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Abstract: Applying artificial neural network techniques to forecast the electricity production of 
photovoltaic (PV) power plants is a novel concept. A reliable analytical model for calculating the 
energy output of a grid-connected solar plant is very difficult to establish because of hourly, daily, and 
seasonal variations in climate. The current study estimated and predicted the energy production of a 
connected PV system that was installed in Cairo, Egypt (30.13° N and 31.40 ° E) using an artificial 
neural network. Four seasons’ worth of data (summer, autumn, winter, and spring) were methodically 
assessed using information from the climate database. The parameters that had an impact on the 
electrical data of PV modules included meteorological and irradiation variables, energy output, and the 
user’s needs used to verify the NARX feedback neural networks. Prediction performance metrics were 
obtained, such as the correlation coefficient (R) and root mean square error (RMSE). The observed 
correlation coefficient ranged from 99% to 100%, indicating that the expected results are verified, 
while the mean error fluctuates very little. 

Keywords: forecasting; grid-connected; PVsyst; energy output; NARX; neural networks 
 

Nomenclature: ANN: Artificial neural networks; DiffHor: horizontal diffuse irradiation (kWh/m²); 
E_Solar: Energy supplied to the user from solar (kWh); E_User: Energy needs of the user (kWh); Earray: 
Effective energy at the array output(kWh); EFrGrid: Energy from the Grid (kWh); GlobEff: Effective 
global irradiation on the collectors (kWh/m²); GlobHor: Horizontal global irradiation (kWh/m²); 
GlobInc: Incident global irradiation in the collector plane (kWh/m²); MSE: Mean squared error; NARX: 
Nonlinear autoregressive network with exogenous input; PnomPV: STC installed power; PR: 
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Performance ratio; PV: Photovoltaic; R: Correlation coefficient (R); Rୟୢ୨
ଶ : Adjusted R-squared; RMSE: 

Root mean square error; STC: Standard test condition; T_Amb: Ambient temperature (°C) 

1. Introduction  

Because of hourly, daily, and monthly variations in climate, it is difficult to find a credible 
analytical model for determining the energy production of a grid-connected solar plant. PV system’s 
energy production will be estimated and predicted utilizing accurate methods, and some previous 
related studies will be described.  

A power inverter device connects the solar array or panels in a grid-connected photovoltaic (PV) 
system to the utility grid, enabling them to run in parallel with the electric utility grid. An energy-producing 
solar power system that is linked to the utility grid is called a grid-connected PV system. Solar panels, 
a power conditioning unit, one or more inverters, and grid connection equipment are components of a 
grid-connected photovoltaic system [1]. When everything is operating properly, the grid-connected PV 
system feeds electricity not needed by the related load into the utility grid [2]. Nonetheless, in recent 
years, there has been a considerable increase in the number of solar-powered homes connected to the 
local electrical grid. These grid-connected PV systems may be able to meet most, if not all, of daily 
power demand with solar panels while remaining linked to the local electrical grid network at night [3].  

A grid-connected PV system allows homes and businesses to use solar energy for all or part of 
their energy needs while still receiving power from the standard electrical mains grid at night or on 
cloudy, rainy days, giving them the best of both worlds. In grid-connected PV systems, power is 
transferred between the main grid and the sun in accordance with the actual demand for electricity [4]. 
In a grid-connected PV system, sometimes referred to as a “grid-tied” or “on-grid” system, the PV 
solar panels or array can supply electricity back into the grid through an electrical connection to the 
local main power grid [5]. The main advantages of a grid-connected PV system are its simplicity of 
use, relatively low maintenance and operation costs, and reduced electricity bills. The disadvantage is 
that, in order to generate the required amount of additional power, a sufficient number of solar panels 
must be installed [6]. Since grid-tied systems feed solar energy back into the grid, most grid-connected 
designs can be created without expensive backup batteries [7]. In addition, there is no need to 
determine the size of the solar panels or calculate solar energy consumption, because this type of PV 
system is permanently connected to the grid. This implies a wide range of possibilities, ranging from 
a system as tiny as 1.0 kWh on the roof to nearly eliminating your electricity expenditures with a 
floor-mounted array [8].  

The most common machine learning strategy used is the artificial neural network (ANN) 
technique (e.g., [9]). Neural networks can be used to simulate, forecast, and optimize the performance 
of engineering systems, such as renewable energy systems. ANNs are commonly used in the real world 
to save money and time when solving complex nonlinear engineering problems [10]. Neural networks 
are algorithms based on the structure and operation of the human brain. The structure is divided into 
three layers: input, concealed, and output. Each layer is connected to the one below by a network of 
nodes, or neurons. Weights are computed iteratively throughout the training phase and utilized to define 
the connection between neurons. During the training phase, networks are randomly started, and 
learning takes place by altering weights until a specific criterion is reached [11,12], to balance supply 
and demand, anticipate fuel production and electrical power supply [13], and evaluate the electrical 
load for demand or energy consumption (building, transportation, and industrial use) [14,15]. Ghenai 
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et al. [16] used the ANFIS technique to produce highly accurate and short-term energy consumption 
projections for educational institutions. The forecasting algorithm was evaluated using historical data 
with extremely short temporal spans (0.5–4 hours ahead). The predictive algorithm did a good job 
projecting the building’s future energy use.  

Grid-connected PV systems vary in size, from small rooftop solar power systems for homes and 
businesses to enormous solar power plants for utilities. When the conditions are right, the grid-connected 
PV system sends any excess electricity to the utility grid by the linked load. Most consumers’ needs 
can be met by large-scale systems [17–19]. Using historical data and learning, the NARX network 
model can be utilized to achieve multistep forward prediction. The NARX neural network architecture 
is made up of input, hidden, and output. Different input information is received by the input layer from 
the concealed layer, which could be made up of one or more layers. The objective of the current study 
is to forecast the power output of a grid-connected PV by using the NARX neural network model, 
including meteorological data and irradiation variables, energy output, and user’s needs. 

2. Materials and methods 

2.1. Weather data from the site of the illustrated grid-connected PV system 

The system under investigation is located in Cairo, northeast Egypt, on the eastern coast of the 
Nile River, approximately 500 miles (800 kilometers) downstream of the Aswan High Dam. The 
climate is mild-to-hot for the majority of the year, with summer temperatures reaching 34 °C (92 °F) 
and winter temperatures reaching 18 °C (65 °F). Temperatures are significantly warmer than in Central 
Europe, rarely dropping below 20 °C. March and April can be windy, resulting in sandstorms. In July 
and August, temperatures soar, with daily highs frequently reaching >30 °C (approximately 100 °F). 
Daylight duration in the summer is approximately 4 hours longer than in the winter. In June, daylight 
can exceed 14 hours. Winter has the longest nights, the opposite being true in the southern hemisphere. 
In December, the night in Cairo lasts over 14 hours, the day being two hours shorter. Table 1 depicts 
the times for sunrise, sunset, total hours of daylight, and solar noon throughout the year. 

Table 1. Approximate sunshine and sunset duration in Cairo (https://www.worlddata.info/) in 2024. 

Month Sunrise Sunset Hours of daylight Solar noon 

January 06:50 am 05:17 pm 10:28 h 12:04 pm 

February 06:34 am 05:44 pm 11:10 h 12:09 pm 

March 06:03 am 06:04 pm 12:02 h 12:03 pm 

April 05:26 am 06:23 pm 12:57 h 11:54 am 

May 05:59 am 07:42 pm 13:43 h 12:51 pm 

June 05:52 am 07:59 pm 14:07 h 12:55 pm 

July 06:02 am 07:59 pm 13:56 h 01:01 pm 

Continued on next page
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Month Sunrise Sunset Hours of daylight Solar noon 

August 06:21 am 07:37 pm 13:16 h 12:59 pm 

September 06:38 am 07:01 pm 12:23 h 12:50 pm 

October 06:56 am 06:25 pm 11:29 h 12:40 pm 

November 06:19 am 05:00 pm 10:41 h 11:39 am 

December 06:42 am 04:58 pm 10:16 h 11:50 am 

In June, daylight lasts approximately 14 hours. This suggests that visual obstruction occurs 
approximately every 2:37 hours every day. In December, on the other hand, daylight lasts a little 
over 10 hours, with visual obstruction occurring every 3:10 hours.  

2.2. Characteristics of design 545-kW grid-connected PV array model 

The investigated solar power facility is located in Cairo (30.13° N and 31.40° E). The optimal tilt 
angle of the solar cell allows the solar panels to attain the best energy conversion efficiency. Array 
orientation is a crucial component of any PV performance model computation, and is typically 
classified as either tracked or fixed. The orientation with a fixed tilt is immovable; on the other hand, 
the orientation of a tracked array moves over time in order to reduce the angle of incidence between 
the array and the sun. The way trackers move categorizes them into various types. A fixed tilt array 
orientation is defined by its azimuth angle [θ_ (T, Array)] and tilt angle (θ_T) [20]. Table 2 displays 
the characteristics of the grid-connected PV array model as a result of the PVsyst simulation. 

The array azimuth angle [θ_ (T, Array)] and array tilt angle (θ_T) for a fixed tilt array orientation 
range from 10 to 80 by step 10. This is one of the most important aspects to consider when determining 
a PV system’s efficiency. The monthly average irradiation in a is optimum in tilted plane in general, 
throughout most of the months of the year, from March to October. An optimal tilt angle allows the 
solar module to obtain more energy than a horizontal plane. The PV support system type is fixed and 
monocrystalline with a total power of 545 Wp as seen in Table 2. The total number of solar cells is 770 
modules. The total solar array power in standard conditions is 420 kWp at 25 °C while the total capacity 
is 400 kWp at operating conditions at 50 °C.  

The performance ratio is the ratio of energy successfully produced (used) to energy that would be 
produced if the system operated continuously at its nominal STC efficiency. In most grid-connected 
systems, the available energy is denoted as E_Grid. The potential energy produced under STC 
conditions is indeed equal to “GlobInc × PnomPV”, “PnomPV” being the STC installed power. The 
performance ratio is determined in Eq (1) as (PVsyst guide): 

PR = E_Grid / (GlobInc × PnomPV)                 (1) 
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Table 2. Design characteristics of the grid-connected PV array model. 

Location System information User’s need 

PV array Inverters Daily household 

consumers 

Cairo, Egypt Latitude  30.13 
oN 

No. of 

modules 

Pnom 

total 

No. of 

units 

Pnom 

total 

Pnom 

ratio 

Seasonal modules 

 Longitude  31.40 
oE 

770 

modules 

420 

kWp 

35 

units 

350 

kWac 

1.199 Average  11.0 

kWh/day  

Grid-connected system        

PV field orientation, fixed 

plane, tilt (𝜽𝑻ሻ/azimuth (0) 

10/0 20/0 30/0 40/0 50/0 60/0 70/0 80/0 

PV module 

 Unit nom power Number of PV 

module 

Normal (STC) OptimizerArray 

545-Wp Monocrystalline 545 Wp 770 modules 420 kWp 70 string x11 in series 

At reference conditions, the maximum power 13.04 A and temperature coefficient 5.6 mA/℃ or 0.04%/℃ 

Details of housed consumer seasonal modulation, average = 11.0 kWh/day 

Summer (Jun–Aug) Autumn (Sep–Nov) Winter (Dec–Feb) Spring (Mar–May) 

12642 10142 10942 10142 

kWp: The kilowatt 

peak (maximum value 

to be achieved) 

kWh (kilowatt hour yield 

achieved PV) 

  

2.3. Artificial neural network (ANN) approach 

When predicting the power output of a plant that can be compared to the recorded power trend, 
the artificial neural network (ANN) technique is quite useful. ANNs can deal with complex system 
modeling, prediction, and optimization, being widely used in energy and renewable energy systems. 
In [21], authors proposed an application that includes modeling, simulation, sizing, control, and 
diagnosis of diverse energy systems, such as grid-connected hybrid PV systems. The main objective 
of this study is to examine if multilayer networks are suitable for modeling and forecasting the 
electricity generated by a (545 wp) panel grid-connected solar plant that is erected on a rooftop near 
Cairo, Egypt. To this end, models will be created and examined by employing the nonlinear 
autoregressive exogenous model (NARX), a nonlinear autoregressive model with exogenous inputs, 
for time series modeling. The model will analyze if the driving (exogenous) series, or the externally 
determined series that drives the series of interest, is related to both its current and previous values, as 
well as the series’ historical values. Furthermore, the model includes an error element that represents 
the difficulty of accurately predicting the current value of the time series without knowledge of other 
factors. The NARX network model is generated in MATLAB/Simulink. 

2.3.1. Time-series NARX feedback neural 

The nonlinear autoregressive network with exogenous input (NARX) is a recurrent neural 
network widely utilized in time series applications. The NARX model is made up of two main parts: 
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autoregressive (AR) and exogenous inputs (X). The X component simulates the effect of external 
influences on the time series (parameters that influence the electrical data of PV modules include 
GlobHor, DiffHor, T_Amb, GlobInc, and GlobEff), whereas the AR section depicts the temporal 
correlations between past and current time series values, forecasting future values based on past 
observations. NARX maps the input and output using a multilayer perceptron with a time delay unit 
and output feedback in the input. This model is effective for modeling and anticipating grid-connected 
PV behavior by forecasting grid output energy, which is the user’s requirement. This is achieved by 
combining the powers of the electrical grid and a PV system via electronic inverters. The NARX model 
is advantageous because it can represent nonlinearity while considering feedback signals and external 
variables. It is based on the nonlinear autoregressive model, which is widely used in time series modeling. 

2.3.2. Defining equation for the NARX model  

NARX solutions are more accurate than others, but this solution is only used if previous values of 
y(t) are unavailable when deployed. Input data is a 96 × 5 matrix representing dynamic data, with 96 
timesteps and 5 entries. Target data is a 96 × 5 matrix that represents dynamic data, with 96 timesteps 
with 5 elements, as in [22]. The NARX model can be expressed by the following equation, where y(t) 
is the expected output value, u(t) is the input variable, and ny and nu are the input and output time 
delays, respectively as shown in Eq (2): 

𝑦(𝑡) = 𝑓 (𝑦 (𝑡−1), 𝑦(𝑡−2), 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2), 𝑢(𝑡 − 𝑛𝑢))           (2) 

Equation (2) can be simplified in Eq (3): 

y(t) = f [y (t − 1); u (t − 1)]                                (3) 

Where the input and output regressor vectors are u (t − 1) and (t − 1), respectively. A typical perceptron 
network, which has multiple layers, can be used to estimate the usually unknown nonlinear mapping 
function f. We then discuss the resulting connectionist design using a NARX network. A two-hidden-layer 
NARX network is depicted in Figure 1, where the historical values of the output signal are used to 
regress the subsequent value y(t) of the dependent output signal, using the historical values of an 
independent PV energy output input signal. A feedforward neural network may be used to approximate 
the function f to implement the NARX model. The resulting network, which uses a two-layer 
feedforward network for approximation, is shown in the diagram below. Furthermore, the 
implementation described in [23] supports a vector ARX model with multidimensional input and output. 

 

Figure 1. Two-hidden-layer NARX network. 
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There are several applications for the NARX network, namely as a predictor to determine the next 
value of the input signal. In this study, the accuracy of the NARX model in calculating the grid-connected 
PV system is measured using three standard metrics. The trained network outcomes in training, testing, 
and total data regression stages are determined by the root mean square error (RMSE), correlation 
coefficient (R), and adjusted R2 provided in Eqs (4) and (5). The superlatively trained NARX model 
is indicated by an RMSE value close to 0 and an adjusted R2 value close to 1. 

Figure 1 depicts the model developed by the dynamic nonlinear autoregressive system with 
external exogenous input (NARX). By minimizing the output function through output feedback to the input, 
it is possible to forecast the future value of the output y(t) based on the past values of y(t) and x(t). The 
median squared difference between the target variable’s actual and anticipated values is measured by 
the mean squared error (MSE). Lower MSE values indicate a better performance; a value of 0 denotes 
flawless prediction. The number of data points (the target variable’s actual value for the ith data point) 
is given by yi, and ŷi indicates the target variable’s forecasted value for the ith data point [24]. 

𝑀𝑆𝐸 ൌ ଵ

௡
∑ ൫𝑌𝑖 െ 𝑌෠𝑖൯

ଶ௡
௜ୀଵ                   (4) 

where: 
MSE = Mean square error 
n = Number of data points 
Yi = Observed values 
𝑌ො𝑖 = Predicted values 

The square root of the mean squared error is called the root mean squared error (RMSE). It 
calculates the residuals’ standard deviation; the average squared difference between the expected and 
actual numbers is taken as the square root. 

𝑅𝑀𝑆𝐸 ൌ ටଵ

௡
∑ ൫𝑌𝑖 െ 𝑌෠𝑖൯

ଶ௡
௜ୀଵ                (5) 

The coefficient of determination, often known as R-squared, represents the fraction of the 
variance in the dependent variable that can be explained by the linear regression model. It is a scale-
free score, which means that regardless of the values, R-squared as expressed in Eq (6) will always be 
lower than 1. 

𝑅ଶ ൌ 1 െ
∑ሺ௒௜ି௒෠ሻమ

∑ሺ௒௜ି௬തሻమ                   (6)  

The adjusted R-squared is a modified in Eq (7) form of R-squared that accounts for the number 
of independent variables in the model. It is always less than or equal to R2. In the following formula, n 
represents the number of observations in the data, and k represents the number of independent variables. 

𝑅௔ௗ௝
ଶ ൌ 1 െ ቂሺଵିோమሻሺ௡ିଵሻ

௡ି௞ିଵ
ቃ                         (7) 

Prediction is a type of dynamic filtering in which previous values from one or more time series 
are used to forecast future values. Nonlinear filtering and prediction are performed using dynamic 
neural networks with tapped delay lines. Predictive models are also employed in system 
identification (or dynamic modeling), which involves creating dynamic models of physical systems. 
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These dynamic models are useful for analyzing, simulating, monitoring, and controlling a wide range 
of systems, including PV solar system behaviors. 

2.3.3. Data processing for NARX ingestion 

Professionals use data to generate well-informed predictions every day, everywhere. 
Meteorologists forecast future weather by utilizing historical meteorological data, similarly to the 
characteristics that affect the future energy output of PV modules. Time series data are used to make 
predictions, sometimes referred to as “time-stamped data”, which is a group of data points on a 
particular topic where each value is assigned a time period. In addition to external parameters, the 
model can accept feedback from the output based on changes in meteorological data over a 
predetermined period of time. After a certain period of time, the model can accept feedback from the 
output as well as external variables. Furthermore, ambient temperature can affect GlobHor, DiffHor, 
T_Amb, GlobInc, and GlobEff, all of which effectively modify cell temperature.  

Even small variations in the outside temperature can result in a large buildup of heat from the 
annual DC energy generated by the PV array, the annual AC energy added to the grid, and idle 
conditions. The data is organized into a table using MATLAB and Excel, with columns including 
historical power production data from solar PV plants, hour angles, zenith angles, and weather 
variables. Power and meteorological data must be synchronized with respect to sunrise and sunset in 
order for them to be correct. Since the missing data contains significant information that could affect 
the model’s performance, it is necessary to take it into consideration. The MATLAB Spline 
interpolation method is used in this study to fill in missing data since it is superior to linear, nearest 
neighbor, and shape-preserving methods in terms of smoothness [25].  

2.3.4. Validation and test training  

Test training and validation were completed in the following way: Three sets of input and target 
vectors were randomly selected; 70% was utilized for training, 15% was used to assess the network’s 
generalization and prevent overfitting, and the remaining 15% was used as an independent test of 
network generalization. 

The training process was repeated multiple times using different algorithms (Bayesian 
regularization, scaled conjugate gradient, and Levenberg-Marquardt) until the optimal result was 
obtained. The loop was closed for multistep prediction tests, and simulation based on the accuracy 
parameters of the Bayesian regularization after training was finished. Although the Bayesian 
regularization process usually takes longer, it can produce good generalizations for challenging, tiny, 
or noisy datasets. Training halts in accordance with regularization or adaptive weight minimization. 
The average squared difference between the targets and the outputs is called the mean squared error. It 
is better to have lower values. Zero indicates the absence of an error. The correlation between targets 
and outputs is measured by R values. A relationship is said to be close when the R value is 1, and 
random when it is 0. 
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3. Results and discussion 

3.1. Results of PVsyst simulation to optimize 545-wp grid-connected PV array setting 

Figure 2 displays the optimum tilt angle in terms of incident global irradiation in the collector 
plane GlobInc (kWh/m²). 

 

Figure 2. Optimum tilt angle in terms of incident global irradiation in the collector plane 
GlobInc (kWh/m²). 

The variables horizontal global irradiation [GlobHor (kWh/m²)], horizontal diffuse irradiation 
[DiffHor (kWh/m²)], ambient temperature [T_Amb (°C)], incident global irradiation in the collector 
plane [GlobInc (kWh/m²)], and GlobEff (kWh/m²) without any optical corrections are effective globally; 
after all, optical losses are included in the balances and primary outcomes of the grid-connected PV 
setting using PVsyst software. The monthly values at PV field orientation, fixed plane, and tilt (θ_T) 
varied from 10 to 80 by step 10. These computed values were acquired for all the variables indicated 
in the main results and balances. The collecting plane’s incident global irradiation [GlobInc (kWh/m2)] is 
at its optimal when tilted to 30o, as Figure 2 illustrates. From the PVsyst simulation of a grid-connected 
system, annual average values are possible for temperature, efficiency, and sums of irradiance and energy. 
For the study site, the annual global irradiance on the horizontal plane is 1882.4 kWh/m2, while the 
annual global incident energy on the collector without optical adjustments and effective global 
irradiance after optical losses are 2041.9 and 1998.2 kWh/m2, respectively. With this effective 
irradiance, the PV array generates 756.137 MWh of DC energy each year and injects 744.350 MWh 
of AC energy into the grid. 

The 545 wp Si-mono photovoltaic system produces 747.062 MWh of energy per year. The second 
parameter, the specific annual production per installed kWp, is 1780 kWh/kWp/year. The third 
parameter, the annual average performance ratio (PR), is 87.2%, while the efficiency, which is provided 
by the manufacturer, equals 21.11%. 
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3.2. Results of the generated NARX network model 

The NARX approach based on ANN was employed for the main simulation results for predicting 
the energy output and continuous use. Five main parameters were assessed: the total effective energy 
at the array output [Earray (kWh)], energy needs of the user [User (kWh)], energy supplied to the user 
from solar [E_Solar (kWh)], energy injected into the grid [E_Grid (kWh)] and energy from the grid 
EFrGrid (kWh), produced from the 545 wp Si-mono photovoltaic system on an annual basis, which is 
stated as produced energy. In addition to these variables, the DC energy generated by the Si-mono 
photovoltaic array, the energy injected into the grid while accounting for electrical component losses, 
and the efficiency of the photovoltaic array were also calculated. Regression, training state, and 
validation performance are shown in Figures 3–5, respectively. In addition to providing the estimation 
linear equation and regression value between targets and predicted values, Figure 3 displays the 
regression between target outputs and predicted values. 

 

Figure 3. Datasets of linear regressions: training data regression, test data regression, and 
total data regression. 

All dataset’s errors are analyzed using linear regression (training, validation, and testing). The 
values between the specified targets and the obtained output are displayed in Figure 3. The ideal 
circumstances are training data with 100% regression effectiveness. This outcome can be attributed to 
the quantity of data used for the training—70% of the total—that was used. Regarding the efficacy of 
regression, there is also a great deal of proximity to the other data groups. The BEST_NARX network 
was calculated and presented with the correlation coefficient values. Figure 3 shows that the NARX 
artificial neural network evolved as a result of simulation which is represent datasets of linear 
regressions. The linear regression model’s variables’ capacity to explain the variability in the 
dependent variable was measured by R-squared and adjusted R-squared. The R-squared value varied 
from 0.99 to 1, with Figure 3 indicating that it always rises with the addition of independent variables, 
which could cause our model to include redundant variables. Nonetheless, the adjusted R-squared 
resolves this issue if necessary. 
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Figure 4 displays the neural network’s training states at the epoch when the goal is attained. The 
neural network’s optimal validation performance is depicted in Figure 5, which also displays the 
training, validation, and test curves for each case’s goal as well as the total number of epochs (training 
iterations) at which the objective has been met. It displays the number of validation checks performed 
throughout the neural network training epochs, as well as the gradient and weight changes. The training 
gain, or MU, regulates how much the weights change throughout each iteration. These training process 
outputs show that the NARX neural network is operating successfully.  

 

Figure 4. Development of training and testing in relation to the number of iterations used, 
as well as the MSE obtained (performance). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Training state. 

The NARX network was parameterized and then trained using the Bayesian regularization 
method. The algorithm was stopped after 1000 iterations of the 1,000 available epochs, and the 
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network’s performance did not change when it was tested using validation data. As a result, the best 
training performance is shown  in Figure 4, which illustrates how the mean squared error (MSE) varied 
along the training and testing curves during the training epochs. The graph indicates that the epoch 1000, 
where the training performance is recorded at 62.8489, yielded the best training performance.  

Figure 5 illustrates, throughout algorithm execution, how mistakes in training, validation, and test 
data exhibit similar patterns.  

Figure 5 displays the training, validation, and test curves for the goal set, as well as the number 
of epochs (training iterations) completed to achieve the target. It shows how the gradient and weights 
change, as well as the number of validation checks performed throughout each epoch of the neural 
network training process. MU = 50, at approximately 1000, is the training gain that governs the weight 
change between iterations. The training process’s outputs indicate a successful state for the NARX 
neural network. 

Figure 6 specifies the histogram of the error of outputs against the target timeseries dataset, 
intended to predict output energy and user needs, which were used as exogenous variables in the 
BEST_NARX network training algorithm. 

 

Figure 6. Histogram of the error of outputs against target. 

 

Figure 7. Temporary response obtained and error with respect to the objective (time series response). 

The results are computed and shown in Figure 6. Upon analyzing this figure, it can be observed 
that the majority of the errors fall within the value of –21.3; furthermore, the error histogram indicates 
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that most mistakes are centered around a relatively small value which is equal to –21.3, keeping the 
dataset’s faults within bounds. The training set’s data ratio is found to be higher on the center line; this 
behavior is consistent when analyzing the data that is farthest from the null error. 

Figure 7 indicates temporary response obtained and error with respect to the objective (time 
series response). 

The response displays the features of the discrepancy between the NARX’s response and the 
current signal in the grid feeder when power from the PV system is present. The discrepancies between 
the target values and those obtained from the training datasets are very close to zero, as can be seen 
from the errors’ graph in Figure 7; this indicates that the largest errors occur when the waveform of the 
signal behaves in a way that is quick and abrupt. Finally, the errors’ correlation plots with regard to 
time and inputs are shown.  

Figure 8 shows the error autocorrelation function corresponding to the BEST_NARX network. 

 

Figure 8. Error-time autocorrelation. 

Figure 8 illustrates how this network’s predicting errors functions. It can be observed that all of 
the correlations—aside from the one with zero lag—fall inside the intended confidence intervals 
surrounding zero. This plot illustrates the relationship between the forecasting errors of this network 
over time, and upon analysis, it can be shown that all correlations fall within the acceptable confidence 
bounds around zero, with the exception of the zero-lag correlation. Error-time autocorrelation shows 
how adequate the training is; the center correlation (MSE ) with zero value is bigger, while the 
remainder are within the predicted confidence bounds. 

The current study was compared with the NARX model of [19], and the anticipated values were 
generated by the regression model, provided in Eqs 5 and 6. The predictable values and the NARX 
model results have a very good relationship. The R2 values of the equations generated by the regression 
model for the current study ranged from 0.99 to 1. As a comparison, in [19], the values of R2 ranged 
from 0.9446 to 0.9724. As a result, the regression model was demonstrated to be successful for 
estimates in both studies. 

4. Conclusions 

As solar energy becomes more prevalent in power generation, forecasting power output from PV 
power plants is necessary for energy trading, plant optimization, and operational planning. 
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Furthermore, ambient temperature can affect GlobHor, DiffHor, T_Amb, GlobInc, and GlobEff. 
PVsyst simulation was used to optimize the 545-wp grid-connected PV array setting. These computed 
values were acquired for all the variables indicated in the main results and balances. The collecting 
plane’s incident global irradiation [GlobInc (kWh/m2)] is at its optimal when PV field orientation, 
fixed plane, tilt (/Azimuth (0)) is 30o. The regression coefficients between each input parameter and 
the solar PV output power data determined the input data combination. 

The results of the generated NARX network model confirmed that:  
 The accuracy to which a linear regression model fits a dataset is measured by both RMSE and 

R-squared. While R-squared indicates how well the predictor variables can explain the 
variation in the response variable, the RMSE indicates how well a regression model can predict 
the value of a response variable in absolute terms. The findings showed that the R-squared 
value varied from 0.99 to 1. 

 The NARX model’s performance is evaluated based on statistical factors. The epoch 1000, 
where the training performance is recorded at 62.8489, yielded the best training performance. 

 Gradient and weights change, as well as the number of validation checks performed throughout 
each epoch of the neural network training process. MU = 50 at approximately 1000 is the 
training gain that governs the weight change between iterations. The training process’s outputs 
specify an effective status for the NARX neural network. 

 The majority of the errors fall within are centered around a relatively small value equal to −21.3.  
 The response displays the features of the discrepancy between the NARX’s response and the 

current signal in the grid feeder when power from the PV system is present. The discrepancies 
between the target values and those obtained from the training datasets are very close to zero. 

With the exception of the correlation with zero lag, all of the correlations in the network’s 
predicting errors function are related throughout time and, upon closer inspection, are found to lie 
inside the intended confidence intervals surrounding zero. Analysis of the relationship between this 
network’s forecasting errors over time reveals that, with the exception of the zero-lag correlation, all 
correlations fall inside the allowable confidence ranges around zero. Error-time autocorrelation 
indicates how well the training went; the remaining values are within the expected confidence ranges, 
but the center correlation (MSE) with a zero value is larger. 
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