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Abstract: Climate change is having a significant impact on weather variables like temperature, 

humidity, precipitation, solar radiation, daylight duration, wind speed, etc. These weather variables are 

key indicators that affect electricity demand and consumption. Hence, understanding the significance 

of weather elements on energy needs and consumption is important to be able to adapt, strategize, and 

predict the effect of the changing climate on the required energy of an organization. This study aims 

to investigate the relationship between changing weather elements and electricity consumption, 

employing Multivariate Linear Regression (MLR), Support Vector Regressions (SVR), and Artificial 

Neural Network (ANN) models to predict the effect of weather changes on energy consumption. The 

following approaches were engaged for this study: Creating a catalog of weather elements and 

parameters of energy need or its consumption; analyzing and correlating electrical power consumption 

to weather factors; and developing prediction models—MLR, SVR, and ANN to predict the 

significance of the change in the variables of weather on the electrical energy consumption. Among 

the weather variables considered, temperature emerged as the most influential factor affecting 

electricity consumption, displaying the highest correlation. The monthly total pattern for electricity 

use for the case study area followed a similar pattern as the mean apparent temperature. Of the three 

models (MLR, SVR, and ANN) developed in this study, the ANN model yielded the best predictive 

performance, with Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute 
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Percentage Error (MAPE) of 2.733%, 1.292%, and 4.66%, respectively. Notably, the ANN model 

outperformed the other models (MLR and SVR) by more than 20% across the predictive performance 

metrics employed. 

Keywords: ANN; weather variable; MLR; energy consumption; SVR 

 

1. Introduction 

Access to an adequate, secure, and sustainable energy supply is important for economic and social 

development [1]. It has been established that the rate of industrialization of any country is dependent 

on the amount of energy available in that country and the extent to which this energy is utilized. 

According to [2], It is critical to provide enough energy to meet basic human needs while mitigating 

negative environmental impacts. As global weather conditions change, energy consumption in 

weather-sensitive industries or sectors is likely to change. The most visible and studied impacts are 

changes in building space conditioning efficiency as a result of increased space cooling demands [3]. 

According to [3], climate changes the way consumers react to short-term weather shocks and how 

people will adjust in the long run by switching to durable goods. The demand for electricity is affected 

by several factors, which can be referred to as economic variables, calendar effects, and climate 

variables [4]. Climate change is having a moderately significant impact on weather factors such as 

precipitation, humidity, temperature, solar radiation, daylight duration, wind speed, and so on, all of 

which influence electricity demand and consumption [5–8]. The authors in [9] concluded that it is 

imperative to comprehend these weather variabilities and their effects on the power system to be able 

to recommend, plan, and manage the change to renewable energy generation. Moreover, it is important 

to include these weather variables in electricity demand models to increase the predicting power and 

accuracy of models as well as give energy managers an insight into the factors influencing electricity 

demand [4]. Of particular note is the steady temperature rise in Nigeria, attributed to global warming, 

with data revealing an alarming 3 ℃ per decade rise in mean minimum temperature over the span of 

four decades [10]. Recent research has focused on the link between climate change and energy usage, 

with studies by [11] exploring the Agricultural Energy Internet’s role in revolutionizing agriculture, 

highlighting relevant technologies and energy consumption patterns. [12] emphasized the benefits of 

optimizing collaboration between photovoltaic greenhouses and rural energy systems, showing 

substantial energy cost savings through load control. In another study, [13] investigate the construction 

of the Agricultural Energy Internet, its impact on agricultural electrification and carbon emissions 

reduction, and stress the role of digital twin and virtual power plant technologies. 

Several researchers have created energy models to simulate the influence of parameters such as 

the economy, weather conditions, demographics, population, and calendar data on different facets of 

electrical energy demand and usage (minimum and peak load, heating and cooling, demand daily and 

monthly consumption, etc.). [14] developed a high-accuracy ANN model for forecasting energy load 

for short-term using a Long Short-Term Memory (LSTM) network and tested it using historical 

data. [15] forecasted electrical energy consumption by developing two ANN models; the first model 

was a univariate completely connected ANN model with three Electrical Energy Consumption (EEC) 

input units, and the second model was a partly connected multivariate ANN model that has both EEC 

and Degree Day (DD) as input units. [16] created a model for predicting electricity use in Saudi Arabia 
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based on past data for weather parameters (relative humidity, solar radiation, average air 

temperature), economic parameters or indicators (gross domestic product (GDP) per capita) and 

demography (population). [17] utilized ANN and SVR (SVR) to predict electricity use in Turkey based 

on a catalog of electricity consumption that spans forty years (1970 to 2011). [18] developed a 

predicting model comprised of two sub-models using demographic, economic, and weather variables 

to forecast electricity consumption in Saudi Arabia. [19] examined the effect of weather parameters on 

monthly electric energy demand in the United Kingdom using three different models: Box and Jenkin’s 

model, ANN, and the socioeconomic model (S-E). [20] developed a model for predicting short-term 

electricity requirements that incorporates previous data on consumption into a functional vector 

autoregressive state space model. [4] modeled the impact of temperature on daily maximum electricity 

need in South Africa using the generalized extreme value distribution and piecewise linear regression 

model. These models, often categorized as parametric and non-parametric, provide varying degrees of 

precision in forecasting electricity needs, measured through diverse statistical methods such as MSE, 

MAPE, MAE, and Sum of Square Error (SSE). Some of these models, specifically the non-parametric 

models (SVR, ANN, etc.), are data dependent, and as such, the resultant models are designed according 

to the dataset. It is, therefore, important to have an in-depth understanding of the influence and impact 

of weather variables on energy demand and consumption to be able to adapt, plan, and forecast the 

impact of the changing climate on the energy needs of an organization. This study aims to provide a 

comprehensive understanding of the effect of weather factors on energy demand and consumption to 

support adapting, planning, and forecasting the effect of climate change on an organization’s electricity 

requirements by modeling the influence of changes in weather variables (such as temperature, relative 

humidity, solar radiation, sunshine hours, evaporation) on the electricity demand and consumption at 

a typical agricultural research institute and forecasting the impact of change in these variables on 

electricity demand [21]. 

2. Materials and methods 

This study employed the following methodology to analyze and model the impact of weather 

variables on electrical energy consumption: 

i. A comprehensive database was created, comprising daily data from the years 2011 to 2018 

and 2008 to 2018 for monthly data. This database included records of weather variables and 

energy demand or consumption parameters. 

ii. The electrical energy demand (maximum and minimum power, average load etc) was analyzed 

and correlated to weather variables. These variables included minimum and maximum 

temperatures, as well as minimum and maximum values of relative humidity, wind speed, solar 

radiation, and sunshine hours. 

iii. To quantify the impact of changes in weather variables on electrical energy demand, several 

multivariate models were employed. These models included multiple linear regression, support 

vector regression, and artificial neural networks. 

iv. The predictive performance of the models was accessed using statistical methods such as mean 

absolute error, mean square error, and mean absolute percentage error. 
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2.1. Location of study 

The location of the study was the International Institute of Tropical Agriculture (IITA), situated 

in Ibadan, Oyo State, Nigeria. IITA’s coordinates are approximately Latitude 07°30’ N and 

Longitude 03°55’ E, with an altitude of 227 meters above sea level. This region is classified under the 

Köppen climate classification as having a tropical wet and dry climate, denoted by the 

abbreviation “Aw”. Such climates are typically characterized by distinct wet and dry seasons, with 

the wet season typically occurring in the summer months and the dry season in the winter months [22]. 

The Institute is situated on a 1000-hectare land, housing research farms, offices, and residential and 

commercial buildings. Electricity supply to the IITA campus is sourced from both the public utility, 

specifically the Ibadan Electricity Distribution Company (IBEDC), and four 1.5 MVA self-generation 

power plants. 

2.2. Weather data 

Weather and temperature are key determinants of electricity use. With regards to [23], heating 

and cooling requirements account for more than 40% of energy usage in both residences and industries 

and are heavily determined by weather conditions. The weather data was obtained from the IITA 

weather observation station established in Ibadan, Nigeria. The daily data for the weather (minimum 

and maximum temp., sunshine hours, minimum and maximum rel. humidity, solar radiation, and 

wind speed) spanning from the year 2011 to 2018 was obtained, and the monthly data for the 

weather (minimum and maximum temperature) spanning from 2008 to 2018 was collated for this study. 

2.3. Energy data 

Energy data for this study were obtained from IITA Power Unit. Energy parameters, namely 

average power factor, maximum, minimum, and average loads (in WM), generator hours (hrs), public 

utility consumption, public utility hours (hrs), generator consumption, and total use, were recorded 

daily for this study. 

2.4. Data preprocessing 

In the data preprocessing phase, we applied normalization and standardization techniques to the 

acquired energy and weather datasets. The primary aim of normalization is to prevent variables with 

larger numeric ranges from overshadowing those with smaller numeric ranges. Additionally, we introduced 

a new categorical variable known as “day-index” to distinguish between working days (assigned a 

value of 1) and non-working days (assigned a value of 0). This differentiation was made with the 

understanding that working days significantly impact the population in the study area, subsequently 

influencing energy consumption. As highlighted by [24], there exists a direct correlation between 

population and energy consumption. Empirical observations also supported this, revealing a decrease 

in population during non-working days. To account for demographic, population, and activity 

fluctuations in the study area, we introduced two additional variables, “month index” and “year index”. 

These variables played a crucial role in enhancing the performance of the models applied in this study. 

The dataset was further divided into three segments, with a distribution ratio of sixty percent for 
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training, twenty percent for validation, and twenty percent for testing. This division facilitated rigorous 

testing and validation, ensuring the robustness and reliability of the models developed. 

Table 1 shows the linear correlation coefficient between weather variables and total energy 

consumption obtained from the daily data from 2011 to 2018. A substantial negative correlation of −0.74 

is observed between daily maximum temperature and minimum relative humidity. This indicates that 

as the maximum temperature increases, the minimum relative humidity decreases. Also, a high positive 

correlation was observed between the daily maximum temperature and the sunshine hours, as well as 

between sunshine hours and solar radiation. These findings highlight the interplay between weather 

variables, shedding light on how changes in one variable can influence another. The influence of 

changing population and activities becomes evident when observing the strong positive correlation 

between total consumption and the day index. This correlation is further enhanced when considering 

the year index and month index, as demonstrated in Table 2 with the correlation coefficient between 

Average Temperature and Total Consumption increasing to 0.87 for working day and 0.86 for 

non-working days for the year 2015 which is a similar trend in all other years in this study. 

Table 1. Correlation coefficient between daily weather variables and total electricity 

consumption (Total cons) (2011–2018). 

 Wind 

speed 

Max. 

rel. 

hum. 

Min. 

rel. 

hum. 

Max. 

temp. 

Min. 

temp. 

Avg. 

temp. 

Sunshine 

hr. 

Solar 

radiation 

Day 

index 

Total 

cons 

Wind speed 1 −0.21 −0.16 0.3 0.15 0.31 0.22 0.13 0.031 0.033 

Max. rel hum −0.21 1 0.4 −0.15 0.27 0.019 −0.12 −0.17 0.039 0.048 

Min. rel. hum. −0.16 0.4 1 −0.74 0.15 −0.49 −0.56 −0.34 0.0355 −0.11 

Max. temp. 0.3 −0.15 −0.74 1 0.21 0.87 0.68 0.49 −0.015 0.31 

Min. temp.  0.15 0.27 0.15 0.21 1 0.66 0.026 0.11 0.063 0.42 

Avg. temp. 0.31 0.019 −0.49 0.87 0.66 1 0.53 0.43 0.02 0.45 

Sunshine hr. 0.22 −0.12 −0.56 0.68 0.026 0.53 1 0.62 0.0051 0.23 

Solar radiation 0.13 −0.17 −0.34 0.49 0.11 0.43 0.62 1 −0.032 0.33 

Day index 0.031 0.039 0.035 −0.015 0.063 0.02 0.0051 −0.032 1 0.67 

Total cons 0.033 0.048 −0.11 0.31 0.42 0.45 0.23 0.33 0.67 1 

Table 2. Correlation between daily weather variables and total consumption considering 

the day index (2015). 

Variables Total cons (Index 1) Total cons (Index 0) 

Wind speed 0.26 0.34 

Max. rel. hum. 0.3 0.31 

Min. rel. hum. −0.24 −0.29 

Max. temp. 0.61 0.62 

Min. temp. 0.76 0.75 

Avg. temp. 0.87 0.86 

Sunshine hr. 0.3 0.36 

Solar radiation 0.29 0.34 

Among the analyzed weather variables, it is evident that average daily temperature exerts the most 

significant influence on total electricity consumption, whereas wind speed exhibits the least impact 

on consumption. 
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2.5. Energy models 

2.5.1. MLR model 

In this study, the dependent variable was energy utilization; specifically, electricity     

consumption (kWh), while the independent variables, such as day index, year, and temperature, are 

listed in Table 3. This regression analysis was used to measure the effect of changes in weather factors 

on electricity use in the study area. 

Table 3. Variables for the study. 

Designation Model inputs (Independent variables) 

A Day index 

B Year index 

C Month index 

D Max. temp. 

E Min. temp. 

F Sunshine hour 

G Solar radiation 

H Min. rel. hum. 

Model output (Dependent variable) 

Y Total consumption (Total cons) 

The model of the MLR can be represented with Eq 1. 

𝑌 = 𝑍0 + 𝐴𝑍1 + 𝐵𝑍2 + 𝐶𝑍3 + 𝐷𝑍4 + 𝐸𝑍5 + 𝐹𝑍6 + 𝐺𝑍7 + 𝐻𝑍8   (1) 

This model was executed with the daily energy and weather data obtained from IITA using a 

Python programming language. The values for the coefficient of the independent variable 𝑍1 to 𝑍8 

were obtained for the linear regression model in Eq 2. 

𝑌 = 7.2366𝐴 + 0.7981𝐵 + 0.0401𝐶 + 0.4317𝐷 + 0.8126𝐸 + 0.1006𝐹 + 0.0956𝐺 + 0.0124𝐻 −

1618.32           (2) 

2.5.2. SVR model 

SVR is adopted to minimize the generalization error bound. Suppose there are given training    

data {(𝑥1, 𝑦1), … … . (𝑥𝑡, 𝑦𝑡)}  ⊂ 𝑋 × 𝑅 where X represents the space of the input patterns. In SVR, a 

function 𝑓(𝑥) with the most deviation ε from the obtained targets 𝑦𝑖 for all the training data, and a 

small coefficient w is given in Eq 3. 

𝑓(𝑥)  = (𝑤, 𝑥)  +  𝑏 𝑤𝑖𝑡ℎ 𝑤 ∈  𝑋, 𝑏 ∈  𝑅      (3) 

For minimization of the norm, ‖𝑤2‖  = (𝑤, 𝑤). A convex optimization problem is expressed 

in Eq 4: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 0.5‖𝑤‖2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {𝑦𝑖 − (𝑤, 𝑥𝑖) − 𝑏 ≤  𝜀 (𝑤, 𝑥𝑖) + 𝑏 − 𝑦𝑖  ≤  𝜀     (4) 
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In cases in which f(x) exists, Eq 4 is feasible and accurately approximates all pairs (𝑥𝑖, 𝑦𝑖). Some 

errors are permissible at times [25]. This model was likewise executed with the daily energy and 

weather data obtained from IITA using a Python programming language. 

2.5.3. ANN model 

There are many ANN structures used in machine learning problems, but the Multilayer 

Perceptron (MLP). MLP is the most commonly used ANN type. The MLP is a fully connected structure 

ANN framed up with an input layer, one or more hidden layers, and an output layer, as illustrated 

in Figure 1 [26]. 

 

Figure 1. General representation of an ANN. 

Tables 4–7 show the parameters (input, scaling, structure, selection, and training) for developing 

the ANN model. This model was executed using the daily energy and weather data obtained from IITA 

using the Python programming language sklearn (module) library. 

Table 4. Input selection algorithm’s description and values. 

Input Description Value 

Trials number Number of trials for every neural network 3 

Selection loss goal Goal value for the selection error 0 

Tolerance Tolerance for selection error during algorithm training 0.01 

Maximum selection failures The maximum number of iterations when the selection error increases 10 

Maximum number of inputs The neural network’s maximum number of inputs 9 

Minimum correlation The minimum value for considering correlations 0 

Maximum correlation Maximum value for considering correlations 1 

Maximum number of iterations Maximum number of iterations to execute the algorithm 100 

Maximum time The maximum time for the input selection algorithm 3600 

Plot selection error history Make a graph of each iteration’s selection errors true 

Plot training loss history Make a graph of each iteration’s selection errors true 
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Table 5. Input scaling values. 

Input Minimum Maximum Mean Deviation 

Wind speed (km/hr) 0 7.7 3.28 1.09 

Max. rel. hum. (%) 73 100 93.8 4.88 

Min. rel. hum. (%) 0 97 51.6 17.7 

Solar radiation (MJ/m²/day) 3.53 27.8 14.7 3.75 

Sunshine hour (hr.) 0 11.1 5.75 2.86 

Year index 1 8 4.49 2.26 

Day index 0 1 0.674 0.469 

Min. temp. (°C) 16 27 22.5 1.68 

Max. temp. (°C) 22.5 38 31.4 2.67 

Table 6. Perceptron layer values and activation functions. 

Layer Inputs number Perceptron number Activation function 

Hidden layer 9 100 Hyperbolic tangent 

Output layer 100 1 Linear 

Table 7. ANN model training—Quasi-Newton method results. 

Parameter Value 

Final parameters norm 20 

Final training error 0.0168 

Final selection error 0.0164 

Final gradient norm 0.0166 

Elapsed time 00:01 

Epochs number 50 

Stopping criterion Maximum number of iterations 

3. Results and discussion 

A plot of monthly total electricity consumption and average temperature from 2008 to 2018 is 

depicted in Figure 2. It is observed that an increase or decrease in average temperature results in the 

same electricity consumption. The maximum electricity consumption was observed between February 

and April, which is the hottest period (peak dry season) in the year. The lowest average temperature 

and the minimum electricity consumption were observed between July and September (peak rainy 

season) in the year based on the data obtained. 

Figure 3 illustrates the linear regression for the dependent variable, daily total electricity 

consumption (Total_Cons), for the MLR model. The predicted values of the test set data were plotted 

against the actual to test the loss in the model. A line of best fit is shown. 

The values of the MLR model are shown in Table 8. For a perfect model, 1 will be the correlation 

between the actual value and the predicted value of the dependent variable (Total_Cons). 
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Figure 2. Monthly energy consumption and average temperature pattern (2008–2018). 

 

Figure 3. MLR model linear regression chart between predicted and actual electricity consumption. 

Table 8. MLR model linear regression parameters between actual and predicted electricity use. 

Category Value 

Intercept 6.207 

Slope 0.786 

Correlation 0.904 

Figure 4 shows the linear regression for the dependent variable, daily total electricity 

consumption (Total_Cons), for the support vector machine-regression model. The predicted values of 

the test set data were plotted versus the actual ones as dots to test the loss in the model. The line shows 

the best linear fit. Also, the values for the linear regression analysis for the support vector 

machine-regression model are shown in Table 9. 
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Figure 4. SVR model linear regression chart between the predicted and actual electricity use. 

Table 9. SVR model linear regression parameter between the predicted and actual electricity use. 

Category Value 

Intercept 4.19 

Slope 0.855 

Correlation 0.942 

Figure 5 shows the linear regression for the dependent variable, daily total electricity 

consumption (Total_Cons) for the ANN model. The predicted values of the test set data were plotted 

against the actual to test the loss in the model. A line of best fit is shown. The values of the ANN model 

are shown in Table 10. For a perfect model, the correlation between the actual value and the predicted 

value of the dependent variable (Total_Cons) will be 1. However, the correlation obtained with ANN 

is the best and closest to 1 when compared to the MLR and SVR models. 

 

Figure 5. ANN model linear regression chart between the actual and predicted electricity use. 
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Table 10. ANN linear regression parameters between the actual and predicted electricity use. 

Category Value 

Intercept 2.048 

Slope 0.937 

Correlation 0.949 

3.1. MLR model result 

Figure 6 shows a plot of the forecasted daily electricity use from the MLR model and the real 

daily electricity use from IITA. The MLR model has an MSE of 4.893, MAE of 1.773, and MAPE 

of 6.213%, as shown in Table 11. 

 

Figure 6. MLR model—A plot of predicted daily electricity consumption to actual daily 

electricity consumption. 

The performance of the linear regression model was improved by using polynomial 

transformation (PT) of the input variables to the fourth order, resulting in a better-fitted model with an 

MSE of 3.33, MAE of 1.376, and a MAPE of 4.886% using the test dataset, as shown in Table 11. 

3.2. SVR model result 

A plot of the forecasted daily electricity usage from the SVR model and the real daily electricity 

consumption from IITA is shown in Figure 7. The SVR model has an MSE of 3.057, MAE of 1.355 

and MAPE of 4.826%, as shown in Table 11. The SVR model showed an improvement over the MLR 

model, as observed from the error value. 
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Figure 7. SVR model—Plot of predicted daily electricity consumption to actual daily 

electricity consumption. 

3.3. ANN model result 

Figure 8 shows a plot of the forecasted daily electricity consumption from the ANN model and 

the actual daily electricity consumption from IITA. The ANN model has an MSE of 2.733, MAE of 1.292, 

and MAPE of 4.66%, as shown in Table 11. 

 

Figure 8. ANN model—Plot of predicted daily electricity consumption to actual daily 

electricity consumption. 

The fitness of these models was tested using various statistical methods (R-squared, MSE, MAE, 

and MAPE) as seen in the results, as well as the distribution plot of the predicted test data and the 

actual test data as seen in Figures 3–5. 
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Table 11. Predictive performance of the models. 

Error indices MLR model MLR (PT) model SVR model ANN model 

MAE 1.773 1.376 1.355 1.292 

MSE 4.893 3.330 3.057 2.733 

MAPE 6.213% 4.886% 4.826% 4.660% 

4. Conclusions 

This study sheds light on the critical influence of weather variables on electricity consumption, 

with temperature standing out as the most significant factor, displaying the highest correlation. The 

monthly total electricity usage pattern in the case study area closely mirrored the mean apparent 

temperature, emphasizing the direct impact of weather on energy needs. Models were created to predict 

the anticipated daily electricity use when given the values of the weather variables. ANN model 

produced the best result concerning error and predictive performance compared to SVR and MLR 

models. ANN model outperformed the other models (MLR and SVR) by more than 20% across the 

predictive performance metrics employed in this study. To optimize energy utilization, we advocate 

for the implementation of building management systems equipped with sensors (such as temperature, 

humidity, and occupancy sensors) and incorporated with a robust control system to effectively manage 

the energy consumption in the buildings and take full advantage of the changes in weather variables. 

Organizations may consider generating renewable energy from solar as this energy can be used 

to offset the increase in electricity consumption during the months with high average temperatures as 

such months also have an equivalent high solar radiation (average temperature has a high positive 

correlation with solar radiation and sunshine hours). The scope of this study was constrained by the 

limited size of the case study area and the availability of historical data. This limitation arises from the 

irregular and unstable power supply in Nigeria, which hinders the collection of comprehensive energy 

data encompassing a broader geographical expanse. Given the challenging nature of gathering 

electricity data in a country grappling with erratic power supply, particularly in the Nigerian context, 

obtaining data representative of more extensive geographical areas, such as cities or states, proves to 

be a significant challenge. The challenges posed by this prevailing condition underscore the need for 

future research to encompass broader geographical regions such as cities or states. By doing so, we 

can have a more comprehensive insight into energy patterns, aiding in robust energy planning and 

effective climate change response within Nigeria and across the African continent. 
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