiency.  
Scientists often address computing bottlenecks by decreasing the model complexity. With 

spatial STSMs, one can reduce the spatial extent and/or spatial resolution (e.g., large grain) , reduce 
the number of Monte Carlo simulations, test fewer scenarios, reduce the number of strata, and 
change the research questions. However, the scientific community can often address limitations of 
computational runtime because of the abundantly available and inexpensive computing hardware, as 
well as the many different methods available to solve problems (e.g., in-memory computing, many 
task computing, HTC, HPC, and big data applications). Frequently, computer scientists use parallel 
computing, as described here, to address large problems by dividing these into smaller pieces and 
solving them concurrently. Decomposition of a problem can take advantage of multiple processors 
by breaking down the data into smaller pieces (data decomposition) or by using an algorithm 
(functional decomposition) that divides the computations into smaller pieces [16]. Here, I introduce 
these concepts and explain where scientists can access additional computing resources and how they 
can use them without having to change the research. 

Several potential methods exist for decomposing state-and-transition simulation models. The 
first method, and the most obvious method, is to run each Monte Carlo simulation independently 
(data decomposition). This approach does not require complex programming because no 
communications between the Monte Carlo simulations are necessary. A second approach to 
decomposing the problem includes dividing the spatial data into tiles and then running the STSM on 
the individual tiles (data decomposition). This approach is difficult because in many cases, these 
models will include spatial relationships between neighboring pixels that would result in errors along 
adjacent tiles. A third approach includes decomposing the state-and-transition algorithms (functional 
decomposition). For example, a common approach of functional decomposition is using the 
message-passing interface (MPI) to loop through arrays of data (such as those in a raster data set). 
The data is decomposed into arrays using a loop function, then this data is processed on remote 
central processing units using some algorithm, and finally these results are merged into a single 
raster data set. The decomposition and aggregation of the data relies on a significant amount of 
communication streaming between the different processors and compute nodes [17] to accomplish 
the processing, which sets this approach apart from embarrassingly parallel methods that use no 
communication between computing tasks. Embarrassingly parallel is a term used to denote 
programming tasks or processes that require solving many similar but independent tasks 
simultaneously, with little or no coordination needed between the tasks. The message passing 
interface approach can also be difficult to achieve because of the prevalent dependencies between 
neighboring pixels. The goal here was to demonstrate the decomposition of Monte Carlo simulations 
for STSMs and execute these as embarrassingly parallel tasks. For more complex models (not 
demonstrated here), this workflow may be applied to individual scenarios and strata. For example, 
like Monte Carlo simulations, the scenarios are independent of each other, and each scenario as well 
as its associated Monte Carlo simulations can run in parallel. Because there is no underlying 
difference in parallelizing the scenarios and the strata, this was not explicitly investigated. 

2.2. Identifying computing bottlenecks 

Numerous computer hardware components can potentially affect model performance. These 
components include Computer Processing Unit (CPU) speeds, the number of processor cores, system 
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bus speeds (communication between CPU and memory), and storage configuration. Beyond a 
computer, networked storage, the bandwidth, and the configuration of networks can influence how 
long a model runs [18]. In addition to potential hardware and network bottlenecks, workflows and 
the algorithms used within software can also lead to poor performance. Isolating bottlenecks and 
poor performance is not an easy task, especially if you are not a computer scientist, a software 
engineer, and you do not have access to the software code.  

Understanding computer-hardware configuration helps identify software capabilities and 
requirements. For example, a multi-CPU (symmetric multiprocessing system) will have multiple and 
identical processors located on different circuits, all sharing memory via a system bus; however, each 
CPU has its own memory cache [18]. The system bus connects a computer’s motherboard to the 
CPU and memory. A core is a computational unit of a multicore processor (single CPU), and a 
multicore chip has a single socket that combines two or more independent processors on the same 
circuit and with a memory cache [18]. For example, these components may be configured to create 
dual core processors (2 cores per physical processor) or quad core processors (4 cores per physical 
processor), which are both multicore chips. The performance enhancement of multicore chips is 
significantly less than adding an additional CPU chip [19]; however, the benefit is less electrical 
power consumption and reduced overhead for bus communication [20]. Hyper-threading is a 
Microsoft Windows® BIOS (Basic Input-Output System) configuration that allows one physical 
processor with multiple cores to appear as multiple logical processors. The more CPUs, cores, and 
memory a machine has, usually the faster the processing. The processor speed and type are also 
important considerations as they both can affect processing performance. Configuring a single 
system and providing adequate memory is important when scaling hardware, but software must have 
the ability to use these resources. 

When the network infrastructure and computer hardware are not the bottlenecks, or when the 
cost of reducing these bottlenecks is impractical, one can consider the software architecture (32-bit 
versus 64-bit) as a performance inhibitor. SyncroSim supports both 32-bit and 64-bit architectures and 
the architecture is important because it defines how much data the software can load into memory at 
once. The more data stored in direct access memory, the better the software performance [18] because 
it reduces the number of reads and writes to disk and the number of times information is transferred 
across the system bus. The Direct (main) Random Access Memory (DRAM, level 3) of a computer 
can support up to 232 bytes for 32-bit architectures and 264 bytes for 64-bit architectures. A 32-bit 
architecture allows for up to 4 GB of RAM and a 2 GB limit per process. A 64-bit architecture allows 
for up to 256 TB of RAM and an 8 GB limit per process. Thirty-two bit applications work on 64-bit 
platforms because there is an emulation layer but the same 2 GB limit per 32-bit application applies. 
If a model requires processing a significant amount of information by loading more than 2 GB of 
data into memory, then a 64-bit architecture is necessary. Numerous facets to architectures and 
software performance exist, and limitations exist for operating systems with respect to how much 
one can scale (i.e., expand resources) memory and CPUs [21,22]. Monitoring memory usage relative 
to memory limits can help isolate this bottleneck.  

Understanding the basic concepts of computer architectures will help researchers to begin 
understanding the various hardware components and complexities. Knowing your hardware 
configurations provides insight into how a researcher can address larger computing problems. Here, I 
have defined cores, multicores, multi-CPUs and memory architectures, which are required to 
understand the different methods for addressing processing limitations. Accepting the abilities and 
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limitations of the SyncroSim software, I explored effects of decomposing the model in different 
computing environments to address potential computing bottlenecks that may occur because there 
are too few resources for addressing the problem. 

2.3. Methods for addressing processing limitations 

Parallel computing addresses computational challenges by concurrently executing tasks (e.g., a 
program that includes many instructions) using two or more computer processors and/or nodes (i.e., 
computers). A variety of parallel computing methods exists, and these include bit-level, instruction 
level, thread level, data, and task parallelism. These are concepts not usually known to ecologists, 
and therefore, I have provided a brief summary as several pertain to this research. The difficulty of 
implementing parallel computing is addressing the communication and synchronization between the 
subtasks, which requires a knowledge of the methods for decomposing the instructions and/or data 
and deciding how these interact. Parallelization is categorized into fine-grained parallelism, which 
supports communication many times per second and coarse-grained parallelism, which requires little 
or no communication between concurrently running subtasks.  

Bit-level parallelism refers to how a computer processor executes instructions (for example, an 
algorithm) as well as how the number of instructions and the size of those instructions affect this 
execution. If a computer processor requires splitting a request into sequential instructions because the 
instructions do not fit into a single bit array (e.g., 32-bit) then processing time increases. If the 
instruction fits into a larger bit array (e.g., 64-bit) then processing time decreases. Instruction level 
describes how a software developer manipulates the order and grouping of a program’s instructions. 
Each stage of a multi-stage instruction pipeline represents what the processor does to the instruction. 
For example, these stages might include fetching the instruction, decoding it, executing it, and then 
accessing the memory. Superscalar processors (specialized processors), for example, execute 
multiple pipeline instructions concurrently. Threads are a simpler method for parallelization because 
they have their own memory stack and instructions, but each thread must wait on another thread 
because they are writing to the same memory address. Threads are commonly used with a graphical 
interface where a user executes a process, and the software then displays a progress bar to monitor 
the state of the process. In this example there are two concurrent threads running (e.g., a task/job and 
a progress bar). Threads are not used for most parallel computing applications because the threads 
belong to a single process, which does not support CPU intensive applications. Data parallelism uses 
a single calculation on different subsets of data, which is commonly used with loops within software. 
Task (i.e., a collection of instructions such as a software program) parallelization performs different 
calculations on the same data or on different data. 

In this study, I am using bit-level (64-bit software and computer architecture), thread-level 
(streaming standard output for handling asynchronous logging of tasks), and task parallelism 
(parallelization of the STSM Monte Carlo simulations). The decomposition of the Monte Carlo 
simulations used in STSM requires no data dependencies or communications between the executions 
of tasks. The computer science community refers to this type of parallelization as embarrassingly 
parallel. Executing Monte Carlo simulations in parallel, which I have applied in this research, is a 
common example of embarrassingly parallel applications. Contrary to coarse-grained parallelism, 
high performance computing relies on a significant amount of communication and dependencies 
between subtasks, which this research does not implement. 
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To understand the limitations of parallel computing with respect to computer hardware, Flynn’s 
taxonomy [23,24] has been used to categorize computer architectures into four categories. Since 
Flynn’s work, two additional subcategories have been identified. All categories refer to the number 
of concurrent instructions that can process on the available data streams. Understanding Flynn’s 
taxonomy is important with respect to parallel computing because parallelizing tasks are constrained 
by the computer’s architecture and modeling environment. Flynn’s taxonomy defines Single 
Instruction and Single Data (SISD), Single Instructions and Multiple Data (SIMD), Multiple 
Instructions and Single Data (MISD), and Multiple Instructions and Multiple Data (MIMD). Two 
additional categories that the informatics community later recognized include the Single Program 
and Multiple Data (SPMD) [25] and Multiple Programs and Multiple Data (MPMD) [26]. Software 
developers and researchers need to understand their hardware, parallel computing approaches, and 
their model structure before making informed decisions on improving modeling performance. 

Of the six taxonomy classes, most are not applicable to how this study decomposed the STSMs, 
or applicable at all. SIMD are common with General Purpose Graphic Processing Units (GPGPUs) 
that impose a lockstep where each CPU instruction processes multiple data elements at the same time. 
MISD are used for high fault tolerance applications via redundancy of instructions (a common 
example for this type of hardware and computing are flight control computers). An average desktop 
workstation is indicative of the SISD category and for all purposes reflects the framework used for 
the STSMs. Networked clusters, grids, multi-processor computers, and multicore computers that use 
MPI [27] fit the MIMD taxonomy, but they also support embarrassingly parallel applications. Grid 
computing refers to processing jobs across multiple distributed computing systems that use different 
management configurations. That is, while multiple collections of computers may be managed 
autonomously, these collections of systems can also operate collectively.  

Embarrassingly parallel workloads require minimal effort for decomposing a problem into 
parallel tasks and have little to no dependencies between tasks, such as communication. 
Consequently, these processes are common for grid computing because this type of computing relies 
on little or no communication and no dependencies exist between tasks. Embarrassingly parallel is 
similar to SPMD, a modification of SISD [28]. Embarrassingly parallel problems scale linearly if all 
resources are equal (e.g., processor speeds, memory caching and availability, bus connections, disk 
input/output speeds), while functional decomposition does not generally result in linear scaling. This 
is because functional decomposition uses MPI to process data and communicate between finer scales 
that result in non-linear scaling [29]. Although a cluster can support MPI, I used the cluster to 
execute embarrassingly parallel tasks that require no communication, which means the cluster cannot 
perform the tasks faster than grid computing if all hardware is identical. Since this work uses 
embarrassingly parallel computations, I expected the results to scale linearly. 

An Information Technology (IT) administrator can scale computing resources through vertical 
scaling and horizontal scaling. Vertical scaling (scale-up) refers to adding resources to a single node 
(i.e., workstation or a machine within a cluster [28]). For example, one can expand a computer’s 
processing capabilities by adding CPUs, replacing a single core CPU with multiple core CPUs, 
altering the CPU configuration (e.g., hyper-threading), adding memory, and using specialized 
hardware (e.g., general purpose graphical processing units [30]). Horizontal scaling (scale-out) refers 
to adding additional nodes to a networked system, such as, adding machines to an Local Area 
Network (LAN), Wide Area Network (WAN), or cluster [28]. Tightly coupled multiprocessor 
systems have multiple CPUs connected to the system bus and loosely coupled multiprocessor 
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systems have multiple computers with multiple CPUs interconnected via the Ethernet. The former is 
used for frequent communication between processes (e.g., High-Performance Computing [HPC]), 
while the latter are used when little or no communication is necessary (e.g., High-Throughput 
Computing [HTC]) or when significant levels of communication are necessary [28]. HPC also 
supports large amounts of memory and CPUs as shared resources, while HTC takes advantage of 
many CPUs without the ability to share resources [28]. In other words, HTC systems appear as 
individual networked machines and HPC systems appear as a very large single machine when the 
software interacts with the hardware. Many different methods exist for configuring both HTC and 
HPC systems and therefore, these are gross simplifications to characterize the main differences. 

High-throughput computing, also known as distributed computing and grid computing, uses a 
collection of low-cost commodity computers to increase capabilities of large-scale computational 
problems with multiple independent job instances. This is because HTC consumes a set of 
independent jobs with no shared states and processes these jobs concurrently on remote machines 
(within a LAN or across the WAN). Although numerous configurations of grid infrastructures exist, 
generally each hyper-threaded core or CPU on a single compute node behaves as a computing slot 
where a single job executes independent of other jobs. Because grid computing is not constrained to 
homogeneous infrastructures, management configurations, architectures or geographic location, they 
can support a more diverse set of applications but at the cost of being more difficult to manage and 
operate. An HTC system requires middleware (open source or commercial software), which is a job 
management resource installed on each node. For example, the University of Wisconsin developed 
HTCondorTM middleware (open source [31]), which has a long-standing history and a broad use in 
the university and research communities. Other examples of open source and commercial HTC 
systems include Unicore™, Globus™ Toolkit, Univa®, NorduGrid™, and Appistry®. With these 
management systems, a user submits jobs from the submit node and jobs run on the compute nodes. 
Computers can also have a combination of roles and a single machine within the system, the central 
manager, manages all clients, jobs, matching of jobs to clients, job scheduling, and related intricacies. 
Many configurations of these systems exist, but these are the basic principles. 

High-performance computing, like high-throughput computing, requires middleware for job and 
resource management. Common software used for job scheduling of HPC systems are the Portable 
Batch System (PBS), Torque resource manager, Simple Linux Utility for Resource Management 
(SLURM) and OpenPBS. The installation, configuration, operation, and functionality of the 
middleware are similar to HTC middleware. Like HTCondor, a submit file is created for executing a 
job. With the submit file, the user specifies the required number of nodes, processors, and library 
requirements. When a researcher uses HTC, they must define all the parameters that their software 
requires, and they must define how, when, and where the data and software will reside and interact 
with the remote computers. Remember, HTC computing resources do not require that the systems 
exist on the same LAN, much less the same geographic location (i.e., accessible via the WAN), but 
transferring data across the WAN is likely a bottleneck for STSMs relying on significant data inputs 
and outputs. The primary difference between HTC and HPC with respect to submitting jobs is that 
HPC management systems do not require information pertaining to heterogeneous infrastructures 
(e.g., hardware and operating system differences). 

High-performance computing systems are generally more expensive to purchase compared to 
HTC. Modeling on HPC systems mostly focus on finer scale parallel computing, such as functional 
decomposition, while HTC focuses on throughput (volume). With embarrassingly parallel tasks, the 
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model framework is high-throughput. HPC infrastructures support parallel tasks that exchange data 
during the computation, while loosely coupled systems support executing parallel tasks independent 
of each other. Users typically wait in a queue (similar to a print queue) longer on HPC systems 
before their jobs execute because there are fewer HPC systems available due to costs. The primary 
difference between HTC and HPC is that HPC lends itself to applications requiring greater 
communication between processes, greater memory per instruction, shared states, and software 
specifically written and compiled for parallelizing the data and instructions. Therefore, users will 
benefit from understanding what computing environment they require, keeping the costs in mind for 
using and operating different computing environments. For this study, I used a single machine with 
multiprocessors and multicores as one environment, a high-performance computing environment 
(cluster), and a high-throughput computing environment to execute the STSM Monte Carlo 
simulations as embarrassingly parallel tasks. These environments support embarrassingly parallel 
computations of the STSMs. Embarrassingly parallel computations were an obvious approach to 
decompose the STSM, which did not require a re-write of the STSM software. 

3. Materials and Methods 

3.1. Study area and state-and-transition simulation model case study 

The study area was located in southwest Idaho (Castle Creek), USA in a semi-arid shrub-steppe 
ecosystem (Figure 1). The vegetative strata for the ApexRMS case study include “Basin Big 
Sagebrush Upland” (Artemisia tridentata ssp. tridentata), “Curleaf Mountain Mahogany” 
(Cercocarpus ledifolius), “Low Sagebrush” (Artemisia arbuscula Nutt.), “Montane Sagebrush 
Upland” (A. tridentata ssp. vaseyana), “ Montane Sagebrush Upland With Trees”, “Western Juniper 
Woodland & Savannah” (Western Juniper: Juniperus occidentalis), and “Wyoming and Basin Big 
Sagebrush Upland” (Wyoming Big Sagebrush: Artemisia tridentata wyomingensis). ApexRMS 
provided the Castle Creek case study (ST-Sim-SpatialSample-V2-1-0 [32]), which included the data 
sets and STSMs. I evaluated the “Spatial – Current Management” scenario on the Castle Creek 
landscape where management treatments included thinning encroaching western juniper. Historically 
in the Castle Creek landscape, juniper occurred in rocky areas and cooler areas where fires did not 
occur [33]. The distribution of juniper increased because of fire suppression, grazing, and climate 
change [34]. With increasing juniper, habitat quality for wildlife, such as Greater Sage-grouse 
(Centrocercus urophasianus), and grazing resources for livestock have decreased [35-38]. I used 
these data and models to evaluate the decomposition of STSMs in different computing environments. 

The state-and-transition simulation model for the case study includes deterministic and 
probabilistic transition pathways (Figure 2). Transitions are necessary to define the biotic and abiotic 
events that result in observable community changes, which occur from natural and anthropogenic 
(e.g., management) influences. Deterministic transitions define the transition paths between class 
states that occur at different succession stages [10], which are documented and understood.  
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Figure 1. (a) Locational diagram of the study area in Idaho, USA; (b) Land management 
delineation for the Bureau of Land Management (BLM), private lands, state lands, and other. 
Most removal of juniper encroachment will occur on public land, but there are also conservation 
plans that provide economic incentives to improve habitat; (c) The vegetation states define the 
predominant vegetation type and structure (i.e., age). A few definitions of these referenced vegetation 
classes found in the Geographic Information System (GIS) data include annual grass (Ann Gr), tree 
(Tr), encroached conifer (Enc), mountain big sagebrush, native herbaceous cover, conifer cover 
(ShDpl), greater 50% native herbaceous cover and less than 10% cover mountain big sage (Early 
open); and (d) Within the state-and-transition simulation models, the vegetation strata represent the 
spatial aggregation where vegetation states change through deterministic and probabilistic pathways. 
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The probabilistic transitions capture changes between vegetation classes, which rely on empirical 
studies [39] that identify the uncertainty of changes between states based on particular influences not 
well understood but observed or modeled in studies. Transition multipliers (i.e., transition 
frequencies through time [6]) and directional multipliers (i.e., influence transition spread rates) are 
additional, ecologically useful methods, which also increase model complexity; I do not discuss 
these applications in detail here, because they do not uniquely influence the methods for 
decomposing the STSMs for parallel computations. State-and-transition simulation modeling is 
complex and researchers are required to generalize what they understand about transitions and model 
parameters. The models are generalizations of ecosystem processes, and this simplification allows 
researchers to model and evaluate those models, with observations and by testing different 
parameters and scenarios. These data and models support the relative complexities of STSM design 
and they provide a realistic case study to explore the benefits of decomposing STSMs and using 
alternative computing environments. 

 

Figure 2. The basin big sagebrush upland stratum as defined in the Castle Creek study and this 
illustrates the pathways between its state classes. The green lines represent deterministic 
transitions and the blue lines represent probabilistic transitions. 
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3.2. Software tools and computing environments 

The native software environment of SyncroSim ST-Sim is .NET (Microsoft® NET Framework). 
The researcher must use the ST-Sim Graphical User Interface (GUI) to parameterize STSMs, but 
recent releases of the software include a command line interface for executing, but not 
parameterizing, simulations. The command line software also operates on Linux when executed from 
MonoTM [40]. Mono is an open source project that enables Microsoft .NET applications (specifically 
C Sharp) to operate on cross-platforms, such as Linux distributions. Since most grid computing and 
high-performance computing environments rely on Linux operating systems, researchers can take 
advantage of these resources with the command line version of ST-Sim. Because I have compared 
the performance of ST-Sim on a multiprocessor machine to the performance within an HTC and HPC 
environment, having the ability to execute tasks on Linux operating systems was extremely 
important. 

I used two resource managers (i.e., middleware that allow users of HTC and HPC systems to 
interact with the networked systems) for deploying the embarrassingly parallel computing tasks on 
HTC and HPC environments. HTCondor is an open source grid computing resource manager, and 
the Simple Linux Utility for Resource Management (SLURM [41]) is an open source resource 
manager for Linux HPC clusters. I used PuTTY [42] as a terminal emulator to log onto the remote 
HPC Linux cluster via a secure shell (SSH) protocol, and I used WinSCP [43] to transfer the 
software and data from a local Networked Attached Storage (NAS) device to a local NAS on the 
Linux HPC cluster. I used the ST-Sim-V2-3-5-x64 software version to analyze the STSMs, which 
supports a 64-bit architecture. 

3.3. Multicore desktop computing 

I executed and then compared the runtime of the Castle Creek STSM using five different 
computing environments (Table 1). The first environment used serial computations via the 
SyncroSim ST-Sim GUI. With the first environment, I ran a simulation for a single replication to 
establish a runtime for each replication. I also compared this runtime to a single replication using 
Mono on a Linux virtual machine to assess whether Mono influences the performance. I would 
expect all parallel computations to complete within a timeline equal to the baseline runtime times the 
number of simulations. Most software that uses data read/write operations would perform best when 
the data is closest to the CPU. Executing a model with locally stored data also eliminates network 
bottlenecks as a culprit. Therefore, one can establish a baseline of performance by running the 
software with the data stored on a local machine and then compare its runtime when storing the data 
on a networked storage device. Because most networked storage uses Redundant Array of 
Independent Disks (RAID), hybrid storage (hard disk drives and solid state drives), or high 
performance storage (parallel read and writes), performance may be worse, and sometimes, storing 
data locally is not possible because most desktop machines have limited storage capabilities. 
Regardless, this test can assist with removing factors related to the network and storage. Because the 
resulting data for the Castle Creek study area required approximately 146 GB of storage, using local 
storage to test network related bottlenecks was not possible with the available hardware 
configurations. 

The second environment also used serial computations via the GUI, but instead of running a 
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single Monte Carlo simulation, I used 50. This baseline establishes a runtime to compare to all 
parallel computing tests. The third environment executes 50 Monte Carlo simulations on a single 
local machine with parallel computing. Here the number of simulations is strategically greater than 
the number of available cores. The fourth environment was an HTC system, and the fifth 
environment was HPC, both environments used parallel computing and 50 Monte Carlo simulations 
of the Castle Creek study area. I had no control over which nodes within the cluster executed the 
Monte Carlo simulations, but I distributed the jobs across the nodes evenly and during times of 
inactivity so I was not competing for resources. As for HTC, I also submitted all jobs during a time 
that processing did not compete for computing resources. Importantly, and as mentioned before, all 
computations used embarrassingly parallel computations and not MPI computations. 

Table 1. Distinction of the simulations compared in this study using the different combinations 
of replication, hardware, and software. 

Title Replication 

Count 

Description Hardware Available 

Node 

Count 

Available 

Core 

Count 

Available 

Memory 

ST-Sim 

Software 

Resource 

Manager 

GUI 

Baseline 

1 a Single 

desktop1 

1 1 26 GB ST-Sim 

GUI 

 

Serial 50 b Single 

desktop1 

1 1 26 GB ST-Sim 

GUI 

 

Parallel 

(Local) 

50 c Single 

desktop1 

1 16 26 GB ST-Sim 

command 

line 

 

HTC 50 c Multiple 

desktops 

HTC 

(LAN)2 

50 395 2 GB/ 

core 

ST-Sim 

command 

line 

HTCondor

HPC 50 c Cluster3 54 609 2.3 TB ST-Sim 

command 

line 

SLURM 

1. Single desktop simulation used had two available logical processing units (3.0 GHz);  
2. The Multiple desktop simulations HTC (LAN, local area network) used similar hardware to the Single desktop 

environment, but many desktops available to handle the distributed jobs. This HTC system included a local NAS 

with 5 TB and 1 GB/s Ethernet interconnect.  
3. The Cluster simulations used a local NAS with 45 TB of storage and 1 GB/s Ethernet interconnect while the 

processor speeds varied between 2.7-3.0 GHz. 
a. A single Monte Carlo simulation. 

b. Multiple Monte Carlo simulations (executed in serial). 

c. Multiple Monte Carlo simulations (executed in parallel). 

3.4. Decomposition workflow 

The workflow for decomposing and concurrently running the Monte Carlo simulations follows 
a simple structure (Figure 3). First, I set up the STSM scenario, and then I tested this model by 
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running a single replication. I then investigated these results and determined whether the results 
appeared realistic. After I established a working model, I started with scaling the workflow, which I 
accomplished by using three basic steps (Figure 3). The decomposition (Step 1 of Figure 3) refers to 
splitting the STSM into independent components and treating each Monte Carlo simulation and the 
data they require as independent models. For example, the decomposition, which is handled by the 
ST-Sim software, creates a copy of each STSM database and all GIS data. Step two (Figure 3), 
launches the Monte Carlo simulations as independent processes. The last step of this workflow (Step 
3 of Figure 3) includes merging all the returned results from each Monte Carlo simulation so the 
final ST-Sim database contains all results. The output GIS data sets depend on the STSM 
configuration settings. For example, the researcher may want aspatial and spatial summary results for 
every time-step of all state classes, transitions, state attributes, and transition attributes. For these 
tests, I returned aspatial and GIS results every five time-steps. Each test used a spatial model with 
150 time-steps, the data input required 0.3 GB of storage, and the output required 146 GB. 

 

Figure 3. The parallel computing workflow for a multicore desktop sets the stage for how the 
researcher will accomplish these tasks in grid computing and high-performance computing 
environments. 

3.5. High-throughput computing 

High-throughput and high-performance computing require more elaborate workflows than using 
a single multicore machine because they use resource managers that help users interact with a 
complex system. I used the basic workflow of figure 3 and then built on these concepts to develop 
the HTC/HPC workflows. To test the Idaho case study in an HTC environment, I developed a 
workflow (Figure 4), two Python® scripts, and an HTCondor template submit file. First, I developed 
an HTCondor template submit file that provides the submit file parameters. Within this file, I 
included configuration settings defining the runtime environment, the streaming of logging, 
operating system and hardware requirements, rules to transfer software and data, email notification 
alerts, and content that is specific to the job running on the client node. The purpose of the submit 
file template is to allow researchers to define parameters that change between HTC systems due to 
different management protocols defined by an IT administrator without having to modify the Python 
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Script 1. The user should modify the parameters within the template based on their system’s 
configuration. Many configurations exist for HTC systems, and the HTCondor template supports this 
flexibility. After configuring the submit file template, the researcher executes the Python Script 1 that 
sets up embarrassingly parallel computations for grid computing (Step 2 of Figure 4). During this 
step, the decompositions of the STSM and data are processed and the script generates HTCondor 
submit files. The researcher may also decide to zip and transfer their STSM data to the client or not 
transfer the data and instead use centralized storage. Transferring of data is a parameter within the 
Python Script 1 that the user can change. 

 

Figure 4. The workflow for executing state-and-transition simulation models in a 
high-throughput computing environment while using HTCondor middleware is the more 
complex system to use, but its complexity allows the middleware to take advantage of 
heterogeneous computing environments. 

The Python Script 1 generates a Directed Acyclic Graph (DAG) file, which defines how the 
individual submit files are executed and any relationships between the tasks. DAGs are a data 
structure (Figure 5) where each job represents a node and each node is a parent or child. The child 
nodes are dependent on parent nodes. If no dependencies exist, then you have only parents. I used 
DAGs to help reduce the overhead of detecting failed jobs as well as to increase flexibility of grid 
computing configurations. After I executed the Python Script 1, I submitted the HTCondor DAG 
(Step 3, Figure 4). This is possible using a Microsoft Windows® DOS batch file (generated from 
Python Script 1) or via command line on Windows and Linux operating systems. If Linux is used, 
then Mono is required on each client of the grid system and modifications to the Python Script 2 are 
necessary (not currently supported, but the modification is minor and similar to the syntax used in 
the HPC script). While the jobs run, progress is monitored (Step 4, Figure 4) using HTCondor or 
other third-party software. The Python Script 2, which runs on the client, is compiled so a Python 
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install is unnecessary on each client. This script handles the processing of Monte Carlo simulation 
tasks and streams the standard output and error to log files using multithreading, a different form of 
parallel processing. Step 5 (Figure 4) requires the user to investigate for job failures using log files 
that the resource manager documents within the DAG log and rescue files. Failed jobs are easily 
addressed by manually re-submitting the original DAG, which is only required when a DAG rescue 
file is generated. The final step (Step 6, Figure 4) requires the researcher to use the ST-Sim GUI 
software and evaluate the modeled results. 

 

Figure 5. (a) This is an example of a more complex Directed Acyclic Graph (DAG) shcematic. 
The numbers represent a unique identifer for each job within the DAG. The links represent the 
parent-child relationships (i.e., the relationships between tasks and therefore a workflow for when 
jobs execute). (b) This DAG illustrates what is used for the state-and-transition simulation 
model. With this approach there are no children and therefore the DAG is not necessary, but it is 
useful for managing the jobs. The text on the lower left portion of (a) highlights the content within a 
HTCondor DAG and how the relationships are defined. This information is not found in (b) because 
there are only parents. 

3.6. High-performance computing 

The workflow for using HPC and submitting the embarrassingly parallel state-and-transition 
Monte Carlo simulations is significantly simpler than HTC because the system is homogeneous. 
Instead of using Python scripts and submit files, the approaches used for HTC, I manually wrote a text 
file that uses SLURM. This is a straightforward script to develop and it includes the three basic steps 
that were used across each computing environment (Figure 3). Because a cluster can use different 
resource managers (e.g., SLURM and PBS) and configurations, this template is a guideline that a 
researcher can use with different resource managers. For example, the cluster used in this study did not 
support SLURM arrays, so instead this script used a for loop to spawn each Monte Carlo simulation. 
Users can modify this template as well as convert its workflow to use other resource managers.  

The cluster used for this study did not provide Mono as a software resource, so an IT 
administrator  installed this as a module that SLURM can load during the execution of each job. After 
developing the SLURM script, I tested the command line version of SyncroSim ST-Sim on a linux 
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virtual machine located in-house. Here, I was able to verify that Mono was correctly compiled and that 
the ST-Sim command line could run under Mono. I then transferred the SLURM script, ST-Sim 
command line software, and the Castle Creek STSM data (database and GIS data) to the cluster storage 
using WinSCP as illustrated in the workflow developed for this study  (Step 1 and 2, Figure 6). Using 
PuTTY, I remotely logged on to a terminal and executed the SLURM script with the sbatch command 
(Step 3, Figure 6). I monitored the progress of the simulation runs and then manually reviewed the log 
files to determine if any tasks failed (Step 4, Figure 6). The resulting data were transferred back to the 
local work environment using WinSCP (Step 5, Figure 6). Once the data resided on a Microsoft 
Windows environment, I evaluated the results in the SyncroSim ST-Sim GUI (Step 6, Figure 6). 

 

Figure 6. A high-performance computing workflow with state-and-transition simulation 
models. Simple Linux Utility Resource Manager (SLURM), like the Portable Batch System (PBS), 
is middleware used to launch and manage tasks in HPC environments. This workflow is very similar 
to Figure 3, but an HPC system does require a resource manager to distribute the tasks to different 
compute nodes. 

3.7. Monitoring and reviewing embarrassingly parallel tasks 

I used two different software packages for monitoring the embarrassingly parallel STSM tasks. 
CycleServer® is free software developed by Cycle Computing® [44] and it monitors historic/current 
jobs, produces reports on resource use, evaluates the health of the HTC system, deploys software and 
jobs, and it provides many other functions. I used the open source GangliaTM [45] to monitor the tasks 
executed on the HPC Linux cluster, which is a similar system to CycleServer in that it can monitor 
grids, but it can also monitor HPC clusters. Regardless of the monitoring resources available to the 
researcher, having access to a tool or command line queries is beneficial for monitoring jobs running 
within HTC and HPC resource managers. 
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After developing the workflows and software for executing embarrassingly parallel Monte Carlo 
simulations of STSMs in HTC and HPC environments, I used the SyncroSim ST-Sim GUI to evaluate 
the results (Figure 7). I then assessed the merged results to determine if the appropriate time-stamped 
GIS data and summary statistics existed in the STSM library. Because the ST-Sim GUI does not run on 
Mono, a researcher must transfer results derived on a non-Microsoft operating system to a native 
Microsoft environment. Using SAMBA [46] or similar software to read data not using Microsoft 
Common Internet File System (CIFs) is another method that allows direct access to the data with the 
ST-Sim GUI. Data transfers are expensive and time-consuming and this is important to recognize and 
incorporate into operating costs and project deadlines. 

 

Figure 7. Evaluating the output from the Monte Carlo simulations is important to ensure all 
simulations completed and the results from the model are reasonable. I used the SyncroSim 
ST-Sim software package and assessed the spatial and statistical results after the parallel processing 
completed, as illustrated in the figure. 

Numerous metrics exist for examining how well an application implements parallel computing, 
which in turn provide insight into improving code, identifying problems with hardware configuration, 
and identifying bottlenecks. These performance indices quantify computing times with respect to 
similar data and applications, but with different scaled architectures. Several commonly used 
measurements include the speedup curve, elapsed time, price per performance, speedup, and 
efficiency [47], and sizeup and scaleup [48]. Like many HTC systems, the environments typically are 
heterogeneous so Zhang and Yan [49] provide several suggestions of how to quantify performance on 
heterogeneous environments. Several important factors affect how one accurately measures 
performance. For example, latency, the amount of time for one computer to connect to another 
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computer, will affect computations and therefore, runtime. Reading and writing data to different 
storage types will also affect performance and quantifying performance between different systems can 
mislead users. Comparing the runtime across different heterogeneous systems is a complex task, and I 
wanted to track the entire workflow, and not just the time to run a single task or algorithm. 

To compare the runtime of the model runs in each computing environment, I measured the 
elapsed time for the entire workflow. Multiple runs of the same data and software within each 
computing environment were not evaluated. However, the variability is likely small because in all 
cases these runs were executed during opportune times with no competition for resources (network 
traffic or hardware). I measured the runtime (elapsed wall/clock time) for a single replication and 50 
simulations on a Windows desktop environment (multiprocessor machine). For HTC, I measured the 
runtime by how long processing took from the start of the Python Script 1,  completion of all Monte 
Carlo simulations, and the merging of the results. For HPC, I measured the elapsed time for execution 
of the SLURM script. I also measured the length of time to transfer the data to-and-from the cluster, 
but I did not include these in the runtime comparisons. Because the hardware (processor speeds and 
storage) varies slightly between the computing environments, the runtime can only suggest the relative 
benefits of using parallel computing with STSM. 

4. Results 

As expected, the results from testing the different combinations of computing methods indicated 
significant advantages of parallel computing (local, HPC and HTC) over standard, non-parallel 
methods. The model runs did not encounter errors due to decomposing the STSMs, running the Monte 
Carlo simulations, merging the Monte Carlo simulation results, or transferring data to-and-from the 
cluster. In other words, failed jobs due to hardware/network configurations did not influence the 
elapsed time with any of the tested computing environments. Figure 8 illustrates the computing 
runtime results from the testing of STSMs based on combinations of hardware, software, and parallel 
computing. 

Several limitations of these runtime comparisons exist. First, HTC is usually a heterogeneous 
system, while HPC is homogeneous and therefore the hardware was not identical. However, the 
hardware and operating systems within each system was similar for this study. The HPC system had 
the greatest variability with processor speeds, while the HTC system did not—in most cases, this is 
reversed. Second, the storage input/output performance is slightly different between the HTC and the 
HPC systems. Both systems use NAS devices, but the read/write speeds are slightly different. Third, 
the transfer of files to-and-from the HPC increases the project time (not included in the runtime; Figure 
8) because the U.S. Geological Survey manages the HTC locally and the HPC remotely. Local, HTC, 
and HPC compute environments behave the same for STSMs because all three use embarrassingly 
parallel tasks. Because of the architectural (infrastructural) differences between HTC and HPC, I 
anticipated small differences (e.g., minutes) between runtime. 

The speedup of decomposing a problem and concurrently running these individual tasks has an 
obvious advantage. If a model has 50 Monte Carlo simulations and each Monte Carlo simulation 
executes on a different processor, then in theory the model could run 50 times faster. With this known 
advantage, this research did not test the variability of the runtimes within each computing environment. 
If this study tested the variability, I could have provided confidence intervals around each run time and 
evaluated the statistical significance of the differences among the computing environments. Based on 
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The runtime results indicated significant decreases in computing time for all environments when 
using embarrassingly parallel tasks. As indicated from figure 8, the computing environments that 
executed parallel computations were all significantly faster than running state-and-transition 
simulation models in serial, as expected. However, the embarrassingly parallel tasks of the Monte 
Carlo simulations also did not complete within the 66 minutes required for a single replication. The 
HTC environment resulted in a 96.6% reduction of computing time relative to running 50 serial Monte 
Carlo simulations. The HPC environment had similar results with a 93.8% reduction of computing 
time relative to running 50 serial Monte Carlo simulations. Although the local parallel test resulted in 
the smallest reduction of computing time, 81.8%, this result is promising because researchers can 
significantly improve their workflow with a modest desktop. Parallel computing on the local machine 
was not as fast as the HTC and HPC environments because the number of available cores was less than 
the number of Monte Carlo simulations. I purposely designed this scenario to demonstrate the effect of 
scalability. All parallel computing tasks required greater than 66 minutes, which indicated that the 
decomposition and merging of the STSMs added an additional cost to the computing time. Based on 
the recorded elapsed times, HPC required an additional 96 minutes relative to HTC and the HTC 
runtime resulted in approximately 49 additional minutes relative to the runtime of a single replication. 
Using HTC and HPC will benefit researchers if they have many Monte Carlo simulations, 
state-and-transition scenarios, regional data or high-resolution GIS data. This baseline runtime can 
help researchers identify the benefits of HTC and HPC, and specifically the use of embarrassingly 
parallel program designs of STSMs. 

5. Discussion 

Parameterizing state-and-transition simulation models is a complex process and the primary 
focus for researchers. However, when computing resources become a bottleneck, the following, 
simple, workflow will help individuals decide what computing resources are necessary while 
maintaining a focus on building their models. First (1), start small and test your models on a subset of 
your data and on a local machine. Next, (2), consider testing the model without the GIS data and then 
slowly building components and complexity to the model. Third (3), if the study area is large, consider 
dividing the data into ecoregions or meaningful land units. (4) Identify bottlenecks, such as hardware, 
storage, network, and model complexity by running a single replication locally and compare this 
runtime to running a single replication with data stored on the network. Also (5), examine memory, 
disk storage and bandwidth requirements. Usually 1 GB bandwidth is sufficient and unless a 
researcher plans to use a HPC system, it is unlikely they will have access to faster networks. Finally (6), 
scale this information to obtain the necessary resources required for the analyses using the fully 
parameterized models. For example, if you have abundantly more simulations and scenarios than cores, 
then consider using HTC, a cluster, or one of these systems in the cloud environment.  

If you decide to use HTC, build the appropriate files for deploying the simulations using the 
provided scripts (see Supplementary for software resources), and modify as needed for your system. 
Start with submitting a single replication to ensure everything is set up correctly which avoids 
consuming unnecessary computing resources, and then expand to a production level effort. When 
using HPC, first test the models on a local Linux system before migrating to a cluster. For example, the 
researcher can build a local Linux box (physical machine) or build a virtual system using Oracle 
Virtualbox™ (freeware [50]) or VMware®. Once a researcher establishes a viable workflow that 
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successfully executes on a single Monte Carlo simulation, they can then expand to a production 
environment and launch all simulations. Small jobs can require longer runtimes in HTC and HPC 
because of the overhead (e.g., middleware interactions between users and middleware management of 
computers [inter-communication], decomposition of small jobs, queue lengths, network 
communications), and therefore there is some trial and error, and expertise, required for determining 
an optimal workflow. 

Running jobs in distributed computing environments can result in failures due to multiple reasons. 
These reasons can include incorrect parameter definitions, data transfer failures, software and 
hardware issues, or because users or network activity interrupts the job. The latter scenario typically 
occurs only when the configuration of the HTC system allows user activity on a networked client to 
kill the parallel computing application and/or when the system does not use dedicated compute nodes. 
HTC is designed to handle many tasks that run within a relatively short timeframe. Although executing 
individual jobs that run longer than 12 hours is possible, such jobs are less desirable because the 
system is likely to have interruptions from various sources as processing times increase. Many 
organizations use HTC on dedicated clusters, and in such cases addressing interruptions and 
configurations are significantly simpler. DAGs can document which jobs fail and allow the user to 
re-run only those failed jobs. When DAGs are not used, the user must review all log files, determine 
which jobs failed, and then re-submit these jobs. Using DAGs to track progress reduces overhead and 
improves workflows, which is why I used them for submitting the STSMs. However, DAGs in general 
are useful for establishing parent-child relationships between tasks, adding capabilities with pre- and 
post-scripts, and throttling the number of tasks that are allowed to run in parallel.  

Failures with accessing and transferring data, hardware, and other reasons (similar to HTC) also 
occur on clusters that depend on network infrastructure. However, because an HPC system is mostly 
homogeneous with respect to operating systems and hardware, and computing nodes are not subject to 
independent users and uses, failures are less frequent. The primary requirement for using HTC and 
HPC are that the software running on these systems must properly function with command lines and all 
messaging and error handling is directed to standard error and standard output versus a GUI message 
box. A GUI message box requires the user to interact with the software and this is problematic when 
running many tasks on remote compute nodes. In other words, any software that a researcher wants to 
use with HTC and HPC cannot require the user to interact with it during any stage. Although 
exceptions apply and it is possible to navigate such circumstances programmatically using sendkeys 
(i.e., using code that instructs the software to click a button), these are inefficient and not 
recommended. In such cases, a researcher should change the software code. During this study, 
SyncroSim ST-Sim was not properly handling the “stderr” and “stdout” for the command line 
component, and as a result, when an error occurred the resource managers erroneously considered the 
tasks as successfully completed; this issue was addressed by ApexRMS and should not cause future 
problems. Not all software is compatible with distributed computing environments, so researchers 
should investigate software that they plan on using, their project and modeling workflows, and their 
anticipated ecoinformatics needs when planning projects and analyses.  

An important, additional factor to recognize when using remote hardware is the transfer of data 
(inputs and outputs) across the WAN. As demonstrated in this study, transferring the results (146 GB) 
back to the user-environment required considerable, additional time (24.25 hours). The data must be 
transferred to-and-from remote locations when relying on remote hardware such as remote grids, 
clusters, and clouds, and these transfers depend on the capacity of the bandwidth. However, when 
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researchers lack the availability of HTC and HPC systems in a local work environment, utilizing 
networked resources offers the best option. For smaller data sets, data can be transferred across the 
WAN; however in most cases, researchers that require HTC and HPC also work with large data sets 
that cannot be readily and repeatedly transferred across the WAN due to service timeouts, bandwidth 
limitations (the WAN bandwidth is significantly less than that found on a LAN), and network failures 
(e.g., dropped packets). Three options for handling larger data sets include permanently hosting the 
data on remote hardware and shipping the data inputs, outputs on an external storage device, and using 
GlobusTM (http://www.globus.org). These are important considerations because the cost of operations 
and the time to complete the research may be affected. 

Cloud computing expands computing resources through virtualization of hardware and software. 
Although some organizations rely on private clouds (e.g., NASA Nebula [51]), many publicly 
accessible clouds exist (e.g., Amazon EC2® [52]; Microsoft Windows Azure® [53]; and Google 
AppEngine® [54]). Clouds are scalable, increase efficiencies, and decrease hardware costs, but these 
resources are not necessarily a solution for every application. A researcher using the cloud can select 
their operating system, as well as, set up HTC and HPC environments. Describing the use of cloud 
computing extends beyond the scope of this project but a significant amount of literature exists [55]. 
All storage, proprietary operating systems (e.g., Microsoft Windows®), memory, usage time, and data 
transfers have associated costs to using the cloud and therefore the project budget, and the economic 
differences of using the cloud versus other resources may not be clear for every situation [56,57,58]. 
Regardless of project-to-project differences, the cloud is a viable solution to run SyncroSim ST-Sim as 
embarrassingly parallel tasks when computing resources not otherwise accessible. High-throughput 
computing systems, HPC, and computing clusters (networked CPUs) exist at most universities and 
researchers collaborating with these organizations will often have access (e.g., Open Science Grid, 
Extreme Science and Engineering Discovery Environment, and Oak Ridge National Laboratory) to 
computing options. Government agencies may also have access to similar resources. With the basic 
workflows outlined in this research, the available hardware resources, and updates to the ST-Sim 
software by ApexRMS, researchers can seek alternative computing resources when required. 

Additional modifications to ST-Sim software may increase efficiencies and reduce computing 
time. The command line version of ST-Sim, and its ability to decompose the Monte Carlo simulations 
into individual models, was a significant enhancement that supports the use of modeling in HTC and 
cluster environments. The version of ST-Sim software used in this study required read/write of ASCII 
files followed by conversion of these file formats to GeoTiff format. Instead, the software could use 
the Geospatial Data Abstract Library (GDAL [59]) to read/write directly to GeoTiff files. This would 
reduce the number of data conversions and should further reduce the overall runtime of the STSMs, 
but this was not explicitly tested here. When using centralized storage, ST-Sim does not need to 
duplicate the raster data inputs during the decomposition process. However, if the simulation requires 
sending data to each client and for each Monte Carlo simulation, then duplicating the raster data to the 
remote locations is necessary. Greater control of this workflow could allow for a reduction in storage 
requirements by avoiding the duplication of data and minimizing data transfers. Because ST-Sim uses 
a SQLite database, copies of the database are necessary because these databases do not support 
asynchronous writes [60]. The SyncroSim ST-Sim software used in this study did not support the 
“advanced configuration” to average the annual transition probability for specified time-steps because 
each simulation runs independently of each other and generating these results cannot occur until after 
the merging of the simulations. However, the functionality does exist in the GUI application. Having 
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this capability with the command line software would allow researchers to evaluate these results, 
which would eliminate the need to copy all data from a remote location during the evaluation of the 
results. Although these are minor enhancements, these changes could reduce runtime and help mitigate 
data storage requirements for larger projects. 

Different data and models will yield different results with respect to absolute runtimes. However, 
the model and data are identical between Monte Carlo simulations for a given model and if you divide 
these simulations up, they will run faster relative to running them in serial. Because in every STSM, 
with respect to using embarrassingly parallel computations of Monte Carlo simulations, the runtime 
will scale linearly and reflect advantages similar to the results, found in this research, assuming that 
machines are identical and nothing is interfering with individual jobs. Therefore, the results of this 
research will occur with other STSMs and data, and the speedup time will depend on the number of 
Monte Carlo simulations that can run concurrently. 

The results of the state-and-transition simulation model using embarrassingly parallel computing 
will always be as accurate as the model itself. The decomposition uses the exact same data and models, 
while only changing the random seed for each Monte Carlo simulation. The results would only be 
invalid if the underlying model was invalid and the approach to decomposition of the simulations has 
no effect on the validity or accuracy of the models. Therefore, using data decomposition of the Monte 
Carlo simulations and running these as embarrassingly parallel tasks on different cores will have no 
effect on the results of the models. 

Decomposing Monte Carlo simulations for state-and-transition simulation models may not 
adequately reduce the computation time for a researcher when the bottleneck occurs because of the 
runtime during a single Monte Carlo simulation. For the aforementioned reasons of 
state-and-transition simulation model complexities, a researcher has several options. They can divide 
the landscape into meaningful units, such as watersheds and ecoregions, process individual strata that 
define the model and a combination of a single model (often defined as different management 
solutions) scenario and stratum. If these methods continue to result in long or unacceptable runtime for 
a single Monte Carlo simulation, then the researcher could work directly with ApexRMS to work out 
MPI applications. MPI is difficult and expensive to implement, especially with respect to the already 
inherent complexities of STSMs and spatial dependencies of neighboring pixels within some models. 

6. Conclusion 

Parallel computing of state-and-transition simulation models is instrumental for research that 
relies on complex models, large landscapes, and/or small grain (resolution) spatial data. 
Ecoinformatics, such as applying parallel computing to investigate complex ecosystem processes, is 
advantageous because it highly scalable and instrumental for modeling large landscapes. Additionally, 
it reduces the turnaround time to obtain scientific results for any model, it allows thorough analyses 
with sufficient parameter sweeps, and it accommodates an appropriate number of Monte Carlo 
simulations. The results from using embarrassingly parallel computations demonstrated reduced 
computation time for local, HTC, and HPC environments. However, when the number of tasks exceed 
the number of cores on a local environment, HTC and HPC were more appropriate. Loosely coupled 
systems (e.g., grid, HTC, or HPC) scale better than tightly coupled systems (e.g., single computer with 
multiple cores), which is why distributed computing performed best in these evaluations. Because 
horizontal scaling can use commodity (low cost) hardware and because these systems scale larger than 
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what is possible with many vertically scaled systems, they are extremely beneficial for larger jobs with 
many tasks. Because I used embarrassingly parallel computations and data decomposition, 
high-throughput computing was considered the most appropriate. However, when clusters that support 
high-performance computing are available, they also can execute embarrassingly parallel tasks. 
Importantly, I did not change the code of SyncroSim ST-Sim by using functional decomposition, but 
rather I decomposed a large problem and distributed these tasks (Monte Carlo simulations) to run 
independently on different computers. 

The runtime results of this study highlight several important considerations. Although using HTC 
and HPC speeds up the analyses, processing time for individual tasks (e.g., a single Monte Carlo 
simulation) will not be faster. Embarrassingly parallel design is not a parallel function and it does not 
decompose a single Monte Carlo simulation using MPI. However, distributing the workload has great 
benefits, and it is a simple approach to addressing complex STSMs. If all hardware, network, and 
resource managers are equal the runtime for HTC and HPC would also be equal. However, my results 
showed that an additional 96 minutes was required for HPC compared to HTC running the same tasks. 
This occurred because the processors available on the HTC system were nearly identical (Xeon 3.2 
GHz) and the processors on the HPC systems were variable and of lesser quality (ranged between 
2.7‒3.0 GHz), which may be similary to many, existing networked systems. In addition, a single 
replication completed in about 56 minutes, but HTC required 115 minutes to execute 50 simulations in 
parallel. The additional 59 minutes were used for decomposing the data, submitting the individual 
Monte Carlo simulation tasks to the clients, managing the tasks with the resource manager, and 
merging the resulting runs into a final ST-Sim database (with each of the 50 simulations run 
simultaneously and independently during this time). Therefore, smaller jobs may run faster without 
using embarrassingly parallel tasks (when the time for additional simulations is less than the 
approximately 60 minutes required for process management), and these tradoffs demonstrate that 
experience and some trial and error are necessary to develop research workflows. 

This research accomplished numerous objectives that provide scientists and managers with 
alternative methods for using complex STSMs and large data sets. I started by identifying challenges 
inherent in state-and-transition modeling, and I then identified computing resources, configurations 
and potential bottlenecks that affect the ability of researchers to complete projects within reasonable 
timeframes. I discussed the different methods for decomposing STSMs and the methods used in this 
research. I also described the basics of using parallel computing, high-throughput computing, 
high-performance computing, and cloud computing with STSMs by decomposing the Monte Carlo 
simulations into embarrassingly parallel tasks. These results indicate significant advantages to using 
HTC and HPC for complex STSMs with large data, and with the framework developed from this 
research, suggesting that scientists may have access to resources to easily expand their STSMs to 
larger landscapes or expand their model complexities without having to change their research. 
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Supplementary 

Any researcher that desires to explore the software scripts developed for this study (Table S1) 
can find these posted here. In most cases, users will need to modify these scripts because 
high-throughput and high-performance computing environments use different resource managers 
(e.g., HTCondorTM, PBS, OpenPBS, SLURM) and they are each managed differently and therefore 
require different methods for submitting jobs. However, these scripts provide an excellent starting 
point for those not familiar with such resources. The scripts are both open source and freeware and 
the U.S. Geological Survey maintains no limitations on how these are used or distributed. 

Table S1. Descriptions of software/scripts used for running embarrassingly parallel Monte 
Carlo simulations on a grid and cluster environment. These files are templates that other 
researchers can use and modify for their applications. 

File Name Computing 

Environment

Resource 

Manager 

Description 

_PyInstaller_STM_runScenario.bat Grid HTCondor This provides an example for compiling Python 

code using the open source PyInstallerTM 

STM_runScenario.exe Grid HTCondor Executable compiled from STM_runScenario.py 

with PyInstaller. This program executes on each 

client within the HTC system 

STM_runScenario.py Grid HTCondor The Python source code (Python Script 2) that 

executes on each client within the HTC system for 

processing state-and-transition models 

ST-Sim_HTCondor_setup.py Grid HTCondor A Python script (Python Script 1) that generates 

HTCondor files, decomposes state-and-transition 

models, and other tasks. 

SubmitTemplate.sub Grid HTCondor An HTCondor template file used by 

ST-Sim_HTCondor_setup.py to guide researchers 

with using different administrative configurations 

of HTCondor. 

stm.slurm Cluster SLURM A text file template, which is converted to an 

executable text file, that researchers can use as a 

guideline for running state-and-transition models 

with SLURM resource manager. One can also 

convert these to other resource managers as long 

as the basic workflow is followed. 
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Software disclaimer 

Although this program has been used by the U.S. Geological Survey (USGS), no warranty, 
expressed or implied, is made by the USGS or the U.S. Government as to the accuracy and 
functioning of the program and related program material nor shall the fact of distribution constitute 
any such warranty, and no responsibility is assumed by the USGS in connection therewith. 
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