Volume 2, Issue 3, 464-493.

DOI: 10.3934/environsci.2015.3.464
Received date 28 January 2015,
Accepted date 18 May 2015,
Published date 8 June 2015

A1TMS

http://www.aimspress.com/

Research article

Encapsulating model complexity and landscape-scale analyses of
state-and-transition simulation models: an application of
ecoinformatics and juniper encroachment in sagebrush steppe

ecosystems

Michael S. O’Donnell *

U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Ave., Bldg. C., Fort Collins, CO
80526, USA

* Correspondence: E-mail: odonnellm@usgs.gov; Tel: +1-970-226-9407.

Abstract: State-and-transition simulation modeling relies on knowledge of vegetation composition
and structure (states) that describe community conditions, mechanistic feedbacks such as fire that can
affect vegetation establishment, and ecological processes that drive community conditions as well as
the transitions between these states. However, as the need for modeling larger and more complex
landscapes increase, a more advanced awareness of computing resources becomes essential. The
objectives of this study include identifying challenges of executing state-and-transition simulation
models, identifying common bottlenecks of computing resources, developing a workflow and
software that enable parallel processing of Monte Carlo simulations, and identifying the advantages
and disadvantages of different computing resources. To address these objectives, this study used the
ApexRMS® SyncroSim software and embarrassingly parallel tasks of Monte Carlo simulations on a
single multicore computer and on distributed computing systems. The results demonstrated that
state-and-transition simulation models scale best in distributed computing environments, such as
high-throughput and high-performance computing, because these environments disseminate the
workloads across many compute nodes, thereby supporting analysis of larger landscapes, higher
spatial resolution vegetation products, and more complex models. Using a case study and five
different computing environments, the top result (high-throughput computing versus serial
computations) indicated an approximate 96.6% decrease of computing time. With a single, multicore
compute node (bottom result), the computing time indicated an 81.8% decrease relative to using
serial computations. These results provide insight into the tradeoffs of using different computing

465

resources when research necessitates advanced integration of ecoinformatics incorporating large and
complicated data inputs and models.

Keywords: STSM; high-throughput computing; high-performance computing; ecoinformatics;
sagebrush steppe; juniper encroachment

1. Introduction

State-and-transition simulation models originated as conceptual representations of the different
conditions (states) and changes in conditions (transitions) that characterize observations of natural
ecosystems; modern data and computing capabilities have increased the quantification of these models.
State-and-transition simulation models (STSM) require information about the initial conditions of
vegetation to define states, transition paths between these states, and the behavior of these transitions,
defined as deterministic and probabilistic pathways [1]. After researchers define their states, initial
conditions, transitions, and pathways, they then use Monte Carlo simulations to measure the
variability of the results that account for the stochastic properties of the model parameters. More
complex models will include multiple scenarios that capture different management protocols [2],
climate scenarios [3,4,5], state-and-transition attribute values (i.e., aggregating state classes and
transitions to obtain different output summaries), various types of multipliers (e.g., the influence of
slope on fire spread properties [6]), and stock-flow models (e.g., Intergovernmental Panel on Climate
Change carbon models [7]). Although not required, STSM may also incorporate Geographic
Information Systems (GIS) data of state classes, management zones, biophysical strata, and transitions.

Stochastic state-and-transition simulation models that are non-spatial or spatially explicit predict
how the vegetation state classes change over time due to vegetation transitions resulting from natural
and anthropogenic processes. These models include both processes (e.g., spread of fire and invasive
species, encroachment resulting from attenuating natural ecosystem processes, and climate change [4])
and empirical observations (e.g., field observations indicating fire return intervals [8]). The resulting
aspatial and spatial predictions describe changes such as habitat fragmentation, habitat quality, and
vegetation composition and structure. State-and-transition simulation models are important because
they produce information about natural and anthropogenic landscape changes. Researchers use
scenarios to capture the effects of different practices for managing invasive species (e.g., cheatgrass
and juniper invasion [9]), grazing practices, fire management [10], and land-use patterns [11]. These
resulting predictions allow managers to explore effective management scenarios and the effects of
alternative impacts to the landscape, assuming that the models capture realistic ecosystem processes.

The overall purpose of this research was to identify and develop different methods for running
STSM with larger landscapes, higher spatial resolution data sets and models that are more complex.
Specifically, the objectives of this work fit into two broad categories. The first category,
understanding modeling and computing challenges, includes identifying (1) technical challenges of
executing state-and-transition simulation models (2) common bottlenecks and limitations to
effectively using computing resources, and (3) methods for addressing processing limitations. The
second category, the integration of alternative computing environments to support
state-and-transition simulation modeling, addresses (4) evaluating different computing resources that
execute the decomposed Monte Carlo simulations, (5) developing software that decomposes the

AIMS Environmental Science Volume 2, Issue 3, 464-493.

466

state-and-transition simulation model as embarrassingly parallel Monte Carlo simulations, and (6)
evaluating the advantages and disadvantages of running state-and-transition simulation models as
embarrassingly parallel tasks. I discuss objectives 1-3 in the Background, objectives 4 and 5 in the
Materials and Methods, as well as the Results, and lastly I discuss objective 6 in the Discussion.

2. Background

Until recently, scientists mostly relied on aspatial state-and-transition simulation models, and
the software executed the model instructions in serial; that is, a single task executes before additional
sequential tasks run, but none executes concurrently and software cannot take advantage of multiple
processor cores. Representing spatial data in STSMs is necessary for capturing spatial processes [12]
and multi-scaled processes [13]. In this context, scale refers to the combined effect of spatial extent
and resolution (grain), while when referring to the scaling of computers and computer infrastructure,
scaling denotes the expansion of computing resources. Research requiring complex models and
regional GIS data could encounter unrealistic computation time while using serial computations,
which usually results in curtailing hypotheses. Specifically, the researcher might change the number
of states represented in their model, the types of transitions, the number of Monte Carlo simulations,
and other factors used to define a model. In turn, a researcher may be forced to change the questions
they investigate due to the computing limitations imposed on their modeling procedures.

To address this challenge, this study explored decomposing Monte Carlo simulations of STSMs
into parallel tasks. ST-Sim™, a plugin for ApexRMS SyncroSim™ software (freeware [14]), supports
decomposition of models on a single multicore machine. This study demonstrated that when a
vertically-scaled computer, such as a single desktop, cannot sufficiently handle complex models while
using parallel tasks, scientists can rely on distributed computing environments, also known as horizontal
scaling. High-throughput (HTC) and high-performance (HPC) computing are methods of distributed
computing that enable researchers, modelers and analysts to distribute their workload on multiple
machines, thereby supporting analysis of larger landscapes (spatial extents), higher spatial resolution data
inputs, more complex models, and sufficient Monte Carlo simulations in a timely manner.

2.1. Challenges of processing state-and-transition simulation models

State-and-transition simulation models include a myriad of parameters that may present as
challenges when executing these models with standard computing resources. For example, models
often require many Monte Carlo simulations to quantify effects of parameter variability on
simulation results. They may also include many time-steps, which must reflect an appropriate length
of time specific to the plant community life cycles. Model scenarios behave independently of each
other, and researchers evaluate the juxtaposed outcomes to understand relations between parameters
and community responses. Thus, with additional scenarios, each with a set of Monte Carlo
simulations and time-steps, the computation time and model complexity increases. When using
spatial models, large extents and small spatial resolution (grain) can contribute to increased
computing time. State-and-transition simulation models also support spatial autocorrelation of
vegetative transitions, such as spreading of fires [15] because with these parameters, models can
more accurately capture how the landscape is likely to change through time. However, with the
increased complexity to represent these processes accurately, the greater the computations and the
need for different computing resources. Thus, expanded ability to represent complex ecological

AIMS Environmental Science Volume 2, Issue 3, 464-493.

467

scenarios comes with computational costs that may challenge practicality and efficiency.

Scientists often address computing bottlenecks by decreasing the model complexity. With
spatial STSMs, one can reduce the spatial extent and/or spatial resolution (e.g., large grain) , reduce
the number of Monte Carlo simulations, test fewer scenarios, reduce the number of strata, and
change the research questions. However, the scientific community can often address limitations of
computational runtime because of the abundantly available and inexpensive computing hardware, as
well as the many different methods available to solve problems (e.g., in-memory computing, many
task computing, HTC, HPC, and big data applications). Frequently, computer scientists use parallel
computing, as described here, to address large problems by dividing these into smaller pieces and
solving them concurrently. Decomposition of a problem can take advantage of multiple processors
by breaking down the data into smaller pieces (data decomposition) or by using an algorithm
(functional decomposition) that divides the computations into smaller pieces [16]. Here, I introduce
these concepts and explain where scientists can access additional computing resources and how they
can use them without having to change the research.

Several potential methods exist for decomposing state-and-transition simulation models. The
first method, and the most obvious method, is to run each Monte Carlo simulation independently
(data decomposition). This approach does not require complex programming because no
communications between the Monte Carlo simulations are necessary. A second approach to
decomposing the problem includes dividing the spatial data into tiles and then running the STSM on
the individual tiles (data decomposition). This approach is difficult because in many cases, these
models will include spatial relationships between neighboring pixels that would result in errors along
adjacent tiles. A third approach includes decomposing the state-and-transition algorithms (functional
decomposition). For example, a common approach of functional decomposition is using the
message-passing interface (MPI) to loop through arrays of data (such as those in a raster data set).
The data is decomposed into arrays using a loop function, then this data is processed on remote
central processing units using some algorithm, and finally these results are merged into a single
raster data set. The decomposition and aggregation of the data relies on a significant amount of
communication streaming between the different processors and compute nodes [17] to accomplish
the processing, which sets this approach apart from embarrassingly parallel methods that use no
communication between computing tasks. Embarrassingly parallel is a term used to denote
programming tasks or processes that require solving many similar but independent tasks
simultaneously, with little or no coordination needed between the tasks. The message passing
interface approach can also be difficult to achieve because of the prevalent dependencies between
neighboring pixels. The goal here was to demonstrate the decomposition of Monte Carlo simulations
for STSMs and execute these as embarrassingly parallel tasks. For more complex models (not
demonstrated here), this workflow may be applied to individual scenarios and strata. For example,
like Monte Carlo simulations, the scenarios are independent of each other, and each scenario as well
as its associated Monte Carlo simulations can run in parallel. Because there is no underlying
difference in parallelizing the scenarios and the strata, this was not explicitly investigated.

2.2. Identifying computing bottlenecks

Numerous computer hardware components can potentially affect model performance. These
components include Computer Processing Unit (CPU) speeds, the number of processor cores, system

AIMS Environmental Science Volume 2, Issue 3, 464-493.

468

bus speeds (communication between CPU and memory), and storage configuration. Beyond a
computer, networked storage, the bandwidth, and the configuration of networks can influence how
long a model runs [18]. In addition to potential hardware and network bottlenecks, workflows and
the algorithms used within software can also lead to poor performance. Isolating bottlenecks and
poor performance is not an easy task, especially if you are not a computer scientist, a software
engineer, and you do not have access to the software code.

Understanding computer-hardware configuration helps identify software capabilities and
requirements. For example, a multi-CPU (symmetric multiprocessing system) will have multiple and
identical processors located on different circuits, all sharing memory via a system bus; however, each
CPU has its own memory cache [18]. The system bus connects a computer’s motherboard to the
CPU and memory. A core is a computational unit of a multicore processor (single CPU), and a
multicore chip has a single socket that combines two or more independent processors on the same
circuit and with a memory cache [18]. For example, these components may be configured to create
dual core processors (2 cores per physical processor) or quad core processors (4 cores per physical
processor), which are both multicore chips. The performance enhancement of multicore chips is
significantly less than adding an additional CPU chip [19]; however, the benefit is less electrical
power consumption and reduced overhead for bus communication [20]. Hyper-threading is a
Microsoft Windows® BIOS (Basic Input-Output System) configuration that allows one physical
processor with multiple cores to appear as multiple logical processors. The more CPUs, cores, and
memory a machine has, usually the faster the processing. The processor speed and type are also
important considerations as they both can affect processing performance. Configuring a single
system and providing adequate memory is important when scaling hardware, but software must have
the ability to use these resources.

When the network infrastructure and computer hardware are not the bottlenecks, or when the
cost of reducing these bottlenecks is impractical, one can consider the software architecture (32-bit
versus 64-bit) as a performance inhibitor. SyncroSim supports both 32-bit and 64-bit architectures and
the architecture is important because it defines how much data the software can load into memory at
once. The more data stored in direct access memory, the better the software performance [18] because
it reduces the number of reads and writes to disk and the number of times information is transferred
across the system bus. The Direct (main) Random Access Memory (DRAM, level 3) of a computer
can support up to 2°% bytes for 32-bit architectures and 2°* bytes for 64-bit architectures. A 32-bit
architecture allows for up to 4 GB of RAM and a 2 GB limit per process. A 64-bit architecture allows
for up to 256 TB of RAM and an 8 GB limit per process. Thirty-two bit applications work on 64-bit
platforms because there is an emulation layer but the same 2 GB limit per 32-bit application applies.
If a model requires processing a significant amount of information by loading more than 2 GB of
data into memory, then a 64-bit architecture is necessary. Numerous facets to architectures and
software performance exist, and limitations exist for operating systems with respect to how much
one can scale (i.e., expand resources) memory and CPUs [21,22]. Monitoring memory usage relative
to memory limits can help isolate this bottleneck.

Understanding the basic concepts of computer architectures will help researchers to begin
understanding the various hardware components and complexities. Knowing your hardware
configurations provides insight into how a researcher can address larger computing problems. Here, |
have defined cores, multicores, multi-CPUs and memory architectures, which are required to
understand the different methods for addressing processing limitations. Accepting the abilities and

AIMS Environmental Science Volume 2, Issue 3, 464-493.

469

limitations of the SyncroSim software, I explored effects of decomposing the model in different
computing environments to address potential computing bottlenecks that may occur because there
are too few resources for addressing the problem.

2.3. Methods for addressing processing limitations

Parallel computing addresses computational challenges by concurrently executing tasks (e.g., a
program that includes many instructions) using two or more computer processors and/or nodes (i.e.,
computers). A variety of parallel computing methods exists, and these include bit-level, instruction
level, thread level, data, and task parallelism. These are concepts not usually known to ecologists,
and therefore, I have provided a brief summary as several pertain to this research. The difficulty of
implementing parallel computing is addressing the communication and synchronization between the
subtasks, which requires a knowledge of the methods for decomposing the instructions and/or data
and deciding how these interact. Parallelization is categorized into fine-grained parallelism, which
supports communication many times per second and coarse-grained parallelism, which requires little
or no communication between concurrently running subtasks.

Bit-level parallelism refers to how a computer processor executes instructions (for example, an
algorithm) as well as how the number of instructions and the size of those instructions affect this
execution. If a computer processor requires splitting a request into sequential instructions because the
instructions do not fit into a single bit array (e.g., 32-bit) then processing time increases. If the
instruction fits into a larger bit array (e.g., 64-bit) then processing time decreases. Instruction level
describes how a software developer manipulates the order and grouping of a program’s instructions.
Each stage of a multi-stage instruction pipeline represents what the processor does to the instruction.
For example, these stages might include fetching the instruction, decoding it, executing it, and then
accessing the memory. Superscalar processors (specialized processors), for example, execute
multiple pipeline instructions concurrently. Threads are a simpler method for parallelization because
they have their own memory stack and instructions, but each thread must wait on another thread
because they are writing to the same memory address. Threads are commonly used with a graphical
interface where a user executes a process, and the software then displays a progress bar to monitor
the state of the process. In this example there are two concurrent threads running (e.g., a task/job and
a progress bar). Threads are not used for most parallel computing applications because the threads
belong to a single process, which does not support CPU intensive applications. Data parallelism uses
a single calculation on different subsets of data, which is commonly used with loops within software.
Task (i.e., a collection of instructions such as a software program) parallelization performs different
calculations on the same data or on different data.

In this study, I am using bit-level (64-bit software and computer architecture), thread-level
(streaming standard output for handling asynchronous logging of tasks), and task parallelism
(parallelization of the STSM Monte Carlo simulations). The decomposition of the Monte Carlo
simulations used in STSM requires no data dependencies or communications between the executions
of tasks. The computer science community refers to this type of parallelization as embarrassingly
parallel. Executing Monte Carlo simulations in parallel, which I have applied in this research, is a
common example of embarrassingly parallel applications. Contrary to coarse-grained parallelism,
high performance computing relies on a significant amount of communication and dependencies
between subtasks, which this research does not implement.

AIMS Environmental Science Volume 2, Issue 3, 464-493.

470

To understand the limitations of parallel computing with respect to computer hardware, Flynn’s
taxonomy [23,24] has been used to categorize computer architectures into four categories. Since
Flynn’s work, two additional subcategories have been identified. All categories refer to the number
of concurrent instructions that can process on the available data streams. Understanding Flynn’s
taxonomy is important with respect to parallel computing because parallelizing tasks are constrained
by the computer’s architecture and modeling environment. Flynn’s taxonomy defines Single
Instruction and Single Data (SISD), Single Instructions and Multiple Data (SIMD), Multiple
Instructions and Single Data (MISD), and Multiple Instructions and Multiple Data (MIMD). Two
additional categories that the informatics community later recognized include the Single Program
and Multiple Data (SPMD) [25] and Multiple Programs and Multiple Data (MPMD) [26]. Software
developers and researchers need to understand their hardware, parallel computing approaches, and
their model structure before making informed decisions on improving modeling performance.

Of the six taxonomy classes, most are not applicable to how this study decomposed the STSMs,
or applicable at all. SIMD are common with General Purpose Graphic Processing Units (GPGPUs)
that impose a lockstep where each CPU instruction processes multiple data elements at the same time.
MISD are used for high fault tolerance applications via redundancy of instructions (a common
example for this type of hardware and computing are flight control computers). An average desktop
workstation is indicative of the SISD category and for all purposes reflects the framework used for
the STSMs. Networked clusters, grids, multi-processor computers, and multicore computers that use
MPI [27] fit the MIMD taxonomy, but they also support embarrassingly parallel applications. Grid
computing refers to processing jobs across multiple distributed computing systems that use different
management configurations. That is, while multiple collections of computers may be managed
autonomously, these collections of systems can also operate collectively.

Embarrassingly parallel workloads require minimal effort for decomposing a problem into
parallel tasks and have little to no dependencies between tasks, such as communication.
Consequently, these processes are common for grid computing because this type of computing relies
on little or no communication and no dependencies exist between tasks. Embarrassingly parallel is
similar to SPMD, a modification of SISD [28]. Embarrassingly parallel problems scale linearly if all
resources are equal (e.g., processor speeds, memory caching and availability, bus connections, disk
input/output speeds), while functional decomposition does not generally result in linear scaling. This
is because functional decomposition uses MPI to process data and communicate between finer scales
that result in non-linear scaling [29]. Although a cluster can support MPI, I used the cluster to
execute embarrassingly parallel tasks that require no communication, which means the cluster cannot
perform the tasks faster than grid computing if all hardware is identical. Since this work uses
embarrassingly parallel computations, I expected the results to scale linearly.

An Information Technology (IT) administrator can scale computing resources through vertical
scaling and horizontal scaling. Vertical scaling (scale-up) refers to adding resources to a single node
(i.e., workstation or a machine within a cluster [28]). For example, one can expand a computer’s
processing capabilities by adding CPUs, replacing a single core CPU with multiple core CPUs,
altering the CPU configuration (e.g., hyper-threading), adding memory, and using specialized
hardware (e.g., general purpose graphical processing units [30]). Horizontal scaling (scale-out) refers
to adding additional nodes to a networked system, such as, adding machines to an Local Area
Network (LAN), Wide Area Network (WAN), or cluster [28]. Tightly coupled multiprocessor
systems have multiple CPUs connected to the system bus and loosely coupled multiprocessor

AIMS Environmental Science Volume 2, Issue 3, 464-493.

471

systems have multiple computers with multiple CPUs interconnected via the Ethernet. The former is
used for frequent communication between processes (e.g., High-Performance Computing [HPC]),
while the latter are used when little or no communication is necessary (e.g., High-Throughput
Computing [HTC]) or when significant levels of communication are necessary [28]. HPC also
supports large amounts of memory and CPUs as shared resources, while HTC takes advantage of
many CPUs without the ability to share resources [28]. In other words, HTC systems appear as
individual networked machines and HPC systems appear as a very large single machine when the
software interacts with the hardware. Many different methods exist for configuring both HTC and
HPC systems and therefore, these are gross simplifications to characterize the main differences.

High-throughput computing, also known as distributed computing and grid computing, uses a
collection of low-cost commodity computers to increase capabilities of large-scale computational
problems with multiple independent job instances. This is because HTC consumes a set of
independent jobs with no shared states and processes these jobs concurrently on remote machines
(within a LAN or across the WAN). Although numerous configurations of grid infrastructures exist,
generally each hyper-threaded core or CPU on a single compute node behaves as a computing slot
where a single job executes independent of other jobs. Because grid computing is not constrained to
homogeneous infrastructures, management configurations, architectures or geographic location, they
can support a more diverse set of applications but at the cost of being more difficult to manage and
operate. An HTC system requires middleware (open source or commercial software), which is a job
management resource installed on each node. For example, the University of Wisconsin developed
HTCondor™ middleware (open source [31]), which has a long-standing history and a broad use in
the university and research communities. Other examples of open source and commercial HTC
systems include Unicore™, Globus™ Toolkit, Univa®, NorduGrid™, and Appistry®. With these
management systems, a user submits jobs from the submit node and jobs run on the compute nodes.
Computers can also have a combination of roles and a single machine within the system, the central
manager, manages all clients, jobs, matching of jobs to clients, job scheduling, and related intricacies.
Many configurations of these systems exist, but these are the basic principles.

High-performance computing, like high-throughput computing, requires middleware for job and
resource management. Common software used for job scheduling of HPC systems are the Portable
Batch System (PBS), Torque resource manager, Simple Linux Utility for Resource Management
(SLURM) and OpenPBS. The installation, configuration, operation, and functionality of the
middleware are similar to HTC middleware. Like HTCondor, a submit file is created for executing a
job. With the submit file, the user specifies the required number of nodes, processors, and library
requirements. When a researcher uses HTC, they must define all the parameters that their software
requires, and they must define how, when, and where the data and software will reside and interact
with the remote computers. Remember, HTC computing resources do not require that the systems
exist on the same LAN, much less the same geographic location (i.e., accessible via the WAN), but
transferring data across the WAN is likely a bottleneck for STSMs relying on significant data inputs
and outputs. The primary difference between HTC and HPC with respect to submitting jobs is that
HPC management systems do not require information pertaining to heterogeneous infrastructures
(e.g., hardware and operating system differences).

High-performance computing systems are generally more expensive to purchase compared to
HTC. Modeling on HPC systems mostly focus on finer scale parallel computing, such as functional
decomposition, while HTC focuses on throughput (volume). With embarrassingly parallel tasks, the

AIMS Environmental Science Volume 2, Issue 3, 464-493.

472

model framework is high-throughput. HPC infrastructures support parallel tasks that exchange data
during the computation, while loosely coupled systems support executing parallel tasks independent
of each other. Users typically wait in a queue (similar to a print queue) longer on HPC systems
before their jobs execute because there are fewer HPC systems available due to costs. The primary
difference between HTC and HPC is that HPC lends itself to applications requiring greater
communication between processes, greater memory per instruction, shared states, and software
specifically written and compiled for parallelizing the data and instructions. Therefore, users will
benefit from understanding what computing environment they require, keeping the costs in mind for
using and operating different computing environments. For this study, I used a single machine with
multiprocessors and multicores as one environment, a high-performance computing environment
(cluster), and a high-throughput computing environment to execute the STSM Monte Carlo
simulations as embarrassingly parallel tasks. These environments support embarrassingly parallel
computations of the STSMs. Embarrassingly parallel computations were an obvious approach to
decompose the STSM, which did not require a re-write of the STSM software.

3. Materials and Methods
3.1. Study area and state-and-transition simulation model case study

The study area was located in southwest Idaho (Castle Creek), USA in a semi-arid shrub-steppe
ecosystem (Figure 1). The vegetative strata for the ApexRMS case study include “Basin Big
Sagebrush Upland” (Artemisia tridentata ssp. tridentata), “Curleaf Mountain Mahogany”
(Cercocarpus ledifolius), “Low Sagebrush” (Artemisia arbuscula Nutt.), “Montane Sagebrush
Upland” (A. tridentata ssp. vaseyana), “ Montane Sagebrush Upland With Trees”, “Western Juniper
Woodland & Savannah” (Western Juniper: Juniperus occidentalis), and “Wyoming and Basin Big
Sagebrush Upland” (Wyoming Big Sagebrush: Artemisia tridentata wyomingensis). ApexRMS
provided the Castle Creek case study (ST-Sim-SpatialSample-V2-1-0 [32]), which included the data
sets and STSMs. I evaluated the “Spatial — Current Management” scenario on the Castle Creek
landscape where management treatments included thinning encroaching western juniper. Historically
in the Castle Creek landscape, juniper occurred in rocky areas and cooler areas where fires did not
occur [33]. The distribution of juniper increased because of fire suppression, grazing, and climate
change [34]. With increasing juniper, habitat quality for wildlife, such as Greater Sage-grouse
(Centrocercus urophasianus), and grazing resources for livestock have decreased [35-38]. I used
these data and models to evaluate the decomposition of STSMs in different computing environments.

The state-and-transition simulation model for the case study includes deterministic and
probabilistic transition pathways (Figure 2). Transitions are necessary to define the biotic and abiotic
events that result in observable community changes, which occur from natural and anthropogenic
(e.g., management) influences. Deterministic transitions define the transition paths between class
states that occur at different succession stages [10], which are documented and understood.

AIMS Environmental Science Volume 2, Issue 3, 464-493.

473

0 1.75 35

Land Management

Il e
- Qther
- Private
- State

o

*‘jﬂ';gﬂ;{ Yy = 0_175 35 105 ix . 0_175 35
Vegetation State Classes Vegetation Stratum
I ~nn GrMono:Open [| Late:Open Sh Dpl:Clesed B curieaf Mountain Mahogany
B 0 Gropen [mia 2:0pen I Tr Ann GrClosed B Lov Sagebrush
B crs v Gropen [| MigClosed I 7 a0 Gropen I rontane Sagebnish Upland
- Early:Open r_] Mid:Open - Tr Enc Thr:Closed :l Montane Sagebrush Upland With Trees
B Late 2:0pen] seededopen [l T Enc:Open I vestem Juniper Woodland & Savannah
[LotecClosed [shAnna GrClosed] wyorming and Basin Big Sagebrush Upland
c d.

Figure 1. (a) Locational diagram of the study area in Idaho, USA; (b) Land management
delineation for the Bureau of Land Management (BLM), private lands, state lands, and other.
Most removal of juniper encroachment will occur on public land, but there are also conservation
plans that provide economic incentives to improve habitat; (c) The vegetation states define the
predominant vegetation type and structure (i.e., age). A few definitions of these referenced vegetation
classes found in the Geographic Information System (GIS) data include annual grass (Ann Gr), tree
(Tr), encroached conifer (Enc), mountain big sagebrush, native herbaceous cover, conifer cover
(ShDpl), greater 50% native herbaceous cover and less than 10% cover mountain big sage (Early
open); and (d) Within the state-and-transition simulation models, the vegetation strata represent the
spatial aggregation where vegetation states change through deterministic and probabilistic pathways.

AIMS Environmental Science Volume 2, Issue 3, 464-493.

474

The probabilistic transitions capture changes between vegetation classes, which rely on empirical
studies [39] that identify the uncertainty of changes between states based on particular influences not
well understood but observed or modeled in studies. Transition multipliers (i.e., transition
frequencies through time [6]) and directional multipliers (i.e., influence transition spread rates) are
additional, ecologically useful methods, which also increase model complexity; I do not discuss
these applications in detail here, because they do not uniquely influence the methods for
decomposing the STSMs for parallel computations. State-and-transition simulation modeling is
complex and researchers are required to generalize what they understand about transitions and model
parameters. The models are generalizations of ecosystem processes, and this simplification allows
researchers to model and evaluate those models, with observations and by testing different
parameters and scenarios. These data and models support the relative complexities of STSM design
and they provide a realistic case study to explore the benefits of decomposing STSMs and using
alternative computing environments.

[210] - Spatial - Current Management EI@

Summary | Run Control | Pathways | Initial Conditions | Output Options | Advanced | Data Sources

Seeded Crst Wht Gr
Open Open
0+ . 0+

i

Early Mid Late Sh Dpl

Open Open Closed Closed

0-10 . 11-75 76+ 11+

Ann Gr Ann Gr Mono Sh &nn Gr
Open Open Closed
0+ 0+ 0+
H 4 v\ » + BasinBig Sagebrush Upland /]/ Curleaf Mountain Mahogany /[[l‘ [+ - +

Figure 2. The basin big sagebrush upland stratum as defined in the Castle Creek study and this
illustrates the pathways between its state classes. The green lines represent deterministic
transitions and the blue lines represent probabilistic transitions.

AIMS Environmental Science Volume 2, Issue 3, 464-493.

475

3.2. Software tools and computing environments

The native software environment of SyncroSim ST-Sim is .NET (Microsoft® NET Framework).
The researcher must use the ST-Sim Graphical User Interface (GUI) to parameterize STSMs, but
recent releases of the software include a command line interface for executing, but not
parameterizing, simulations. The command line software also operates on Linux when executed from
Mono™ [40]. Mono is an open source project that enables Microsoft NET applications (specifically
C Sharp) to operate on cross-platforms, such as Linux distributions. Since most grid computing and
high-performance computing environments rely on Linux operating systems, researchers can take
advantage of these resources with the command line version of ST-Sim. Because I have compared
the performance of ST-Sim on a multiprocessor machine to the performance within an HTC and HPC
environment, having the ability to execute tasks on Linux operating systems was extremely
important.

I used two resource managers (i.e., middleware that allow users of HTC and HPC systems to
interact with the networked systems) for deploying the embarrassingly parallel computing tasks on
HTC and HPC environments. HTCondor is an open source grid computing resource manager, and
the Simple Linux Utility for Resource Management (SLURM [41]) is an open source resource
manager for Linux HPC clusters. I used PuTTY [42] as a terminal emulator to log onto the remote
HPC Linux cluster via a secure shell (SSH) protocol, and I used WinSCP [43] to transfer the
software and data from a local Networked Attached Storage (NAS) device to a local NAS on the
Linux HPC cluster. I used the ST-Sim-V2-3-5-x64 software version to analyze the STSMs, which
supports a 64-bit architecture.

3.3. Multicore desktop computing

I executed and then compared the runtime of the Castle Creek STSM using five different
computing environments (Table 1). The first environment used serial computations via the
SyncroSim ST-Sim GUI. With the first environment, I ran a simulation for a single replication to
establish a runtime for each replication. I also compared this runtime to a single replication using
Mono on a Linux virtual machine to assess whether Mono influences the performance. I would
expect all parallel computations to complete within a timeline equal to the baseline runtime times the
number of simulations. Most software that uses data read/write operations would perform best when
the data is closest to the CPU. Executing a model with locally stored data also eliminates network
bottlenecks as a culprit. Therefore, one can establish a baseline of performance by running the
software with the data stored on a local machine and then compare its runtime when storing the data
on a networked storage device. Because most networked storage uses Redundant Array of
Independent Disks (RAID), hybrid storage (hard disk drives and solid state drives), or high
performance storage (parallel read and writes), performance may be worse, and sometimes, storing
data locally is not possible because most desktop machines have limited storage capabilities.
Regardless, this test can assist with removing factors related to the network and storage. Because the
resulting data for the Castle Creek study area required approximately 146 GB of storage, using local
storage to test network related bottlenecks was not possible with the available hardware
configurations.

The second environment also used serial computations via the GUI, but instead of running a

AIMS Environmental Science Volume 2, Issue 3, 464-493.

476

single Monte Carlo simulation, I used 50. This baseline establishes a runtime to compare to all
parallel computing tests. The third environment executes 50 Monte Carlo simulations on a single
local machine with parallel computing. Here the number of simulations is strategically greater than
the number of available cores. The fourth environment was an HTC system, and the fifth
environment was HPC, both environments used parallel computing and 50 Monte Carlo simulations
of the Castle Creek study area. I had no control over which nodes within the cluster executed the
Monte Carlo simulations, but I distributed the jobs across the nodes evenly and during times of
inactivity so I was not competing for resources. As for HTC, I also submitted all jobs during a time
that processing did not compete for computing resources. Importantly, and as mentioned before, all
computations used embarrassingly parallel computations and not MPI computations.

Table 1. Distinction of the simulations compared in this study using the different combinations
of replication, hardware, and software.

Title Replication Description Hardware Available Available Available ST-Sim Resource
Count Node Core Memory Software Manager
Count Count
GUI 1 a Single 1 1 26 GB ST-Sim
Baseline desktop' GUI
Serial 50 b Single 1 1 26 GB ST-Sim
desktop' GUI
Parallel 50 c Single 1 16 26 GB ST-Sim
(Local) desktop' command
line
HTC 50 c Multiple 50 395 2 GB/ ST-Sim HTCondor
desktops core command
HTC line
(LAN)?
HPC 50 c Cluster’ 54 609 2.3TB ST-Sim SLURM
command
line

Single desktop simulation used had two available logical processing units (3.0 GHz);

The Multiple desktop simulations HTC (LAN, local area network) used similar hardware to the Single desktop
environment, but many desktops available to handle the distributed jobs. This HTC system included a local NAS
with 5 TB and 1 GB/s Ethernet interconnect.

The Cluster simulations used a local NAS with 45 TB of storage and 1 GB/s Ethernet interconnect while the
processor speeds varied between 2.7-3.0 GHz.

a. A single Monte Carlo simulation.

Multiple Monte Carlo simulations (executed in serial).

C. Multiple Monte Carlo simulations (executed in parallel).
3.4. Decomposition workflow

The workflow for decomposing and concurrently running the Monte Carlo simulations follows
a simple structure (Figure 3). First, I set up the STSM scenario, and then I tested this model by

AIMS Environmental Science Volume 2, Issue 3, 464-493.

477

running a single replication. I then investigated these results and determined whether the results
appeared realistic. After I established a working model, I started with scaling the workflow, which I
accomplished by using three basic steps (Figure 3). The decomposition (Step 1 of Figure 3) refers to
splitting the STSM into independent components and treating each Monte Carlo simulation and the
data they require as independent models. For example, the decomposition, which is handled by the
ST-Sim software, creates a copy of each STSM database and all GIS data. Step two (Figure 3),
launches the Monte Carlo simulations as independent processes. The last step of this workflow (Step
3 of Figure 3) includes merging all the returned results from each Monte Carlo simulation so the
final ST-Sim database contains all results. The output GIS data sets depend on the STSM
configuration settings. For example, the researcher may want aspatial and spatial summary results for
every time-step of all state classes, transitions, state attributes, and transition attributes. For these
tests, I returned aspatial and GIS results every five time-steps. Each test used a spatial model with
150 time-steps, the data input required 0.3 GB of storage, and the output required 146 GB.

Test model using
ST-Sim for single
Monte Carlo

Step 1: Decomposition J

v

Step 2: Spawn Monte Carlo
tasks (embarrassingly parallel)

Using ST-Sim software execute
simulationsvia multiple cores

Setup STM model #
with ST-Sim graphical Step 3: Merge results and

user interface write to ST-Sim database

Evaluate Results
using ST-Sim
software

Figure 3. The parallel computing workflow for a multicore desktop sets the stage for how the
researcher will accomplish these tasks in grid computing and high-performance computing
environments.

3.5. High-throughput computing

High-throughput and high-performance computing require more elaborate workflows than using
a single multicore machine because they use resource managers that help users interact with a
complex system. I used the basic workflow of figure 3 and then built on these concepts to develop
the HTC/HPC workflows. To test the Idaho case study in an HTC environment, I developed a
workflow (Figure 4), two Python® scripts, and an HTCondor template submit file. First, I developed
an HTCondor template submit file that provides the submit file parameters. Within this file, I
included configuration settings defining the runtime environment, the streaming of logging,
operating system and hardware requirements, rules to transfer software and data, email notification
alerts, and content that is specific to the job running on the client node. The purpose of the submit
file template is to allow researchers to define parameters that change between HTC systems due to
different management protocols defined by an IT administrator without having to modify the Python

AIMS Environmental Science Volume 2, Issue 3, 464-493.

478

Script 1. The user should modify the parameters within the template based on their system’s
configuration. Many configurations exist for HTC systems, and the HTCondor template supports this
flexibility. After configuring the submit file template, the researcher executes the Python Script 1 that
sets up embarrassingly parallel computations for grid computing (Step 2 of Figure 4). During this
step, the decompositions of the STSM and data are processed and the script generates HTCondor
submit files. The researcher may also decide to zip and transfer their STSM data to the client or not
transfer the data and instead use centralized storage. Transferring of data is a parameter within the
Python Script 1 that the user can change.

Test model using
ST-Sim for single
Monte Carlo

Step 1
Configure HTCondor
template

’

(Setup STM model ‘ Step 2

with ST-Sim graphical Execute Python script and generate
user interface setup for running Monte Carlo
simulationsin high-through computing
environment

v v
Step 3 (option1) Step 3 (option 2)
Step 6 Windows operating system: Linux: manually
Evaluate Results using execute Dos batch file to launch launch directed
ST-Sim software directed acyclic graphs or manually acyclic graphs with
\ interact with resource manager resource manager.
| |

Step 5
Upon completion, investigate for job
failures via log files and failed nodes
documented in DAG rescue files

Step 4
Monitor with
resource manager

Figure 4. The workflow for executing state-and-transition simulation models in a
high-throughput computing environment while using HTCondor middleware is the more
complex system to use, but its complexity allows the middleware to take advantage of
heterogeneous computing environments.

The Python Script 1 generates a Directed Acyclic Graph (DAG) file, which defines how the
individual submit files are executed and any relationships between the tasks. DAGs are a data
structure (Figure 5) where each job represents a node and each node is a parent or child. The child
nodes are dependent on parent nodes. If no dependencies exist, then you have only parents. I used
DAGs to help reduce the overhead of detecting failed jobs as well as to increase flexibility of grid
computing configurations. After I executed the Python Script 1, I submitted the HTCondor DAG
(Step 3, Figure 4). This is possible using a Microsoft Windows® DOS batch file (generated from
Python Script 1) or via command line on Windows and Linux operating systems. If Linux is used,
then Mono is required on each client of the grid system and modifications to the Python Script 2 are
necessary (not currently supported, but the modification is minor and similar to the syntax used in
the HPC script). While the jobs run, progress is monitored (Step 4, Figure 4) using HTCondor or
other third-party software. The Python Script 2, which runs on the client, is compiled so a Python

AIMS Environmental Science Volume 2, Issue 3, 464-493.

479

install is unnecessary on each client. This script handles the processing of Monte Carlo simulation
tasks and streams the standard output and error to log files using multithreading, a different form of
parallel processing. Step 5 (Figure 4) requires the user to investigate for job failures using log files
that the resource manager documents within the DAG log and rescue files. Failed jobs are easily
addressed by manually re-submitting the original DAG, which is only required when a DAG rescue
file is generated. The final step (Step 6, Figure 4) requires the researcher to use the ST-Sim GUI
software and evaluate the modeled results.

PARENT1 CHILD5 9
PARENT 2 CHILD 6 10
PARENT 3 CHILD 7 11
PARENT 4 CHILD 8 12
PARENTS 6 7 8 CHILD 13
a. PARENTS 10 11 12 CHILD 14

Figure 5. (a) This is an example of a more complex Directed Acyclic Graph (DAG) shcematic.
The numbers represent a unique identifer for each job within the DAG. The links represent the
parent-child relationships (i.e., the relationships between tasks and therefore a workflow for when
jobs execute). (b) This DAG illustrates what is used for the state-and-transition simulation
model. With this approach there are no children and therefore the DAG is not necessary, but it is
useful for managing the jobs. The text on the lower left portion of (a) highlights the content within a
HTCondor DAG and how the relationships are defined. This information is not found in (b) because
there are only parents.

3.6. High-performance computing

The workflow for using HPC and submitting the embarrassingly parallel state-and-transition
Monte Carlo simulations is significantly simpler than HTC because the system is homogeneous.
Instead of using Python scripts and submit files, the approaches used for HTC, I manually wrote a text
file that uses SLURM. This is a straightforward script to develop and it includes the three basic steps
that were used across each computing environment (Figure 3). Because a cluster can use different
resource managers (e.g., SLURM and PBS) and configurations, this template is a guideline that a
researcher can use with different resource managers. For example, the cluster used in this study did not
support SLURM arrays, so instead this script used a for loop to spawn each Monte Carlo simulation.
Users can modify this template as well as convert its workflow to use other resource managers.

The cluster used for this study did not provide Mono as a software resource, so an IT
administrator installed this as a module that SLURM can load during the execution of each job. After
developing the SLURM script, I tested the command line version of SyncroSim ST-Sim on a linux

AIMS Environmental Science Volume 2, Issue 3, 464-493.

480

virtual machine located in-house. Here, I was able to verify that Mono was correctly compiled and that
the ST-Sim command line could run under Mono. I then transferred the SLURM script, ST-Sim
command line software, and the Castle Creek STSM data (database and GIS data) to the cluster storage
using WinSCP as illustrated in the workflow developed for this study (Step 1 and 2, Figure 6). Using
PuTTY, I remotely logged on to a terminal and executed the SLURM script with the sbatch command
(Step 3, Figure 6). I monitored the progress of the simulation runs and then manually reviewed the log
files to determine if any tasks failed (Step 4, Figure 6). The resulting data were transferred back to the
local work environment using WinSCP (Step 5, Figure 6). Once the data resided on a Microsoft
Windows environment, I evaluated the results in the SyncroSim ST-Sim GUI (Step 6, Figure 6).

Test model using Step 1
ST-Sim for single Access high-
Monte Carlo performance cluster

.

Step 2
Transfer data, ST-Sim software, and
batch file (e.g., SLURM and PBS)

|

Step 3
Using scripts, launch jobs in
resource manager

Step 6 i
Evaluate Results using

ST-Sim software Step4
Monitor with

resource manager
Step 5
Transfer results to local
network

Figure 6. A high-performance computing workflow with state-and-transition simulation
models. Simple Linux Utility Resource Manager (SLURM), like the Portable Batch System (PBS),
is middleware used to launch and manage tasks in HPC environments. This workflow is very similar
to Figure 3, but an HPC system does require a resource manager to distribute the tasks to different
compute nodes.

Setup STM model
with ST-Sim graphical
user interface

3.7. Monitoring and reviewing embarrassingly parallel tasks

I used two different software packages for monitoring the embarrassingly parallel STSM tasks.
CycleServer® is free software developed by Cycle Computing® [44] and it monitors historic/current
jobs, produces reports on resource use, evaluates the health of the HTC system, deploys software and
jobs, and it provides many other functions. I used the open source Ganglia™ [45] to monitor the tasks
executed on the HPC Linux cluster, which is a similar system to CycleServer in that it can monitor
grids, but it can also monitor HPC clusters. Regardless of the monitoring resources available to the
researcher, having access to a tool or command line queries is beneficial for monitoring jobs running
within HTC and HPC resource managers.

AIMS Environmental Science Volume 2, Issue 3, 464-493.

481

After developing the workflows and software for executing embarrassingly parallel Monte Carlo
simulations of STSMs in HTC and HPC environments, I used the SyncroSim ST-Sim GUI to evaluate
the results (Figure 7). I then assessed the merged results to determine if the appropriate time-stamped
GIS data and summary statistics existed in the STSM library. Because the ST-Sim GUI does not run on
Mono, a researcher must transfer results derived on a non-Microsoft operating system to a native
Microsoft environment. Using SAMBA [46] or similar software to read data not using Microsoft
Common Internet File System (CIFs) is another method that allows direct access to the data with the
ST-Sim GUI. Data transfers are expensive and time-consuming and this is important to recognize and
incorporate into operating costs and project deadlines.

St Clnss Fesults for 2101 - Spasial - Current Management (31-Juk- 2014 T1:44 40)

Sinte Class.

Timesteps: 150 fteration: 1+ Zoem ’L~ | (] Visible panes: 313 by 3+

& Ao GrOpaes Resubs for [210) - Spetial
W GODn - B Cureet Management (3Jub 2014

Charttype Loe v Timesteps: D150 ersbons: [Mesn =] 0 | [lRerabonrenge: 1 w 5 [Opbons_ | [Rosr

Figure 7. Evaluating the output from the Monte Carlo simulations is important to ensure all
simulations completed and the results from the model are reasonable. I used the SyncroSim
ST-Sim software package and assessed the spatial and statistical results after the parallel processing
completed, as illustrated in the figure.

Numerous metrics exist for examining how well an application implements parallel computing,
which in turn provide insight into improving code, identifying problems with hardware configuration,
and identifying bottlenecks. These performance indices quantify computing times with respect to
similar data and applications, but with different scaled architectures. Several commonly used
measurements include the speedup curve, elapsed time, price per performance, speedup, and
efficiency [47], and sizeup and scaleup [48]. Like many HTC systems, the environments typically are
heterogeneous so Zhang and Yan [49] provide several suggestions of how to quantify performance on
heterogeneous environments. Several important factors affect how one accurately measures
performance. For example, latency, the amount of time for one computer to connect to another

AIMS Environmental Science Volume 2, Issue 3, 464-493.

482

computer, will affect computations and therefore, runtime. Reading and writing data to different
storage types will also affect performance and quantifying performance between different systems can
mislead users. Comparing the runtime across different heterogeneous systems is a complex task, and |
wanted to track the entire workflow, and not just the time to run a single task or algorithm.

To compare the runtime of the model runs in each computing environment, I measured the
elapsed time for the entire workflow. Multiple runs of the same data and software within each
computing environment were not evaluated. However, the variability is likely small because in all
cases these runs were executed during opportune times with no competition for resources (network
traffic or hardware). I measured the runtime (elapsed wall/clock time) for a single replication and 50
simulations on a Windows desktop environment (multiprocessor machine). For HTC, I measured the
runtime by how long processing took from the start of the Python Script 1, completion of all Monte
Carlo simulations, and the merging of the results. For HPC, I measured the elapsed time for execution
of the SLURM script. I also measured the length of time to transfer the data to-and-from the cluster,
but I did not include these in the runtime comparisons. Because the hardware (processor speeds and
storage) varies slightly between the computing environments, the runtime can only suggest the relative
benefits of using parallel computing with STSM.

4. Results

As expected, the results from testing the different combinations of computing methods indicated
significant advantages of parallel computing (local, HPC and HTC) over standard, non-parallel
methods. The model runs did not encounter errors due to decomposing the STSMs, running the Monte
Carlo simulations, merging the Monte Carlo simulation results, or transferring data to-and-from the
cluster. In other words, failed jobs due to hardware/network configurations did not influence the
elapsed time with any of the tested computing environments. Figure 8 illustrates the computing
runtime results from the testing of STSMs based on combinations of hardware, software, and parallel
computing.

Several limitations of these runtime comparisons exist. First, HTC is usually a heterogeneous
system, while HPC is homogeneous and therefore the hardware was not identical. However, the
hardware and operating systems within each system was similar for this study. The HPC system had
the greatest variability with processor speeds, while the HTC system did not—in most cases, this is
reversed. Second, the storage input/output performance is slightly different between the HTC and the
HPC systems. Both systems use NAS devices, but the read/write speeds are slightly different. Third,
the transfer of files to-and-from the HPC increases the project time (not included in the runtime; Figure
8) because the U.S. Geological Survey manages the HTC locally and the HPC remotely. Local, HTC,
and HPC compute environments behave the same for STSMs because all three use embarrassingly
parallel tasks. Because of the architectural (infrastructural) differences between HTC and HPC, I
anticipated small differences (e.g., minutes) between runtime.

The speedup of decomposing a problem and concurrently running these individual tasks has an
obvious advantage. If a model has 50 Monte Carlo simulations and each Monte Carlo simulation
executes on a different processor, then in theory the model could run 50 times faster. With this known
advantage, this research did not test the variability of the runtimes within each computing environment.
If this study tested the variability, I could have provided confidence intervals around each run time and
evaluated the statistical significance of the differences among the computing environments. Based on

AIMS Environmental Science Volume 2, Issue 3, 464-493.

483

the runtime results and that testing was not influenced by competition for computing resources, the
variability was expected to be small within each computing environment. When a computing task can
be decomposed into equal parts (each Monte Carlo simulation uses the same software and the same
data), one expects the computing time to be equally faster. The focus here identified how one can
decompose a STSM, identify what computing environments support running the decomposed tasks,
and how much overhead is expected for the decomposition and aggregation of the results.

The first computing environment, GUI baseline, required 66 minutes to execute a single
replication using the ST-Sim GUI on a local desktop (see Figure 8). If all hardware were equal, that is
no bottlenecks existed for compute node interconnects, similar storage read/write speeds, and similar
overhead with using middleware for HTC and HPC, then each result would indicate a runtime of
nearly 66 minutes. Because the runtimes included the decomposition of the state transition models and
merging of the results, causing additional steps, I expected there to be additional overhead. Since these
additional steps existed for the parallel (local), HTC, and HPC environments, this will not affect their
relative runtime results. I tested the difference in compute time of a single Monte Carlo simulation
using a Microsoft Windows desktop (see Table 1, Single desktop') and the command line in its
native .NET builds. I then compared this runtime to using a Microsoft Windows desktop (see Table 1,
Single desktop') and the command line built with Mono. The difference between the software builds,
Mono versus .NET, did not significantly influence the runtime.

Runtime Comparisons

Hrc, 50 reps [211

HTC,50reps [115

Parallel (Local),
50reps _ 617

Computing Environment

GUI I 66
Baseline (1 rep)

0 500 1000 1500 2000 2500 3000 3500 4000
Minutes

Figure 8. The results of the runtime comparisons for the different computing environments
show significant benefits to using embarrassingly parallel tasks for state-and-transition
simulation models. The runtime minutes (reported on the x-axis) reflect the elapsed time recorded to
run a given number of simulations for each computing environment. Table 1 provides a detailed
comparison of each computing environment. Although not included in the HPC runtime presented
here, 1.5 minutes were required to transfer the data input to the cluster (0.3 GB) and 24.25 hours to
transfer the results back to the local environment (146 GB).

AIMS Environmental Science Volume 2, Issue 3, 464-493.

484

The runtime results indicated significant decreases in computing time for all environments when
using embarrassingly parallel tasks. As indicated from figure 8, the computing environments that
executed parallel computations were all significantly faster than running state-and-transition
simulation models in serial, as expected. However, the embarrassingly parallel tasks of the Monte
Carlo simulations also did not complete within the 66 minutes required for a single replication. The
HTC environment resulted in a 96.6% reduction of computing time relative to running 50 serial Monte
Carlo simulations. The HPC environment had similar results with a 93.8% reduction of computing
time relative to running 50 serial Monte Carlo simulations. Although the local parallel test resulted in
the smallest reduction of computing time, 81.8%, this result is promising because researchers can
significantly improve their workflow with a modest desktop. Parallel computing on the local machine
was not as fast as the HTC and HPC environments because the number of available cores was less than
the number of Monte Carlo simulations. I purposely designed this scenario to demonstrate the effect of
scalability. All parallel computing tasks required greater than 66 minutes, which indicated that the
decomposition and merging of the STSMs added an additional cost to the computing time. Based on
the recorded elapsed times, HPC required an additional 96 minutes relative to HTC and the HTC
runtime resulted in approximately 49 additional minutes relative to the runtime of a single replication.
Using HTC and HPC will benefit researchers if they have many Monte Carlo simulations,
state-and-transition scenarios, regional data or high-resolution GIS data. This baseline runtime can
help researchers identify the benefits of HTC and HPC, and specifically the use of embarrassingly
parallel program designs of STSMs.

5. Discussion

Parameterizing state-and-transition simulation models is a complex process and the primary
focus for researchers. However, when computing resources become a bottleneck, the following,
simple, workflow will help individuals decide what computing resources are necessary while
maintaining a focus on building their models. First (1), start small and test your models on a subset of
your data and on a local machine. Next, (2), consider testing the model without the GIS data and then
slowly building components and complexity to the model. Third (3), if the study area is large, consider
dividing the data into ecoregions or meaningful land units. (4) Identify bottlenecks, such as hardware,
storage, network, and model complexity by running a single replication locally and compare this
runtime to running a single replication with data stored on the network. Also (5), examine memory,
disk storage and bandwidth requirements. Usually 1 GB bandwidth is sufficient and unless a
researcher plans to use a HPC system, it is unlikely they will have access to faster networks. Finally (6),
scale this information to obtain the necessary resources required for the analyses using the fully
parameterized models. For example, if you have abundantly more simulations and scenarios than cores,
then consider using HTC, a cluster, or one of these systems in the cloud environment.

If you decide to use HTC, build the appropriate files for deploying the simulations using the
provided scripts (see Supplementary for software resources), and modify as needed for your system.
Start with submitting a single replication to ensure everything is set up correctly which avoids
consuming unnecessary computing resources, and then expand to a production level effort. When
using HPC, first test the models on a local Linux system before migrating to a cluster. For example, the
researcher can build a local Linux box (physical machine) or build a virtual system using Oracle
Virtualbox™ (freeware [50]) or VMware®. Once a researcher establishes a viable workflow that

AIMS Environmental Science Volume 2, Issue 3, 464-493.

485

successfully executes on a single Monte Carlo simulation, they can then expand to a production
environment and launch all simulations. Small jobs can require longer runtimes in HTC and HPC
because of the overhead (e.g., middleware interactions between users and middleware management of
computers [inter-communication], decomposition of small jobs, queue lengths, network
communications), and therefore there is some trial and error, and expertise, required for determining
an optimal workflow.

Running jobs in distributed computing environments can result in failures due to multiple reasons.
These reasons can include incorrect parameter definitions, data transfer failures, software and
hardware issues, or because users or network activity interrupts the job. The latter scenario typically
occurs only when the configuration of the HTC system allows user activity on a networked client to
kill the parallel computing application and/or when the system does not use dedicated compute nodes.
HTC is designed to handle many tasks that run within a relatively short timeframe. Although executing
individual jobs that run longer than 12 hours is possible, such jobs are less desirable because the
system is likely to have interruptions from various sources as processing times increase. Many
organizations use HTC on dedicated clusters, and in such cases addressing interruptions and
configurations are significantly simpler. DAGs can document which jobs fail and allow the user to
re-run only those failed jobs. When DAGs are not used, the user must review all log files, determine
which jobs failed, and then re-submit these jobs. Using DAGs to track progress reduces overhead and
improves workflows, which is why I used them for submitting the STSMs. However, DAGs in general
are useful for establishing parent-child relationships between tasks, adding capabilities with pre- and
post-scripts, and throttling the number of tasks that are allowed to run in parallel.

Failures with accessing and transferring data, hardware, and other reasons (similar to HTC) also
occur on clusters that depend on network infrastructure. However, because an HPC system is mostly
homogeneous with respect to operating systems and hardware, and computing nodes are not subject to
independent users and uses, failures are less frequent. The primary requirement for using HTC and
HPC are that the software running on these systems must properly function with command lines and all
messaging and error handling is directed to standard error and standard output versus a GUI message
box. A GUI message box requires the user to interact with the software and this is problematic when
running many tasks on remote compute nodes. In other words, any software that a researcher wants to
use with HTC and HPC cannot require the user to interact with it during any stage. Although
exceptions apply and it is possible to navigate such circumstances programmatically using sendkeys
(i.e., using code that instructs the software to click a button), these are inefficient and not
recommended. In such cases, a researcher should change the software code. During this study,
SyncroSim ST-Sim was not properly handling the “stderr” and “stdout” for the command line
component, and as a result, when an error occurred the resource managers erroneously considered the
tasks as successfully completed; this issue was addressed by ApexRMS and should not cause future
problems. Not all software is compatible with distributed computing environments, so researchers
should investigate software that they plan on using, their project and modeling workflows, and their
anticipated ecoinformatics needs when planning projects and analyses.

An important, additional factor to recognize when using remote hardware is the transfer of data
(inputs and outputs) across the WAN. As demonstrated in this study, transferring the results (146 GB)
back to the user-environment required considerable, additional time (24.25 hours). The data must be
transferred to-and-from remote locations when relying on remote hardware such as remote grids,
clusters, and clouds, and these transfers depend on the capacity of the bandwidth. However, when

AIMS Environmental Science Volume 2, Issue 3, 464-493.

486

researchers lack the availability of HTC and HPC systems in a local work environment, utilizing
networked resources offers the best option. For smaller data sets, data can be transferred across the
WAN; however in most cases, researchers that require HTC and HPC also work with large data sets
that cannot be readily and repeatedly transferred across the WAN due to service timeouts, bandwidth
limitations (the WAN bandwidth is significantly less than that found on a LAN), and network failures
(e.g., dropped packets). Three options for handling larger data sets include permanently hosting the
data on remote hardware and shipping the data inputs, outputs on an external storage device, and using
Globus™ (http://www.globus.org). These are important considerations because the cost of operations
and the time to complete the research may be affected.

Cloud computing expands computing resources through virtualization of hardware and software.
Although some organizations rely on private clouds (e.g., NASA Nebula [51]), many publicly
accessible clouds exist (e.g., Amazon EC2® [52]; Microsoft Windows Azure® [53]; and Google
AppEngine® [54]). Clouds are scalable, increase efficiencies, and decrease hardware costs, but these
resources are not necessarily a solution for every application. A researcher using the cloud can select
their operating system, as well as, set up HTC and HPC environments. Describing the use of cloud
computing extends beyond the scope of this project but a significant amount of literature exists [55].
All storage, proprietary operating systems (e.g., Microsoft Windows®), memory, usage time, and data
transfers have associated costs to using the cloud and therefore the project budget, and the economic
differences of using the cloud versus other resources may not be clear for every situation [56,57,58].
Regardless of project-to-project differences, the cloud is a viable solution to run SyncroSim ST-Sim as
embarrassingly parallel tasks when computing resources not otherwise accessible. High-throughput
computing systems, HPC, and computing clusters (networked CPUs) exist at most universities and
researchers collaborating with these organizations will often have access (e.g., Open Science Grid,
Extreme Science and Engineering Discovery Environment, and Oak Ridge National Laboratory) to
computing options. Government agencies may also have access to similar resources. With the basic
workflows outlined in this research, the available hardware resources, and updates to the ST-Sim
software by ApexRMS, researchers can seek alternative computing resources when required.

Additional modifications to ST-Sim software may increase efficiencies and reduce computing
time. The command line version of ST-Sim, and its ability to decompose the Monte Carlo simulations
into individual models, was a significant enhancement that supports the use of modeling in HTC and
cluster environments. The version of ST-Sim software used in this study required read/write of ASCII
files followed by conversion of these file formats to GeoTiff format. Instead, the software could use
the Geospatial Data Abstract Library (GDAL [59]) to read/write directly to GeoTiff files. This would
reduce the number of data conversions and should further reduce the overall runtime of the STSMs,
but this was not explicitly tested here. When using centralized storage, ST-Sim does not need to
duplicate the raster data inputs during the decomposition process. However, if the simulation requires
sending data to each client and for each Monte Carlo simulation, then duplicating the raster data to the
remote locations is necessary. Greater control of this workflow could allow for a reduction in storage
requirements by avoiding the duplication of data and minimizing data transfers. Because ST-Sim uses
a SQLite database, copies of the database are necessary because these databases do not support
asynchronous writes [60]. The SyncroSim ST-Sim software used in this study did not support the
“advanced configuration” to average the annual transition probability for specified time-steps because
each simulation runs independently of each other and generating these results cannot occur until after
the merging of the simulations. However, the functionality does exist in the GUI application. Having

AIMS Environmental Science Volume 2, Issue 3, 464-493.

487

this capability with the command line software would allow researchers to evaluate these results,
which would eliminate the need to copy all data from a remote location during the evaluation of the
results. Although these are minor enhancements, these changes could reduce runtime and help mitigate
data storage requirements for larger projects.

Different data and models will yield different results with respect to absolute runtimes. However,
the model and data are identical between Monte Carlo simulations for a given model and if you divide
these simulations up, they will run faster relative to running them in serial. Because in every STSM,
with respect to using embarrassingly parallel computations of Monte Carlo simulations, the runtime
will scale linearly and reflect advantages similar to the results, found in this research, assuming that
machines are identical and nothing is interfering with individual jobs. Therefore, the results of this
research will occur with other STSMs and data, and the speedup time will depend on the number of
Monte Carlo simulations that can run concurrently.

The results of the state-and-transition simulation model using embarrassingly parallel computing
will always be as accurate as the model itself. The decomposition uses the exact same data and models,
while only changing the random seed for each Monte Carlo simulation. The results would only be
invalid if the underlying model was invalid and the approach to decomposition of the simulations has
no effect on the validity or accuracy of the models. Therefore, using data decomposition of the Monte
Carlo simulations and running these as embarrassingly parallel tasks on different cores will have no
effect on the results of the models.

Decomposing Monte Carlo simulations for state-and-transition simulation models may not
adequately reduce the computation time for a researcher when the bottleneck occurs because of the
runtime during a single Monte Carlo simulation. For the aforementioned reasons of
state-and-transition simulation model complexities, a researcher has several options. They can divide
the landscape into meaningful units, such as watersheds and ecoregions, process individual strata that
define the model and a combination of a single model (often defined as different management
solutions) scenario and stratum. If these methods continue to result in long or unacceptable runtime for
a single Monte Carlo simulation, then the researcher could work directly with ApexRMS to work out
MPI applications. MPI is difficult and expensive to implement, especially with respect to the already
inherent complexities of STSMs and spatial dependencies of neighboring pixels within some models.

6. Conclusion

Parallel computing of state-and-transition simulation models is instrumental for research that
relies on complex models, large landscapes, and/or small grain (resolution) spatial data.
Ecoinformatics, such as applying parallel computing to investigate complex ecosystem processes, is
advantageous because it highly scalable and instrumental for modeling large landscapes. Additionally,
it reduces the turnaround time to obtain scientific results for any model, it allows thorough analyses
with sufficient parameter sweeps, and it accommodates an appropriate number of Monte Carlo
simulations. The results from using embarrassingly parallel computations demonstrated reduced
computation time for local, HTC, and HPC environments. However, when the number of tasks exceed
the number of cores on a local environment, HTC and HPC were more appropriate. Loosely coupled
systems (e.g., grid, HTC, or HPC) scale better than tightly coupled systems (e.g., single computer with
multiple cores), which is why distributed computing performed best in these evaluations. Because
horizontal scaling can use commodity (low cost) hardware and because these systems scale larger than

AIMS Environmental Science Volume 2, Issue 3, 464-493.

488

what is possible with many vertically scaled systems, they are extremely beneficial for larger jobs with
many tasks. Because I used embarrassingly parallel computations and data decomposition,
high-throughput computing was considered the most appropriate. However, when clusters that support
high-performance computing are available, they also can execute embarrassingly parallel tasks.
Importantly, I did not change the code of SyncroSim ST-Sim by using functional decomposition, but
rather I decomposed a large problem and distributed these tasks (Monte Carlo simulations) to run
independently on different computers.

The runtime results of this study highlight several important considerations. Although using HTC
and HPC speeds up the analyses, processing time for individual tasks (e.g., a single Monte Carlo
simulation) will not be faster. Embarrassingly parallel design is not a parallel function and it does not
decompose a single Monte Carlo simulation using MPI. However, distributing the workload has great
benefits, and it is a simple approach to addressing complex STSMs. If all hardware, network, and
resource managers are equal the runtime for HTC and HPC would also be equal. However, my results
showed that an additional 96 minutes was required for HPC compared to HTC running the same tasks.
This occurred because the processors available on the HTC system were nearly identical (Xeon 3.2
GHz) and the processors on the HPC systems were variable and of lesser quality (ranged between
2.7-3.0 GHz), which may be similary to many, existing networked systems. In addition, a single
replication completed in about 56 minutes, but HTC required 115 minutes to execute 50 simulations in
parallel. The additional 59 minutes were used for decomposing the data, submitting the individual
Monte Carlo simulation tasks to the clients, managing the tasks with the resource manager, and
merging the resulting runs into a final ST-Sim database (with each of the 50 simulations run
simultaneously and independently during this time). Therefore, smaller jobs may run faster without
using embarrassingly parallel tasks (when the time for additional simulations is less than the
approximately 60 minutes required for process management), and these tradoffs demonstrate that
experience and some trial and error are necessary to develop research workflows.

This research accomplished numerous objectives that provide scientists and managers with
alternative methods for using complex STSMs and large data sets. I started by identifying challenges
inherent in state-and-transition modeling, and I then identified computing resources, configurations
and potential bottlenecks that affect the ability of researchers to complete projects within reasonable
timeframes. I discussed the different methods for decomposing STSMs and the methods used in this
research. 1 also described the basics of using parallel computing, high-throughput computing,
high-performance computing, and cloud computing with STSMs by decomposing the Monte Carlo
simulations into embarrassingly parallel tasks. These results indicate significant advantages to using
HTC and HPC for complex STSMs with large data, and with the framework developed from this
research, suggesting that scientists may have access to resources to easily expand their STSMs to
larger landscapes or expand their model complexities without having to change their research.

Acknowledgments

This work would not have been possible without the efforts of the ApexRMS team (Leonardo
Frid, Colin Daniel, and Alex Embry), who released a new version of the ST-Sim SyncroSim software
that supports running state-and-transition simulation models via command line within a Microsoft
Windows and Mono Linux environment. The ApexRMS team also provided the sample data to use as
a case study for executing the simulations in a grid-computing environment, which allowed this effort

AIMS Environmental Science Volume 2, Issue 3, 464-493.

489

to focus on examining the benefits of using distributed computing with state-and-transition simulation
modeling efforts.

Conflict of Interest

Any use of trade, firm, or product names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

Supplementary

Any researcher that desires to explore the software scripts developed for this study (Table S1)
can find these posted here. In most cases, users will need to modify these scripts because
high-throughput and high-performance computing environments use different resource managers
(e.g., HTCondor™, PBS, OpenPBS, SLURM) and they are each managed differently and therefore
require different methods for submitting jobs. However, these scripts provide an excellent starting
point for those not familiar with such resources. The scripts are both open source and freeware and
the U.S. Geological Survey maintains no limitations on how these are used or distributed.

Table S1. Descriptions of software/scripts used for running embarrassingly parallel Monte
Carlo simulations on a grid and cluster environment. These files are templates that other
researchers can use and modify for their applications.

File Name Computing Resource Description

Environment Manager

_PylInstaller STM_runScenario.bat Grid HTCondor This provides an example for compiling Python
code using the open source PyInstaller™

STM_runScenario.exe Grid HTCondor Executable compiled from STM_runScenario.py
with Pylnstaller. This program executes on each
client within the HTC system

STM_runScenario.py Grid HTCondor The Python source code (Python Script 2) that
executes on each client within the HTC system for
processing state-and-transition models

ST-Sim_HTCondor_setup.py Grid HTCondor A Python script (Python Script 1) that generates
HTCondor files, decomposes state-and-transition
models, and other tasks.

SubmitTemplate.sub Grid HTCondor An HTCondor template file used by
ST-Sim_HTCondor_setup.py to guide researchers
with using different administrative configurations
of HTCondor.

stm.slurm Cluster SLURM A text file template, which is converted to an
executable text file, that researchers can use as a
guideline for running state-and-transition models
with SLURM resource manager. One can also
convert these to other resource managers as long

as the basic workflow is followed.

AIMS Environmental Science Volume 2, Issue 3, 464-493.

490

Software disclaimer

Although this program has been used by the U.S. Geological Survey (USGS), no warranty,
expressed or implied, is made by the USGS or the U.S. Government as to the accuracy and
functioning of the program and related program material nor shall the fact of distribution constitute
any such warranty, and no responsibility is assumed by the USGS in connection therewith.

References

1. Bestelmeyer BT, Moseley K, Shaver PL, et al. (2010) Practical guidance for developing
state-and-transition models. Rangelands 32: 23-30.

2. Frid L, Hanna D, Korb N, et al. (2013) Evaluating alternative weed management strategies for
three Montana landscapes. Invasive Plant Sci Manag 6: 48-59.

3. Costanza JK, Terando AJ, Mckerrow AJ, et al. (2015) Modeling climate change, urbanization,
and fire effects on Pinus palustris ecosystems of the southeastern U.S. J Environ Manage 151:
186-199.

4. Halofsky JE, Hemstrom MA., Conklin DR, et al. (2013) Assessing potential climate change
effects on vegetation using a linked model approach. Ecol Modell 266: 131-143.

5. Wilson T, Sleeter B, Sleeter R, et al. (2014) Land-use threats and protected areas: a
scenario-based, landscape level approach. Land 3: 362-389.

6. Daniel CJ, Frid L. Predicting landscape vegetation dynamics using state-and-transition
simulation models. Proceedings of the First Landscape State-and-Transition Simulation
Modeling Conference, June 14-16, 2011. 2012. p. 5-22.

7. Booker K, Huntsinger L, Bartolome JW, et al. (2013) What can ecological science tell us about
opportunities for carbon sequestration on arid rangelands in the United States? Glob Environ
Chang 23: 240-51.

8. Bagchi S, Briske DD, Wu XB, et al. (2012) Empirical assessment of state-and-transition models
with a long-term vegetation record from the Sonoran Desert. Ecol Appl 22: 400-411.

9. Creutzburg MK, Halofsky JS, Hemstrom MA. Using state-and-transition models to project
cheatgrass and juniper invasion in southeastern Oregon sagebrush steppe. Proceedings of the
First Landscape State-and-Transition Simulation Modeling Conference, June 14-16, 2011. 2012.
p.73-84.

10. Strand EK, Vierling LA, Bunting SC (2009) A spatially explicit model to predict future
landscape composition of aspen woodlands under various management scenarios. Ecol Modell
220: 175-191.

11. Chambers JC, Bradley BA, Brown CS, et al. (2014) Resilience to stress and disturbance, and
resistance to Bromus tectorum L. invasion in cold desert shrublands of western North America.
Ecosystems 17: 360-375.

12. Steele CM, Bestelmeyer BT, Burkett LM, et al. (2012) Spatially explicit representation of
state-and-transition models. Rangel Ecol Manag 65: 213-222.

13. Bestelmeyer BT, Goolsby DP, Archer SR (2011) Spatial perspectives in state-and-transition
models: a missing link to land management? J Appl Ecol 48: 746-757.

14. ApexRMS. SyncroSim. SyncoSim ST-Sim software. 2014. Available from:
http://wiki.syncrosim.com/

AIMS Environmental Science Volume 2, Issue 3, 464-493.

491

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Evers LB, Miller RF, Doescher PS, et al. (2013) Simulating current successional trajectories in
sagebrush ecosystems with multiple disturbances using a state-and-transition modeling
framework. Rangel Ecol Manag 66: 313-329.

Vajda A. Programming Many-Core Chips. 2011th ed. Springer; 2011.

Gropp W, Lusk E, Skjellum A. Using MPI: portable parallel programming with the
message-passing interface (Scientific and Engineering Computation). 3rd ed. The MIT Press;
2014.

Hennessy JL, Patterson DA. Computer architecture: a quantitative approach. 5th ed. Elsevier;
2012.

Schauer B (2008) Multicore processors-a necessity. ProQuest Discovery Guides 1-14.
Chapman MT (2005) The benefits of dual-core processors in high-performance computing.
White Paper 18.

Microsoft Developer Network. Memory limits for Windows releases. Available from:
http://msdn.microsoft.com/en-us/library/aa366778.aspx

nixCraft. Maximum memory and CPU limitations for Linux server. Available from:
http://www.cyberciti.biz/tips/maximum-memory-and-cpu-limitations-for-linux-server.html
Flynn MJ (1972) Some computer organizations and their effectiveness. IEEE Trans Comput 100:
948-960.

Rauber T, Runger G. Parallel programming for multicore and cluster systems. Springer-Verlag,
Berlin, Heidelberg; 2010.

Darema F. The SPMD Model: Past, Present and Future. In: Cotronis Y, Dongarra J, editors. In
Recent Advances in Parallel Virtual Machine and Message Passing Interface. Springer Berlin
Heidelberg; 2001. p. 1.

Chang C-C, Czajkowski G, Eicken T Von, Kesselman C. Evaluating the Performance
Limitations of MPMD Communication. ACM/IEEE SC 1997 Conf. 1997; 1-10.

El-Rewini H, Abd-El-Barr M. Advanced computer architecture and parallel processing (Wiley
Series on Parallel and Distributed Computing). 1st ed. Wiley-Interscience; 2005.

Patterson DA, Hennessy JL. Computer organization and design. 5th ed. Green T, McFadden N,
editors. Morgan Kaufmann; 2013.

Silva LME, Buyya R. Parallel programming models and paradigms. High Performance Cluster
Computing: Programming and Applications, Volume 2. 1st ed. Prentice Hall; 1999. p. 4-27.
Navarro CA, Hitschfeld-Kahler N, Mateu L (2014) A survey on parallel computing and its
applications in data-parallel problems using GPU architectures. Commun Comput Phys 15:
285-329.

Center for High Throughput Computing U of W-M. HTCondor™ Version 8.0.1 manual. 2013.
Available from: http://research.cs.wisc.edu/htcondor/

ApexRMS. Getting started. Sample data, ST-Sim-SpatialSample-V2-1-0. 2014. Available from:
http://wiki.syncrosim.com/index.php?title=Getting_Started

Karl JW, Laliberte AS, Rango A. Spatial dependence of predictions from image segmentation: a
methods to determine appropriate scales for producing land-management information. Int Arch
Photogramm Remote Sens Spat Inf Sci 2007; XXXVIII (4/C7).

Miller RF, Rose JA (1999) Fire history and western juniper encroachment in sagebrush steppe. J
Range Manag 52: 550-559.

AIMS Environmental Science Volume 2, Issue 3, 464-493.

492

35.

36.

37.

38.

39.

40.

41.

42.
43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Baruch-Mordo S, Evans JS, Severson JP, et al. (2013) Saving sage-grouse from the trees: a
proactive solution to reducing a key threat to a candidate species. Biol Conserv 167: 233-241.
Petersen SL, Stringham TK, Roundy BA. (2009) A process-based application of
state-and-transition models: a case study of western juniper (Juniperus occidentalis)
encroachment. Rangel Ecol Manag 62: 186-192.

Bates JD, Sharp RN, Davies KW (2014) Sagebrush steppe recovery after fire varies by
development phase of Juniperus occidentalis woodland. Int J Wildl Fire 23: 117-130.
Rowland MM, Suring LH, Tausch RJ, et al. (2010) Dynamics of western juniper woodland
expansion into sagebrush communities in central Oregon. Communities 16: 13.

Kachergis EJ, Knapp CN, Fernandez-Gimenez ME, et al. (2013) Tools for resilience
management: multidisciplinary development of state-and-transition models for northwest
Colorado. Ecol Soc 18: 39.

Xamarin. Mono project. Cross platform, open source .NET framework. 2015. Available from:
http://www.mono-project.com/

SchedMD. Simple Linux resource utility manager workload manager. Software and Online Help.
2014. Available from: http://slurm.schedmd.com/

Tatham S. PuTTY. PuTTY. 2014. Available from: http://www.putty.org/

Prikryl M. WinSCP free SFTP, SCP, and FTP client for Windows. WinSCP 5.5.6 released. 2014.
Available from: http://winscp.net/eng/index.php

CycleComputing. Cycle Computing, Better answers. Faster. CycleServer. 2014. Available from:
http://www.cyclecomputing.com/

Massie M, Contributors. Ganglia monitoring system. 2014. Available from:
http://ganglia.sourceforge.net/

Conservancy SF. Samba, Opening Windows to a wider world. 2015. Available from:
https://www.samba.org/

Karp AH, Flatt HP (1990) Measuring parallel processor performance. Commun ACM 33:
539-543.

Moturi CA, Maiyo SK (2012) Use of MapReduce for data mining and data optimization on a
web portal. Int J Comput Appl 56: 39-43.

Zhang X, Yan Y. Modeling and characterizing heterogeneous parallel networks computing of
workstations of Texas at San Antonio. Parallel and Distributed Processing, 1995 Proceedings
Seventh IEEE Symposium on [EEE. 1995. p. 25-34.

Oracle. Oracle technology network. Oracle VM VirtualBox. 2014. Available from:
http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html

National Aeronautics and Space Administration. Open Government Initiative. NASA Nebula
Cloud Computing Platform. 2015. Available from: http://www.nasa.gov/open/plan/nebula.html
Amazon. Amazon Web Services. Amazon EC2. 2015. Available from:
http://aws.amazon.com/ec2/

Microsoft. Microsoft Azure. The Cloud for Modern Business. 2015. Available from:
http://www.windowsazure.com/en-us/

Google. Google Cloud Platform. Google App Engine: Platform as a Service. 2015. Available
from: https://developers.google.com/appengine/

Eri T, Mahmood Z, Puttini R. Cloud computing: concepts, technology & architecture. Prentice
Hall; 2013.

AIMS Environmental Science Volume 2, Issue 3, 464-493.

493

56.

57.

58.

59.

60.

Alford T, Morton G. The economics of cloud computing. Booz Allen Hamilton. 2011. Available
from:
http://broadcast.rackspace.com/hosting_knowledge/whitepapers/Cloudonomics-The Economics
_of Cloud Computing.pdf

Kondo D, Javadi B, Malecot P, Cappello F, et al. Cost-benefit analysis of cloud computing
versus desktop grids. 2009 IEEE International Symposium on Parallel & Distributed Processing.
2009. p. 1-12.

Nanath K, Pillai R (2013) A model for cost-benefit analysis of cloud computing. J Int Technol
Inf Manag 22: 93-118.

GDAL. GDAL-Geospatial data abstraction library. Open Source Geospatial Foundation. 2015.
Available from: http://www.gdal.org/

SQLite. An Asynchronous I/O module for SQLite. 2015. Available from:
http://www.sqlite.org/asyncvfs.html

2015 Michael S. O’Donnell, licensee AIMS Press. This is an

~tms ATMS Press open access article distributed under the terms of the Creative

Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Environmental Science Volume 2, Issue 3, 464-493.

