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Abstract: Human land use will increasingly contribute to habitat loss and water shortages in 
California, given future population projections and associated land-use demand. Understanding how 
land-use change may impact future water use and where existing protected areas may be threatened 
by land-use conversion will be important if effective, sustainable management approaches are to be 
implemented. We used a state-and-transition simulation modeling (STSM) framework to simulate 
spatially-explicit (1 km2) historical (1992‒2010) and future (2011‒2060) land-use change for 52 
California counties within Mediterranean California ecoregions. Historical land use and land cover 
(LULC) change estimates were derived from the Farmland Mapping and Monitoring Program dataset 
and attributed with county-level agricultural water-use data from the California Department of Water 
Resources. Five future alternative land-use scenarios were developed and modeled using the 
historical land-use change estimates and land-use projections based on the Intergovernmental Panel 
on Climate Change’s Special Report on Emission Scenarios A2 and B1 scenarios. Spatial land-use 
transition outputs across scenarios were combined to reveal scenario agreement and a land 
conversion threat index was developed to evaluate vulnerability of existing protected areas to 
proximal land conversion. By 2060, highest LULC conversion threats were projected to impact 
nearly 10,500 km2 of land area within 10 km of a protected area boundary and over 18,000 km2 of 
land area within essential habitat connectivity areas. Agricultural water use declined across all 
scenarios perpetuating historical drought-related land use from 2008‒2010 and trends of annual 
cropland conversion into perennial woody crops. STSM is useful in analyzing land-use related 
impacts on water resource use as well as potential threats to existing protected land. Exploring a 
range of alternative, yet plausible, LULC change impacts will help to better inform resource 
management and mitigation strategies. 
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1. Introduction 

It is estimated that human land use has already impacted more than 1/2 of the Earth’s land 
surface in the last 300 years alone [1], with roughly one-third of the conterminous United States in 
1992 classified as human-dominated [2]. For California, with one of the largest economies in the 
world and an already highly diverse and intensive land-use mosaic, future land-use change will only 
intensify in the coming decades [3]. California is currently home to an estimated 38 million  
people [4]―with a doubling or more of population expected this century [5]. The associated demand 
for California’s limited, intensively-allocated water resources will undoubtedly grow [6] while climate 
projections predict multi-year drought in the western U.S. and shrinking future water supply [7]. 
Global population will continue to rise as well, leading to increased international demand for food, 
fiber, energy, and development which will influence land use and land change in the state. Human 
land use can lead to widespread ecosystem alteration via habitat loss [8], species extinction [9], loss 
of diversity [10], declining air and water quality [11,12], increasing CO2 emissions [13], and indirect 
forcing of climate change [14,15]. Even if species are able to adapt to a changing climate and 
migrate to suitable habitat, human land use will be a significant dispersal barrier. By the year 2060, 
impacts from anthropogenic land use on biodiversity will likely be greater than those related to 
climate change [16,17]. Land use also affects resource availability. Agriculture in California is the 
largest consumer of the state’s limited water resources. Drought recurrence in the past few decades 
has led to improved water use efficiency for some crops [18]. The last two decades have also seen a 
widespread shift from row crops to higher valued vineyards and orchards, with land in orchards 
increasing roughly 9% while total cropland area has remained relatively constant[19-23]. Shifting to 
more perennial crop types has generated a shift in agricultural water use demand. Between 1972 and 
2002, land irrigated by low-volume (drip and micro sprinkler) irrigation has increased by about 33%, 
with an associated 31% decrease of land irrigated by surface methods [18]. If these trends persist, 
agricultural water use would be expected to change. If agriculture expands or declines, overall 
cropland water use will also be impacted. Understanding the range of potential future agriculture 
land and water-use scenarios can help resource managers develop stronger mitigation plans in the 
face of increasing shortages and shifting demand to urban water use as population and urban areas 
expand [24].  

The research community has highly developed, refined, and vetted species distribution models 
and global circulation models. Models of future land use, however, are sparse despite keen interest in 
the biodiversity community for projections of future land use and land conversion [2,25]. Mapping 
and monitoring the rates of spread of threats to biodiversity has been identified as a way to better 
understand the present and future distribution of threats and can help focus limited resources on areas 
at most risk [25,26]. We developed a state-and-transition simulation modeling (STSM) framework to 
project spatially explicit (1 km2) land use and land cover (LULC) from 1992–2060 for five different 
future scenarios, in order to identify protected areas with greatest probability of proximal future 
land-use conversion and examine agricultural water use demand. Similar LULC scenario-based 
research identifying protected areas threatened by regional land use have been published for 
ecoregions in the Pacific Northwest [26] and in California [27] using a different modeling platform. 
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Knowing which landscapes are most likely to undergo future land-use conversion can help guide 
management activities and help prioritize future land acquisition for additional protection [28-31]. 
Examination of potential future water use scenarios can enable the visualization of alternative 
resource futures and can lead to the development of more efficient management strategies. This 
preliminary work was presented at the STSM 2014 meeting in Fort Collins, Colorado and is part of a 
larger effort to model land-use related changes in carbon storage and agricultural water use. 

2. Materials and Method 

2.1. Study Region 

Our study area includes four Level III ecoregions [32] in Mediterranean California: (1) Central 
California Valley (hereafter Central Valley); (2) California Chaparral and Oak Woodlands (hereafter 
Oak Woodlands); (3) Southern California Mountains; and (4) Sierra Nevada (Figure 1) and  

 

Figure 1. Study region including an (A) overview map of the study area with 
ecoregions outlined in yellow; (B) inset maps of ecoregion extent—Oak Woodlands 
(blue), Central Valley (green), Sierra Nevada (brown), Southern California 
Mountains (red); and (C) counties of Mediterranean California. 
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portions of 52 counties. Ecoregions represent semi-contiguous areas with similar biotic, abiotic, and 
aquatic characteristics shaped by similar climate and topography [33]. Land use and resource 
capacity are inextricably tied to landscape characteristics making ecoregions useful units of analysis 
for observing, quantifying, and monitoring LULC change [34]. 

2.2. Initial LULC Conditions 

Spatially explicit initial conditions of land use were created from the 1992 National Land Cover 
Dataset (NLCD) [35] (Figure 2). We aggregated the multiple NLCD urban classes into a single 
developed class and the three forest classes into a single forest class (Table 1). We combined 
grassland and shrubland into a single grass/shrub class and also merged the two wetlands classes. 
The newly merged initial conditions spatial dataset was resampled from 30 meter resolution to 1 km. 
We then summarized the newly modified NLCD into land cover composition to supply our STSM 
with initial land cover conditions.  

In 1992, approximately 41 % of the study region was grass/shrub, nearly 30 % was forested, 
approximately 16 % was in non-woody crops (i.e. annual, row crops), 5% in woody crops (i.e. 
orchards/vineyards), > 4.5% developed, and the remaining ~ 3.5% in all other classes. These initial 
conditions were supplied to the STSM model in both spatial and tabular form.  

 

Figure 2. Initial land use and land cover (LULC) conditions at model onset in 1992. 
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Table 1. Classification scheme for the Mediterranean California land use and land cover model 
for the 1992 National Land Cover Dataset (NLCD), the 1992 Farmland Mapping and 
Monitoring Program (FMMP) data and our model state classes.  

NLCD 1992 FMMP 1992 State Classes 

11 - Open water N/A Water 

21 - Low Intensity Residential Urban and Built Up (D) 
 

Developed 
 22 - High Intensity Residential 

23 - Commercial/Industrial/Transportation

85 - Urban/Recreational Grasses 

32 - Quarries/Strip Mines/Gravel Pits N/A Mining 

31 - Bare Rock/Sand/Clay N/A Barren 

33 - Transitional N/A 
 

Forest 
 41 - Deciduous Forest 

42 - Evergreen Forest 

43 - Mixed Forest 

51 - Shrubland Grazing Land (G) Grass/Shrub 

71 - Grassland/Herbaceous 

81 - Pasture/Hay Prime Farmland (P), 
Farmland of Statewide 
Importance (S), Unique 
Farmland (U), Farmland of 
Local Importance (L) 
 

 
 
Non-Woody Crops 

82 - Row Crops 

83 - Small Grains 

84 - Fallow 

91 - Woody Wetlands N/A Wetlands 

92 - Emergent Herbaceous Wetlands 

61 - Orchards/Vineyards/WoodyAg N/A Woody Crops 

12 - Perennial Ice/Snow N/A Snow/Ice 

2.3. Protected Areas 

We utilized the Protected Area Database of the United States (PAD-US) [36] produced by the 
U.S. Geological Survey’s (USGS) National Gap Analysis Program (GAP) to identify protected areas 
in our study area. Lands classified as GAP Status 1 and 2 lands (i.e. areas with no allowable 
permanent conversion of natural land cover) were combined into a single protected area class and 
were not allowed to undergo any LULC conversions in the model. The four ecoregions within our 
study area had vastly different amounts of total protected land (Figure 3). Overall, 13.8% of the 
study region was protected. We assumed protected areas remain constant through 2060.  
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Figure 3. Protected areas of Mediterranean California (green) with values of 
percent ecoregion protected labeled in red.  

2.4. Water use 

We calculated average applied water use in acre feet per km2 by crop type and county from the 
California Department of Water Resources Agricultural Land and Water Use data available annually 
from 1998 to 2005. Water use by crop type was averaged for all years from the county level data, then 
aggregated by county-level crop cover proportions derived from the 2010 Cropland Data Layer [37]. A 
cross walk table was used to reclassify the Cropland Data Layer into the applied water classes by 
crop type and further into the woody and non-woody crops classes. County-level crop cover 
proportions were then used to weight values for county cropland water use by the two agriculture 
classes. Applied water use for each agriculture class was calculated by summing average applied 
water use by crop types within each agriculture class and dividing by total agriculture class crop 
cover. The applied water use values were held constant into the future in this analysis. 

2.5. Historic land use 

Historical LULC change data were derived from bi-annual, county-level Farmland Mapping and 
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Monitoring Program (FMMP) spatial data available from 1992‒2010 [38]. The FMMP data were 
converted to 1 km raster images and reclassified into our 3 main state classes (Table 1). LULC 
transition probabilities were calculated for each California county at annual time steps between 
1992‒2010 by evenly distributing the bi-annual LULC change data into annual intervals. Transition 
probabilities were calculated based on the amount of LULC change divided by the total available 
state class conversion area. Transition values were set to 0 if the total area of the from-class in a 
county was less than 15 km2 in order to remove errors caused by edge pixels and under-represented 
land cover. The FMMP data had varying spatial extents over time, as more area was mapped in each 
successive 2-year period. To bypass this issue we applied the starting year LULC from-class 
information as the denominator in any calculation of available change area. The FMMP agriculture 
totals were further divided into our woody and non-woody crop classes using proportions based on 
the Census of Agriculture data produced every 5 years by the U.S. Department of Agriculture and 
available for every county in the nation [19-23]. The Census of Agriculture data is the leading source 
of statistical information on agriculture production in the U.S. and the only consistent dataset 
comparable at the county, State, and national scales [19]. 

2.6. Land use scenarios 

Exploring alternative future scenarios is useful given the wide range of potential future 
outcomes. Scenarios allow land managers to visualize various landscape futures to improve planning 
and optimize management strategies [39,40,41]. The following five probabilistic, stochastic LULC 
scenarios were developed for this work:  

1.) Business as usual (BAU) scenario—LULC transition probabilities calculated for the last end 

of the historic period (2010) and projected from 2011 out to 2060 

2.) Average Future (AF) average value and standard deviation calculated from the 1992‒2010 

historic probabilistic transitions and applied to the modeled period (2011‒2060)  

3.) Random Future (RF)—randomly sampled historic (1992‒2010) LULC transition probabilities 

applied to the modeled period (2011‒2060). Random transitions were constrained to the min 

and max of the historic transition probability values 

4.) A2—2011–2060—transition probabilities calculated from Sleeter et al. (2012) scenario data [42] 

5.) B1—2011–2060—transition probabilities calculated from Sleeter et al. (2012) scenario data [42] 

Future emission-based LULC scenarios were developed from the ecoregion-based 
Intergovernmental Panel on Climate Change’s (IPCC) Special Report on Emission Scenarios (SRES) 
A2 and B1 scenarios from Sleeter et al. [42]. These scenarios utilized historical, empirical, 
ecoregion-based land use change information from the Land Cover Trends project to guide and place 
future change on the landscape [43,44]. The A2 scenario is characterized by high population growth, 
low biodiversity protection, low gross domestic product limited technological innovation and is 
fossil fuel intensive [39]. In contrast, the B1 scenario is characterized by low population growth, high 
gross domestic product, a focus on conservation and technological innovation, along with an 
emphasis on renewable fuel sources [39]. Ecoregion based LULC composition values and LULC 
transition area values available at 5-year intervals and were converted to annual composition and 
transition area values. These values were then disaggregated from ecoregions to county-level 
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boundaries based on the proportion of ecoregion area falling within each respective county. 
Transition probabilities for each county and LULC transition were calculated by dividing transition 
area by total LULC composition of the from-class (i.e. available land for conversion). 

The IPCC scenarios LULC scenarios include a single agriculture class. Therefore, woody and 
non-woody crop composition values were calculated proportionally for each time-step and county as 
the product of the SRES agriculture composition value. Annual transition probabilities by county and 
land cover transition type were then calculated by dividing transition target areas by the land cover 
composition value of the transition from-class (i.e. available land for conversion).  

2.7. State-and-transition simulation modeling 

We utilized a STSM called the Land Use and Carbon Scenario Simulator (LUCAS), developed 
and implemented by the USGS LandCarbon project (Figure 4). The core modeling framework is 
based on ST-Sim, a free STSM platform available online [45], with modifications made to 
specifically tailor the model inputs and structure to LULC transitions of interest in the study region. 
STSMs have been widely used to simulate vegetation change and spread across a landscape over 
time [46]. The model first divides the area of interest into discrete simulation cells with a defined 
state class (e.g., vegetation type, LULC). These state classes can also be attributed with specific 
values (e.g., pixel age, water use, etc.). The model then predicts how each cell changes (or does not 
change) state class over time based on user supplied area targets or transition probabilities and tracks 
state class attribute changes. STSMs represent spatial variability by using discrete regions or spatial 
strata (i.e., zones).  

 

Figure 4. The Land Use and Carbon Scenario Simulator (LUCAS) 
state-and-transition simulation modeling framework. Abbreviations include the 
Farmland Mapping and Monitoring Program (FMMP), U.S. Geological Survey (USGS), 
and the National Land Cover Dataset (NLCD). 
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For our model implementation, initial state classes were our 10 LULC classes (Figure 2). We 
used ecoregions as our primary spatial strata and counties as our secondary strata. This allowed 
LUCAS to report at either spatial scale. Tabular probabilistic transition data for each scenario were 
imported into the LUCAS model. Scenarios extended from the end of the baseline period (i.e. 1992) 
out to 2060. STSM simulations were conducted at annual time steps allowing for analysis of 
landscape change between any two points in time, as well as along a temporal continuum. Ten Monte 
Carlo simulations were run for each of the five scenarios to better represent model uncertainty. 

2.8. Spatial Multipliers 

A spatial multiplier approach was used to spatially constrain allowable land-use transitions for 
the following LULC transitions: (1) into cropland; (2) to developed; and (3) from crops to 
grass/shrub. Spatial multipliers specify pixels with higher or lower probability of conversions 
between specified LULC types. We utilized the same spatial multiplier approach outlined in Wilson 
et al. [26] for this study. All distance to measurements were calculated using Euclidean distance and 
an 8-pixel majority filter. For transitions into cropland, transition probabilities were derived from 
distance to existing cropland and a land capability index derived from the Soil Survey Geographic 
Database [47]. The lower the land capability index value the more suitable the soils are for 
agriculture [47]. For transitions into developed lands, higher transition probabilities were applied to 
pixels closest to existing development and with high population density (> 80 people/km2) from 
Sleeter and Gould [48]. For transitions from cropland to grass/shrub, higher transition probabilities 
were set for pixels near existing grass/shrub and with low crop capability. For each spatial multiplier, 
PAD-US GAP Status 1 and 2 lands were restricted from conversion and applied a 0 probability for 
conversion. More details on the specific inputs and processes involved in generating the spatial 
multipliers are available in Sleeter, R. et al. [49].  

2.9. LULC conversion threats 

Spatial model output from LUCAS was summarized and processed to analyze LULC 
conversion threats outside of existing protected areas. A conversion probability (CP) was calculated 
based on annual average transition probabilities summed across all 5 scenarios. CP values represent 
scenario agreement on the spatial location of LULC change over the model period. To examine 
conversion threats near protected areas, CP values were classified into five quantiles and summarized 
at varying buffer distances of 10, 20, 30, 40, 50 km from protected area boundaries [26,27]. The 
lowest quantile represented zero values or all areas not changing and was omitted from the CP 
classification. Of the remaining four quantiles, CP values of 1 have the lowest conversion probability 
and CP 4 lands have the highest. We summarized potential conversion threats within Essential 
Connectivity Areas (ECA’s) [50]. Essential connectivity areas are large areas of natural landscape 
and intact habitat identified as important for maintaining wildlife corridors. We identified the top 20 
ECA’s with > 70 km2 of land area in our highest CP class (i.e. CP = 4) 
  



291 
 

AIMS Environmental Science  Volume 2, Issue 2, 282-301. 

3. Results and Discussion 

3.1. Land use and land cover composition 

As expected, overall land in the developed class increased from 1992–2060 across all scenarios, 
but most dramatically in the RF scenario (Figure 5). Growth in the woody crops was highest during 
the BAU scenario, following trends documented in the National Agriculture Statistics Service data 
which show a 9.1% (3,599 km2) increase in woody cropland between 1992–2012 [19-23]. 
Non-woody crops other declined across all scenarios as well but declined most in the BAU scenario, 
given historical trends in conversion of row crops to woody agriculture and the likely capturing of 
the onset of current 2014 drought trends in the 2008–2010 FMMP change data. Both the A2 and B1 
scenarios show comparatively lower declines in non-woody crops and the lowest increase in woody 
crops. The grass/shrub class declined across all scenarios except the BAU which showed continued 
increases.  
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Figure 5. Land use and land cover change from 1992–2060 for all five scenarios (A2, 
B1, Business as Usual (BAU), Average Future (AF), Random Future (RF)) expressed 
in square kilometers (km2). 

3.2. Scenarios of agricultural water use 

Initial water use at model onset in 1992 was ~ 32.9 million acre feet (MAF), roughly equivalent 
to California’s average annual agricultural water use estimates from 1998–2005 at 33.22 MAF [51]. 
Applied water use declined across all scenarios over the modeled period with the BAU and RF 
scenarios returning the largest overall declines (Figure 6). This is again consistent with FMMP 
LULC change trends from agriculture to grass/shrub for the 2008–2010 period. Widescale historical 
conversion of existing cropland into woody crops also contributed to lower overall applied water use 
values in many counties, as woody crops use less water than row crops. Water use efficiency 
techniques implemented in the last two decades may have also played a role. Running the STSM into 
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the future with this BAU scenario perpetuated existing drought-related LULC change and historic 
conversions of cropland into woody cropland out to 2060. The B1 scenario showed the smallest 
decline in water use, with a near doubling of woody crops and the lowest decline in non-woody crops. 
Minimizing development and maximizing crop yield at a regional scale is an important component of 
this scenario. 
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Figure 6. Agricultural water use in million acre feet (MAF) from 1992–2060 across 
all five scenarios (A2, B1, Business as Usual (BAU), Average Future (AF), Random 
Future (RF)) for non-woody crops (top) and woody crops (middle) and all cropland 
(bottom). Water volumes on the y-axis expressed in millions of acre feet.  

3.3. LULC conversion threats 

Conversion probabilities summed across all scenarios reveal regions of scenario agreement in 
specific LULC conversions. Maps of CP show how the spatial multipliers and their input data help 
spatially allocate new development near existing, high density development and new agricultural 
land near existing cropland where crop capability remains high (Figure 7). Spatial analysis reveals 
that the closer to a protected area boundary, the greater the amount of land area with high conversion 
probabilities (Figure 8). Protected areas in the Oak Woodlands and Central California Valley appear 
most vulnerable to proximal future land use conversion, with 7.8% and 6.4% of their respective 
ecoregion area threatened by high CP (i.e. CP = 4) (Table 2). Our analysis reveals there is more land 
area classified as CP 2 to CP 4 than in the CP 1 class. Nearly twice as much land area is classified as 
CP 4 class as is classified as CP 1 within 10 km of a protected area. Therefore, land area in close 
proximity to protected areas shows an increased probability of future land conversion. These values 
decline across all CP classes as distance to protected areas increases. 

Table 2. Amount of land area with highest conversion probability threat (CP 4) near 
protected area boundaries in km2 and percent (%).  

 Highest Conversion Threat 
0–10 km (km2) % 10–20 km (km2) % Total (km2) % 

Sierra Nevada 556 1.1% 134 0.3% 690 1.3% 
Oak Woodlands 6951 7.8% 3764 4.2% 10715 12.0%
Central Valley 2678 6.4% 1514 3.6% 4192 10.0%
SoCal Mountains 311 1.8% 28 0.2% 339 1.9% 
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Figure 7. Land use conversion probabilities (CP) expressed as annual average 
percent from 1992–2060 across all five scenarios for grass/shrub losses to 
agriculture (left) and all conversions into developed land use (right).  

	

Figure 8. Conversion threats from 1992–2060 and distance to protected area 
boundaries with conversion probability (CP) classes as CP 1 = 0–0.0005, CP 2 = 
0.0005–0.0017, CP 3 = 0.0017–0.0041, and CP 4 = 0.0041–0.0232 (i.e. CP 4 indicates 
highest conversion threat). The x-axis shows the amount of land area within a given 
km2 buffer distances away from a protected area boundary. The y-axis shows the total 
amount of land in each CP class in km2.  
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3.4. LULC conversion and Essential Connectivity Areas 

We identified the top 20 Essential Connectivity Areas with > 70 km2 of land area falling within 
our highest CP value category through 2060, representing over 18,000 km2 of threatened land area 
within these corridors (Figure 9, Table 3). These areas exhibit the highest likelihood of LULC 
conversion within their boundaries by 2060. If our model assumptions are correct, these regions 
might benefit most from increases in protected area acquisition, stricter land use limitations, and 
broader scale planning efforts. 

 

Figure 9. Threatened Essential Connectivity Areas (ECA) with highest conversion 
probability threat (CP 4 in red) across all scenarios.  
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Table 3. List of the top 20 Essential Connectivity Areas with greatest amount of land 
area in the highest conversion threat category (CP 4).  

1 Table Top Mountain–Gopher Ridge 

2 Orland Buttes/Stone Valley/Julian Rocks–Ishi Wilderness 

3 La Panza Range–San Geronimo 

4 Duck Creek North Fork–Coyote Creek 

5 McClure Creek–Table Mountain 

6 Eastman Lake NRA–Bear Creek 

7 Castro Peak/Santa Monica Mountains–Pine Mountain/Sespe Condor 

8 San Ynez Mountains West–Casmalia Hills 

9 English Hills–Blue Ridge/Rocky Ridge 

10 Bear Slough–Browns Creek 

11 Chileno Valley–Sanel Mountain 

12 Pancho Rico Valley 

13 San Luis Canal–Ortigalita Ridge/San Luis Reservoir 

14 Dunnigan Hills/Smith Creek  

15 Chaparral Hill/Yuba River–Bald Mountain Ridge 
16 Kesterson National Wildlife Refuge 
17 Sacramento National Wildlife Refuge–Clark Valley 
18 Coon Creek–Bear River 
19 Pancho Rico Valley–Pinnacles National Monument 
20 Palomar Mountains–Camp Pendleton/Santa Rosa 

4. Conclusion 

Human land use demand in Mediterranean California will continue to place pressure on existing 
protected areas and biodiversity, challenging current conservation strategies [29,52,53] Methods to 
help identify potential habitat at greatest risk of conversion will be essential if effective management 
strategies are to succeed. The LUCAS model is well suited for modeling future LULC change 
scenarios and examining potential threats to existing protected areas [26]. According to our results, 
the closer you are to a protected area boundary the higher probability of future land conversion 
across all conversion probability categories. This is likely a function of the already intensive land use 
in the state and the relatively large amount of the study region already protected (13.8%). Only 300 
km2 of California reside more than 40 km away from a protected area [27]. Our agriculture water use 
data show how late 20th century trends in water use efficiency may play out in the future. As water 
demand in California will only continue to increase, the historic trend of increases in low-volume drip 
and micro-sprinkler irrigation technologies (or even improved technologies) will likely continue [18]. 

However, as with any model, LUCAS is only as robust as the empirical historical data it ingests. 
With continued improvements in and access to LULC change products, the capability of the LUCAS 
model to examine future change will only expand. The as-yet untapped power of LUCAS will be the 
analysis of various future policy or management scenarios. A water conservation or improved water 
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efficiency scenario can be implemented on our applied water use values. More protected areas can be 
added over time and outcomes analyzed. The developed state class can be attributed with population 
density values to examine various population scenarios and their resulting LULC composition 
impacts. Analysis of LUCAS model output can not only be used to identify protected areas and 
Essential Connectivity Areas at risk, but can also be used to examine potential landscape effects of 
urban sprawl or the influence of conservation areas on limiting urban growth. The LUCAS model 
will continue to evolve as new state class attributes will be added for future model runs, including a 
county-level average water use value for developed lands. Without such information, we cannot 
evaluate overall water use demand and generate realistic future water use projections. Future water 
use in some of California’s counties is already projected to shift to predominantly urban uses [6]. 
Examination of future scenarios of agricultural water use demand does provide a clear picture of 
overall declining water use, which may bode well for a state with relatively high population 
projections.  
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