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Abstract: This article proposed adaptive hybrid dwarf mongoose optimization (DMO) with whale 

optimization algorithm (DMOWOA) to extract solar cell model parameters. In DMOWOA, the 

whale optimization algorithm (WOA) is used to enhance the capability of DMO in escaping local 

optima, while introducing inertial weights to achieve a balance between exploration and exploitation. 

The DMOWOA performances are tested through the solving of the single diode model, double diode 

model, and photovoltaic (PV) modules. Finally, the DMOWOA is compared with six well-known 

algorithms and other optimization methods. The experimental results demonstrate that the proposed 

DMOWOA exhibits remarkable competitiveness in convergence speed, robustness, and accuracy. 
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1. Introduction 

In consideration of the increasingly severe energy crisis and environmental pollution, renewable 

energy has garnered significant attention and recognition [1]. The renewable and emission-free 

characteristics of solar energy have garnered extensive attention, rendering it a subject of great 

significance in the academic community [2,3]. The photovoltaic system, serving as a solar 

energy-to-electricity conversion system, assumes a pivotal role within the power grid [4]. For the PV 

models [5], the single-diode and double-diode models are the most frequently employed in practice. 

The design and evaluation of photovoltaic systems rely heavily on the precision of parameters such 
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as current and resistance, which play a pivotal role [6]. The photovoltaic parameter extraction is 

performed within a simulated operational environment of an authentic photovoltaic system, where 

the current-voltage data is measured under all operational conditions of the actual photovoltaic 

system [7,8]. Therefore, it is extremely significant to extract PV model parameters accurately, 

quickly, and reliably. 

In recent years, photovoltaic parameter extraction has emerged as a prominent research area, 

with numerous optimization methods proposed to address this issue [9]. These methods are analytical 

methods [10] and numerical approaches [11]. The implementation of analytical methods is 

straightforward, involving the analysis of mathematical equations to address problems. However, 

analytical methods heavily rely on selected values and inaccurate choices can result in flawed models. 

The field of numerical methods can be categorized into deterministic approaches and metaheuristic 

algorithms. Deterministic methods, such as the Newton-Raphson method [12], Lambert W function [13], 

Gauss-Seidel method [14], and iterative curve fitting [15], are commonly employed. Deterministic 

methods exhibit excessive reliance on initial values and are prone to falling into local optima. 

Metaheuristic algorithms are a general class of heuristic algorithms that do not rely on 

domain-specific knowledge but provide a general framework for searching the solution space of a 

problem to find an approximately optimal solution. Metaheuristic algorithms often meet some 

requirements of the search process, and then the heuristic algorithm implemented according to these 

requirements is called a metaheuristic algorithm. Many metaheuristic algorithms are inspired by 

some random phenomena in nature. Metaheuristic methods exhibit flexibility in the objective 

function and initial values, making them easily implementable. The inspiration for the mutation, 

crossover, and selection strategies of differential evolution comes from the theory of evolution in 

nature. Chaotic local search based differential evolution algorithms use the chaotic local search (CLS) 

mechanism to avoid premature convergence of evolutionary algorithms [16]. The non-dominated 

evolutionary optimization strategy based on covariance matrix adaptation (CMA-ES) is an 

evolutionary optimization strategy aimed at reducing the number of iterations required to converge to 

the optimal solution [17]. The Bayesian optimization framework is an excellent algorithm that 

considers heteroscedastic noise to adjust hyperparameters in control problems [18]. Consequently, 

metaheuristic algorithms find extensive applications in optimization problems across diverse 

domains. Numerous scholars have employed meta-heuristic techniques for addressing the challenge 

of parameter extraction in photovoltaic modeling, such as genetic algorithm (GA) [19], differential 

evolution (DE) [20], particle swarm optimization (PSO) [21], simulated annealing algorithm (SA) [22], 

moth-flame optimization [23], artificial bee colony algorithm (ABC) [24], teaching-based 

optimization algorithm (TLBO) [25], JAYA [26], etc. Many scholars have proposed improved 

algorithms to solve this problem, as reviewed below. 

In [27], an improved PSO incorporating a cross-sorting and dynamic population reduction 

strategy is proposed for extracting photovoltaic parameters. In [28], an improved PSO based on an 

adaptive mutation strategy is proposed, which can avoid premature phenomena and accurately 

extract photovoltaic parameters. In [29], an improved DE to identify photovoltaic parameters under 

all conditions. In [30], a hybrid algorithm of DE/WOA is proposed, which combines exploration of 

DE and exploitation of WOA and can accurately extract photovoltaic parameters. In [31], a novel 

formulation is proposed for the computation of the scale factor and crossover rate, thereby enhancing 

the performance of adaptive differential evolution through its implementation. In [32], the present 

study proposes a novel teaching-learning-based artificial bee colony algorithm, which combines the 
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advantages of the teaching-learning-based optimization algorithm and the artificial bee colony 

algorithm, aiming to effectively extract photovoltaic parameters. In [33], an enhanced and simplified 

teach-learn optimization algorithm (STLBO) is proposed for parameter identification in proton 

exchange membrane (PEM) fuel cells and photovoltaic models. In [34], introduces a novel approach, 

namely the generalized oppositional teaching-learning-based optimization, for parameter extraction 

of photovoltaic models. In [35], an improved JAYA algorithm is proposed to effectively identify the 

parameters of a PV mode. In [36], the individual is quantified by probability, and then the 

evolutionary strategy is selected adaptively based on probability. A performance-guided JAYA is 

proposed to identify PV parameters. In [37], for accurate extract photovoltaic parameters, a multiple 

learning backtracking search algorithm is proposed. In [38], a memory-based improved gorilla troop 

optimizer is proposed, incorporating the exploration gorilla adaptive mutation mechanism (EGAMM) 

and gorilla memory saving technology. This algorithm effectively parameters the identification of 

photovoltaic models. In [39], introduces an enhanced whale optimization algorithm that incorporates 

two prey search strategies for precise extraction of photovoltaic parameters. In [40], introduces a 

novel chaotic whale optimization algorithm, which primarily employs chaotic mapping techniques to 

automatically compute and adapt internal parameters. This algorithm is effective in the precise 

extraction of photovoltaic parameters. In [41], proposes an improved pigeon-inspired optimization (PIO) 

algorithm based on the Taguchi method for the extraction of photovoltaic parameters. Simulation 

results show that the proposed algorithm is superior to the comparison algorithm. In [42], a 

two-phase quasi-affine transformation evolution with feedback (tfQUATRE) algorithm was proposed 

to extract PV parameters. This algorithm improves the ability of exploration and development by 

adjusting the search trend in different stages. Using historical populations as a form of feedback to 

guide the search for promising areas, maintain population diversity, and improve exploration ability. 

The experimental results show that the algorithm has strong competitiveness . In [43], propose a 

scale-free network-based differential evolution method. This method is based on the scale-free 

network-based population structure and a mutation operator that utilizes the neighborhood 

information provided by the scale-free structure. The experimental results indicate that this method 

can efficiently and reliably extract photovoltaic parameters. In [44], propose a differential evolution 

variant (PDcDE) to tackle the parameter estimation of solar PV models. This method uses an 

auto-controlled population strategy to adjust the population size during a search process, setting the 

diversity control parameters for determining the scaling factor and avoiding local optima through 

reverse search. In [45], a directional permutation differential evolution algorithm (DPDE) is 

proposed to tackle the parameter estimation of several kinds of solar PV models. DPDE utilizes the 

information generated by the search population and differential vector direction and has a strong 

global search ability to jump out of local optima. 

These methods play a crucial role in PV model parameter extraction. However, owing to the 

multimodal characteristics inherent in the PV model, numerous existing methodologies are 

susceptible to encountering local optima during the parameter extraction process. There is still 

significant potential for enhancing the convergence speed and accuracy, particularly in the double 

diode model (DDM). Therefore, additional exploration of alternative methods is necessary for 

effective PV model parameter extraction. 

The term “hybrid technology” refers to the amalgamation of two or more algorithms, harnessing 

their respective strengths to yield a novel algorithm that outperforms any single algorithm [46]. 

According to hybrid technology, the present study proposes a hybrid algorithm integrating dwarf 
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mongoose optimization algorithm (DMO) and WOA. Dwarf mongoose optimization algorithm [47] 

is a swarm intelligence based metaheuristic algorithm, proposed in 2022 by Jeffrey et al. The 

algorithm models the foraging behavior of a population of dwarf mongooses, incorporating three 

social groups: the alpha group, the babysitter group, and the scout group. This algorithm considers 

the entire family as a unit for foraging activities, with the female chief leading the initiation of 

foraging tasks and making decisions regarding path selection, distance covered, and choice of 

sleeping mounds. Whale optimization algorithm [48] is a population-based metaheuristic algorithm, 

which was proposed by Mirjalili in 2016 and has been widely applied to solve various optimization 

problems. The algorithm mainly simulates the collective behavior of humpback whales, providing a 

novel method for problem-solving. In this paper, a hybrid algorithm of dwarf mongoose optimization 

algorithm and whale optimization algorithm is proposed. The primary improvement lies in 

synergizing the strengths of DMO and WOA to enhance the algorithm’s capability to escape local 

optima and expedite convergence speed. The algorithm incorporates adaptive weights to effectively 

balance the trade-off between exploration and exploitation abilities. DMOWOA has a strong ability 

to jump out of local optimal and fast convergence. The novelty of DMOWOA is that the search phase 

of the algorithm is divided into two stages, which make full use of the exploration ability of DMO 

and the exploitation ability of WOA. The proposed algorithm is employed to solve various 

photovoltaic models to validate its performance. Experimental results show that the proposed 

algorithm has excellent performance and competitiveness for the extraction of photovoltaic parameters. 

The main contributions of this paper are: 

(1) A hybrid metaheuristic DMOWOA optimization algorithm is proposed for extracting 

photovoltaic model parameters. 

(2) The DMOWOA used a mixture of DMO’s Alpha group search stage, scout group search 

stage, and WOA’s Bubble-net attacking method to look for optimal fitness. Chaotic adaptive weights 

are introduced to balance exploration and exploitation. 

(3) The DMOWOA algorithm is employed to solve five PV models, and the obtained results are 

compared with those achieved by DMO, WOA, and those reported in the existing literature. 

The rest of the paper is organized as follows: Section 2 explains the mathematical formula of 

the photovoltaic model. Section 3 introduces basic DMO and WOA. Section 4 explains the hybrid 

algorithm DMOWOA. Section 5 presents the experimental analysis and results of different PV 

models. Finally, Section 6 gives the conclusion. 

2. Problem model 

This section presents the prevalent models utilized in photovoltaic systems, including the single 

diode model (SDM), double diode model (DDM), and photovoltaic module based on SDM. 

Additionally, the objective function is introduced. 

 



88 

AIMS Energy  Volume 12, Issue 1, 84−118. 

 

Figure 1. Equivalent circuit: (a) SDM, (b) DDM, and (c) PV module. 

2.1. Single diode model 

Figure 1(a) shows the equivalent circuit diagram of the single diode model. The figure shows 

that SDM consists of a diode, a photocurrent source, and two resistors. The mathematical model 

is as follows [49]: 

shdpho IIII −−=                               (1) 

where Iph, Id, and Ish are the photocurrent, diode current, and shunt resistance current, respectively. 

The mathematical model of Id and Ish is as follows: 
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where Isd, V, Rs, and Rsh are the diode reverse saturation current, battery output voltage, series 

resistance, and shunt resistance, respectively. 

The mathematical model of Vt is as follows: 
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where k (= 1.3806503 × 10–23 J/K), T, and q (= 1.60217646 × 10–19 C) are Boltzmann’s constant, the 

temperature in Kelvin, and the charge of the electron, respectively. 

In summary, Eq (1) can be expressed as follows: 
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In Eq (5), there are five unknown photovoltaic parameters (Iph, Isd, Rs, Rsh, and a) that need to be 

extracted. The effective operation of photovoltaic systems depends on these parameters. 

2.2. Double diode model 

The double diode model is one of the most commonly used PV models due to its simplicity and 

accuracy. It consists of a photocurrent source, two diodes, and two resistors, among which the two 

diodes are in a parallel state. Figure 1(b) shows its equivalent circuit diagram. The mathematical 

model of DDM is as follows [50]: 
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shddpho IIIII −−−= 21                               (6) 

where Id1 and Id2 are the currents of two diodes in parallel. Their mathematical models are as follows: 
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where Isd1 and Isd2 are the saturation current at the two diodes, respectively, and a1 and a2 are ideal 

factors for both diodes. 

In summary, Eq (6) can be expressed as follows: 
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The formula reveals the presence of seven unknown parameters（Iph, Isd1, Isd2, Rs, Rsh, a1, and a2）

within the DDM model that necessitate extraction. 

2.3. Photovoltaic module 

The PV module is composed of multiple SDMs in series or parallel [51]. The mathematical 

model of the PV module is as follows: 
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where Ns and Np are the number of cells in series and parallel, respectively. In this paper, the value of 

Np is set to 1. In summary, Eq (10) can be expressed as follows: 
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According to Eq (11), there are five unknown parameters (Iph, Isd, Rs, Rsh, and a) in the PV 

model module that need to be extracted. 

2.4. Objective function 

The optimal solution to the parameter extraction problem is to minimize the difference between 

the simulated current data and the measured current data. The root means square error (RMSE) is 

used for measurement error [52,53]. Therefore, the mathematical modeling of the PV model is     

as follows: 
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where N represents the number of experimental data. The objective function of the single diode 

model is as follows: 
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The objective function of the double diode model is as follows: 
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The objective function of the PV module is as follows: 
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3. Proposed hybrid DMO and WOA (DMOWOA) 

3.1. DMO 

The DMO [47] algorithm is a population-based metaheuristic algorithm proposed by Jeffrey O. 

Agushaka et al. The algorithm splits the mongoose population into three different groups: the alpha 

group, the scout group, and the babysitter group. Under the guidance of a female leader, the entire 

population collaboratively forages as a cohesive unit. In case the alpha group fails to locate food, an 

exchange occurs between members of the alpha and the babysitter group. Consequently, members of 

the alpha group simultaneously engage in foraging activities while searching for a sleeping mound. 

DMO requires only one manually controlled parameter to reduce the complexity of the algorithm 

application. When the members of the Alpha group have insufficient abilities, they will exchange 

members of the alpha group and the babysitter group, which gives DMO the ability to maintain 

population diversity. The sleep mound mechanism can prevent algorithms from entering local optima. 

3.1.1. Initialization 

Initializes the DMO’s mathematical model, as shown in Eq (16). 
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where X represents the candidate solution; Xi,j represents the position of the ith mongoose in the jth 

dimension, and its mathematical model is shown in Eq (17); and N and d represent the population 

count and the dimension size for the problem, respectively. 

),,(, dublbunifrndX ji =                            (17) 

where unifrnd is used to generate uniformly distributed random numbers, ub and lb represent the 

upper and lower bounds for the given problem respectively, and d represents the dimension size 

of the problem. 

3.1.2. Alpha group 

The foraging route of the dwarf mongoose is determined by the female leader, who is generated 

in the alpha group. The probability of each female individual in the alpha group becoming a leader is 

determined by Eq (18). 
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where fit(i) represents the fitness value of the ith individual; n represents the number of individuals in 

the alpha group, n = N − bs; and bs represents the number of individuals in the babysitters group. 

Foraging paths are chosen by the alpha females, and its mathematical model is as follows: 

)(1i kii XXpeeppXX −+=+                        (19) 

where Xi+1 represents the new food source location, Xi is the location of the ith individual, p 

represents the random number between [−1,1], peep is set to 2, and Xk is a random individual in the 

alpha group. The sleeping mound (smi) is the resting place of dwarf mongooses, and its mathematical 

model is as follows: 
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The mathematical model of the mean sleeping mound is as follows: 
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3.1.3. Scout group 

The individual members of the scout group will not return to their previous sleeping mound. 

This guarantees the algorithm’s exploration ability. The mathematical model of the sleeping mound 

is as follows: 
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where Xi+1 is the position of the next sleeping mound; C represents the parameter controlling the 

mobility of the mongoose population, which will linearly decrease with the number of iteration, as 

shown in Eq (23); p is a random number between [−1,1]; r represents a random number between [0,1]; 

M is the vector that determines the direction in which the mongoose moves to the new sleeping 

mound, expressed by Eq (24); and φ is represented by Eq (21). 
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where t represents the iteration number and Max_t represents the maximum iteration count. 
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where n represents the number of members in the scout group, Xi represents the position of the ith 

individual, and smi is the value of the sleeping mound. 

3.1.4. Babysitter group 

The size of the babysitter group, typically consisting of subordinate individuals caring for their 

offspring, is determined based on the population size. This influences the algorithm by proportionally 

decreasing the alpha group’s foraging potential over time. Parameter L resets the information about 

foraging locations for other members. The fitness weight of the babysitter is set to zero, which 

ensures the average weight of the alpha group in the next iteration is reduced, which means the group 

movement is hindered thereby, emphasizing exploitation. 

3.2. WOA 

WOA [48] is a population-based metaheuristic algorithm proposed by Mirjalili and Lewis in 2016. 

WOA encompasses three distinct mathematical models: encircling prey, bubble-net attacking method, 

and search for prey. The three population updating mechanisms of WOA are independent of each 

other, and the global exploration and local development processes in the optimization stage can be 

operated and controlled separately. WOA does not require parameter adjustment, which improves the 

efficiency of algorithm usage and reduces application difficulty. 

3.2.1. Encircling prey 

Whales can recognize prey and use cooperative strategies to encircle their targets. The 

mathematical model is as follows: 
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where X* and X represent the current optimal solution and the position of individual whales 

respectively. The mathematical models of A and S are shown as follows: 

araA −= 2                               (27) 

rS = 2                                   (28) 

where a decreases from 2 to 0 during iteration and r represents the vector between [0,1]. 

3.2.2. Bubble-net attacking method 

Spiral update position: the whales make a spiral motion, and the mathematical model is as follows: 
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where tt XXV −= *'  represents the distance between the ith whale and its prey, b is the constant that 

defines the shape of the logarithmic spiral, and l represents the random number between [−1,1]. 

The whale follows a spiral trajectory, gradually encircling its prey within a confined 

circumference. To simulate these concurrent actions effectively, assign equal probabilities to both the 

updates of the narrow circle and spiral models governing the whale’s position. The mathematical 

representation is as follows: 
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where p represents a random number between [0,1]. 

3.2.3. Search for prey 

Whales hunt at random based on the location of their peers. When an individual hunts, it moves 

away from the reference whale in the population. The mathematical model of the random hunt phase 

is as follows: 

VAXX randt −=+ 1                               (31) 

XXSV rand −=                                  (32) 

where Xrand represents a random individual whale and |A| ≥ 1 or |A| < 1. 
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4. Adaptive weighted DMO hybrid WOA 

4.1. Adaptive weight 

Inertial weight is used to balance global and local search [54]. During the early stage, global 

search can enhance the algorithm’s efficacy in identifying the optimal solution. During the later stage, 

local search can enhance the exploitability of the algorithm and improve the accuracy of the solution. 

In this paper, the chaotic inertia weight is adopted [55,56], and the mathematical model is as follows: 
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T

tT
www +

−
−= minminmax )(                     (33) 

where wmax and wmin are 0.9 and 0.4 respectively, z = 4z(1 − z), and the value range of z is [0,1]. 

Equation (19) will be substituted by Eq (34), and Eq (22) will be replaced by Eq (35).  
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Chaos inertial weight exhibits the characteristics of general inertial weight and chaos, which can 

better balance the global search and local search of the algorithm. 

4.2. Hybrid DMOWOA method 

Whale optimization algorithm [36] is a highly efficient algorithm that demonstrates exceptional 

capabilities in solving various optimization problems. It is worth noting that WOA’s ability to exploit 

in the late stages of the algorithm is excellent. The proposed algorithm removes the babysitter 

mechanism from the DMO and lets the alpha group and the scout group run simultaneously. Make 

sure they are foraging and looking for a sleeping mound at the same time. During the p < 0.5 stage of 

WOA, if |A| < 1, the alpha group performs both foraging and sleep mound search, that is, Eq (26) of 

WOA will be replaced by the Eqs (34) and (35) of DMO. If |A| ≥ 1, the scout group engages in 

foraging and sleep mound search, that is, Eq (26) of WOA will be replaced by Eqs (34) and (35) of 

the scout group. Mining for bubble network attack of WOA, namely the position of spiral update, 

when WOA is at p ≥ 0.5 stage. The pseudo-code and flow chart of DMOWOA are shown in 

Algorithm 1 and Figure 2 respectively. 
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Algorithm 1. DMOWOA’s pseudo-code. 

1. Step 1. Initialization 

2. Set the values of Max_t, t, N, d, peep, wmax, wmin, A, fit_best, Xbest,   

4. Step 2. Main loop 

5. while t   Max_t 

6.   Calculate the value of C using Eq (23) and w using Eq (33) 

7.   for i = 1:N 

8. Calculate the value of A using Eq (27) 

9. for j = 1:d 

10.       if p < 0.5 

11.         if |A|   1 

12.            Calculate the position Xi+1 using Eq (34) and  i+1 using Eq (21) 

13.            Calculate the Xi+1’fitness and update the fit_best 

14.            if  i+1 >   

15.              Calculate the position Xi+1 using Eq (35-1) 

16. 

17. 

            else 

             Calculate the position Xi+1 using Eq (35-2) 

18.            end 

19.            Update the   =  i+1 

20.         end 

21.         if |A| < 1 

22. 

23. 

24. 

           Calculate the position Xi+1 using Eq (34) 

           Calculate the Xi+1’fitness and update the fit_best 

           Calculate the  i+1 using Eq (21) 

25.            if  i+1 >   

26              Calculate the position Xi+1 using Eq (35-1) 

27            else 

28.              Calculate the position Xi+1 using Eq (35-2) 

29.            end 

30.            Update the   =  i+1 

31.         end 

32.       if p   0.5 

33.         Calculate the position Xi+1 using Eq (30-2)  

34.       end 

35.    end 

36.   end 

37. end while 

38. Step 3. Return fit_best and Xbest 
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Figure 2. The flow diagram of DMOWOA. 

4.3. Exploration and exploitation 

Exploration and exploitation are the cornerstones of metaheuristic algorithms [57]. When 

achieving a balance between exploration and exploitation, algorithms can quickly converge during 

optimization. Effectively controlling the balance between exploration and exploitation is a 

challenging task. Representing the changing process of exploration and development is also 

important. According to [57], the current proportion of exploration and development can be 

determined based on the position between individuals. Its mathematical model is as follows: 
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=
Dv

Dv
Expa                               (36) 

%100)(
max

max


−

=
Dv

DvDv
Expi                            (37) 

where Expa is the level of exploration, Expi is the level of exploitation, Dv is the dimension-wise 

diversity, and Dvmax is the maximum diversity value in the entire optimization process. The 

mathematical models of Dv and Dvmax are shown below: 
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where Xi,j represents the jth dimension of the ith individual, N is the population size, d is the 

dimension of the given problem, and median(Xj) is the median value of the 𝑗𝑡ℎ dimension in the 

whole population. 

Figure 3 shows the variation process of exploration and development proportion when 

DMOWOA solves different photovoltaic models. As shown in the graph, DMOWOA has a fast 

convergence speed and stable changes in exploration and exploitation. 

 

Figure 3. The percentage of exploration and exploitation: (a) single diode model, (b) 

double diode model, (c) Photowatt-PWP201 module, (d) STM6-40/36 module, and (e) 

STP6-120/36 module. 

4.4. Computational complexity 

The computational complexity of DMOWOA depends on the population size, the problem size, 

the number of iterations, the computation of the sleep mound search, and the computation of the 

fitness function. The computational complexity of the solution update process is O(Max_t  d  

sm) + O(CFE), including finding the best location, evaluating the next sleep hill, and updating the 

solution location for all solutions. The total number of iterations is Max_t, the dimension size of the 

given problem is d, CFE is the cost of function evaluation, and the population size is N. Therefore, 

the computational complexity of the proposed DMOWOA is O(Max_t  d  sm  N + CFE  N). 

The detailed process of DMOWOA is shown in Algorithm 1 and Figure 2. At the beginning of 

optimization, individuals set out to search for food, and when |A| ≥ 1, individuals will extensively 

search for food to determine its range. During subsequent foraging phases, individuals will search for 

food near the previous sleep mound to avoid reducing the efficiency of searching for food.     
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When |A| < 1, individuals will locate food within the determined range of food sources. To utilize the 

DMOWOA algorithm, it just needs to determine the population size and the maximum number  

of iterations. 

5. Results and analysis 

In this chapter, the DMOWOA is applied to extract three different PV models to verify the 

performance of the algorithm, including single diode, double diode, and PV modules. Current and 

voltage data of SDM and DDM [12] were measured on a commercial silicon R.T.C France solar cell 

with a diameter of 57 mm at 1000 W/m2 at 33 ℃. PV modules include Photowatt-PWP201 [12], 

mono-crystalline STM6-40/36 [58], and poly-crystalline STP6-120/36 [58], and their respective 

current and voltage data can be found in their respective literature. Table 1 shows the value range of 

parameters of the PV model, which is consistent with the previous literature. The upper and lower 

bounds of the parameter values of the PV models are shown in Table 1. 

To evaluate the performance of DMOWOA, compared DMOWOA with several established 

optimization algorithms including SA [22], DMO [47], WOA [48], DE [59], PSO [60], and GWO [64]. 

At the same time, it is compared with the algorithms proposed in other literature, including 

TLABC [32], GOTLBO [34], IJAYA [35], MLBSA [37], and IGBO [61], whose data is from their 

respective literature. The experimental conditions of all algorithms are run independently for 30 

times, with the upper limit of 30000 for each iteration. Parameter configurations of the compared 

algorithms are provided in Table 2. In addition, this experiment uses MATLAB2021b for simulation 

experiments, and a Windows 10 64-bit operating system PC with Intel Core i7-9700          

processor @3.00GHz and 16.0 GB RAM serves as the experimental platform. 

Table 1. Upper and lower bounds for PV model parameters. 

Parameter SDM/DDM  Photowatt-PWP201  STM6-40/36  STP6-120/36 

 lb ub  lb ub  lb ub  lb ub 

Iph(A) 0 1  0 2  0 2  0 8 

Isd, Isd1, Isd2(μA) 0 1  0 50  0 50  0 50 

Rs(Ω) 0 0.5  0 2  0 0.36  0 0.36 

Rsh(Ω) 1 100  0 2000  0 1000  0 1500 

a, a1, a2 1 2  1 50  1 60  1 50 

Table 2. Parameter setting of compared algorithms. 

Algorithms Parameter setting 

DMOWOA N = 50 

DMO N = 50, bs = 3 

PSO N = 50, w = 0.729, c1 = 1.49445, c2 = 1.49445 

GWO N = 50, a = 2~0 

SA N = 50 

DE N = 50 

WOA N = 50, a = 2~0 
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5.1. Results on the SDM 

Table 3 shows the parameters of SDM extracted by each algorithm. The minimum RMSE 

values in the table are shown in boldface type. Table 3 reveals that the DOMWOA, DMO, DE, 

MLBSA, and TLABC exhibit the optimal RMSE. WOA has the maximum RMSE. The accuracy of 

the extracted parameters increases as the RMSE decreases, as stated by [62]. The bar chart of SDM is 

shown in Figure 4. Therefore, the results of DMOWOA are more accurate than those of WOA, SA, 

PSO, GWO, GOTLBO, and IJAYA. 

Table 3. SDM parameters are extracted from each algorithm. 

Method Iph (A) Isd (μA) Rs (Ω) Rsh (Ω) a RMSE Runtime (s) 

DMOWOA 0.76077 0.32301 0.03637 53.71840 1.48118 9.860219E-04 483.44 

DMO 0.76077 0.32306 0.03637 53.72317 1.48119 9.860219E-04 501.54 

WOA 0.76147 0.29578 0.03658 44.37821 1.47253 1.107616E-03 532.68 

DE 0.76077 0.32302 0.03637 53.71899 1.48118 9.860219E-04 531.65 

SA 0.76069 0.38973 0.03562 59.42678 1.50032 1.049349E-03 1049.39 

PSO 0.76077 0.32350 0.03637 53.75926 1.48133 9.860259E-04 513.35 

GWO 0.76102 0.33113 0.03622 50.98459 1.48375 1.005399E-03 561.26 

IGBO [61] 0.760776 0.323021 0.036377 53.718531 1.481184 9.860219E-04 NA 

GOTLBO [34] 0.760780 0.331552 0.036265 54.115426 1.483820 9.87442E-04 NA 

MLBSA [37] 0.760776 0.32302 0.036377 53.71852 1.481184 9.8602E-04 NA 

TLABC [32] 0.76078 0.32302 0.03638 53.71636 1.48118 9.86022E-04 NA 

IJAYA [35] 0.7608 0.3228 0.0364 53.7595 1.4811 9.8603E-04 NA 

 

Figure 4. RMSE bar chart of SDM. 

To further validate the accuracy of DMOWOA, Figure 5 plots the I-V and P-V curves of 

DMOWOA. Table 4 shows the integral absolute error (IAE) values. Figure 4 shows that the 

simulation results obtained using DMOWOA exhibit excellent agreement with the experimental 

measurements. In addition, according to Table 4, the IAE values of current are less than 2.51E-03, 

and the IAE values of voltage are less than 1.46E-02, thereby confirming the high precision of the 

parameters extracted by DMOWOA. 
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Figure 5. Comparison of experimental data and model data on SDM: (a) I-V curve, (b) P-V curve. 

Table 4. SDM: IAE of DMOWOA. 

Item  Model data  Experiment current data  Experiment power data 

  VM (V) IM (A)  IE (A) IAE_I (A)  PE (W) IAE_P (W) 

1  −0.2057 0.7640  0.764087182 0.00008718   −0.15717120  0.00001640  

2  −0.1291 0.7620  0.762662561 0.00066256   −0.09845974  0.00008550  

3  −0.0588 0.7605  0.761354779 0.00085478   −0.04476766  0.00005030  

4  0.0057 0.7605  0.760153460 0.00034650   0.00433287  0.00000198  

5  0.0646 0.7600  0.759054675 0.00094530   0.04903493  0.00006110  

6  0.1185 0.7590  0.758041810 0.00095820   0.08982795  0.00011400  

7  0.1678 0.7570  0.757091116 0.00009112   0.12703989  0.00001500  

8  0.2132 0.7570  0.756140826 0.00085920   0.16120922  0.00018300  

9  0.2545 0.7555  0.755086333 0.00041370   0.19216947  0.00010500  

10  0.2924 0.7540  0.753663340 0.00033670   0.22037116  0.00009840  

11  0.3269 0.7505  0.751390433 0.00089043   0.24562953  0.00029000  

12  0.3585 0.7465  0.747353327 0.00085333   0.26792617  0.00031000  

13  0.3873 0.7385  0.740116716 0.00161672   0.28664720  0.00063000  

14  0.4137 0.7280  0.727381749 0.00061830   0.30091783  0.00025600  

15  0.4373 0.7065  0.706972218 0.00047222   0.30915895  0.00021000  

16  0.4590 0.6755  0.675279776 0.00022020   0.30995342  0.00010100  

17  0.4784 0.6320  0.630757962 0.00124200   0.30175461  0.00059400  

18  0.4960 0.5730  0.571928111 0.00107190   0.28367634  0.00053200  

19  0.5119 0.4990  0.499606814 0.00060681   0.25574873  0.00031000  

20  0.5265 0.4130  0.413648598 0.00064860   0.21778599  0.00034000  

21  0.5398 0.3165  0.317509874 0.00100987   0.17139183  0.00055000  

22  0.5521 0.2120  0.212154600 0.00015460   0.11713055  0.00008500  

23  0.5633 0.1035  0.102250802 0.00124920   0.05759788  0.00070400  

24  0.5736 −0.0100  −0.008718296 0.00128170   −0.00500081  0.00074000  

25  0.5833 −0.1230  −0.125508482 0.00250850   −0.07320910  0.00146300  

26  0.5900 −0.2100  −0.208473677 0.00152632   −0.12299947  0.00090053  

SIAE      0.02152594    0.00874621  

Note: SIAE: Sum of IAE. 
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5.2. Results on the DDM 

This section presents and analyzes the experimental data of DDM. Table 5 shows the 

parameters of DDM extracted by each algorithm. The minimum RMSE value is indicated in boldface. 

Figure 6 shows the bar chart of DDM. As shown in Table 5, the RMSE of DMOWOA and MLBSA 

are the lowest, followed by IJAYA, GOTLBO, PSO, TLABC, DMO, DE, SA, and GWO. WOA has 

the highest RMSE. 

Table 5. DDM parameters are extracted from each algorithm. 

Method Iph (A) Isd1 (μA) Isd2 (μA) Rs (Ω) Rsh (Ω) a1 a2 RMSE Runtime 

(s) 

DMOWOA 0.760784 0.223112 0.774202 0.03675 55.55108 1.44995 2 9.824894E-04 501.87 

DMO 0.760745 0.268287 0.288613 0.03645 54.61122 1.47161 2 9.857786E-04 511.14 

WOA 0.760737 0.681735 0.30963 0.03670 60.94388 1.331801 1.6412 1.11496E-03 542.06 

DE 0.7607742 0.322691 0.598969 0.03637 53.72476 1.63652 1.4811 9.86023E-04 544.85 

SA 0.7608018 0.162530 1 0.03714 55.35953 1.94119 1.4241 9.88079E-04 1135.89 

PSO 0.760775 0.357170 0.274889 0.03653 54.57654 1.46751 2 9.835519E-04 538.62 

GWO 0.7606555 0.204797 0.807745 0.03640 60.71382 1.90417 1.4460 1.01086E-03 521.41 

IGBO [61] 0.76077 0.21969 0.11923 0.03643 53.86796 1.517865 1.4468 9.826373E-04 NA 

GOTLBO [34] 0.76075 0.80019 0.22046 0.0368 56.07530 1.99997 1.44897 9.83177E-04 NA 

MLBSA [37] 0.7608 0.22728 0.73835 0.0367 55.4612 1.4515 2 9.8249E-04 NA 

TLABC [32] 0.76081 0.42394 0.24011 0.03667 54.66797 1.9075 1.4567 9.84145E-04 NA 

IJAYA [35] 0.7601 0.00504 0.75094 0.0376 77.8519 1.2186 1.6247 9.8293E-04 NA 

 

Figure 6. RMSE bar chart of DDM. 

To validate the accuracy of DMOWOA, Figure 6 shows the I-V and P-V curves of DDM. Table 6 

shows the IAE values for DDM. It can be observed from Figure 6 that the simulation results obtained 

using DMOWOA exhibit excellent agreement with the experimental measurements. Figure 7 further 

confirms the close match between DMOWOA’s simulations and the model data. Furthermore, 
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according to Table 6, the current-related IAE values are all less than 2.51E-03, and the power-related 

IAE values are all less than 1.46E-01, thereby confirming the high precision of the parameters 

extracted by DMOWOA. 

Table 6. DDM: IAE of DMOWOA. 

Item  Model data  Experiment current data  Experiment power data 

  VM (V) IM (A)  IE (A) IAE_I (A)  PE (W) IAE_P (W) 

1  −0.2057 0.7640  0.763979398 0.00002060   −0.15715048  0.00000432  

2  −0.1291 0.7620  0.762601709 0.00060170   −0.09845188  0.00007768  

3  −0.0588 0.7605  0.761336799 0.00083679   −0.04476660  0.00004920  

4  0.0057 0.7605  0.760174234 0.00032577   0.00433299  0.00000186  

5  0.0646 0.7600  0.759109304 0.00089070   0.04903846  0.00005754  

6  0.1185 0.7590  0.758124007 0.00087599   0.08983769  0.00010381  

7  0.1678 0.7570  0.757191858 0.00019185   0.12705679  0.00003219  

8  0.2132 0.7570  0.756247066 0.00075293   0.16123187  0.00016053  

9  0.2545 0.7555  0.755180370 0.00031963   0.19219340  0.00008135  

10  0.2924 0.7540  0.753724314 0.00027569   0.22038899  0.00008061  

11  0.3269 0.7505  0.751399328 0.00089932   0.24563244  0.00029399  

12  0.3585 0.7465  0.747299496 0.00079949   0.26790687  0.00028662  

13  0.3873 0.7385  0.740006804 0.00150680   0.28660464  0.00058359  

14  0.4137 0.7280  0.727242128 0.00075787   0.30086007  0.00031353  

15  0.4373 0.7065  0.706846066 0.00034606   0.30910378  0.00015133  

16  0.4590 0.6755  0.675208453 0.00029155   0.30992068  0.00013382  

17  0.4784 0.6320  0.630761645 0.00123836   0.30175637  0.00059243  

18  0.4960 0.5730  0.571998419 0.00100158   0.28371122  0.00049678  

19  0.5119 0.4990  0.499711545 0.00071154   0.25580234  0.00036424  

20  0.5265 0.4130  0.413739086 0.00073908   0.21783363  0.00038913  

21  0.5398 0.3165  0.317550239 0.00105023   0.17141362  0.00056692  

22  0.5521 0.2120  0.212124746 0.00012474   0.11711407  0.00006887  

23  0.5633 0.1035  0.102162901 0.00133710   0.05754836  0.00075319  

24  0.5736 −0.0100  −0.008792057 0.00120794   −0.00504312  0.00069288  

25  0.5833 −0.1230  −0.125543076 0.00254308   −0.07322928  0.00148338  

26  0.5900 −0.2100  −0.208367065 0.00163293   −0.12293657  0.00096343  

SIAE      0.02127933    0.00878322  
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Figure 7. Comparison of experimental data and model data on DDM: (a) I-V curve, (b) P-V curve. 

5.3. Results on photovoltaic modules 

This section presents and analyzes the experimental results of three photovoltaic modules 

extracted by DMOWOA. Table 7 summarizes the experimental results of each algorithm for the 

Photowatt-PWP201 module, and Figure 8 is a bar chart of the results. As shown in Table 7, 

DMOWOA, MLBSA, TLABC, and IJAYA had the lowest RMSE values, followed by DMO, PSO, 

GOTLBO, and GWO. WOA had the highest RMSE value. 

Table 7. Photowatt-PWP201 module parameters are extracted from each algorithm. 

Method Iph (A) Isd (μA) Rs (Ω) Rsh (Ω) a RMSE Runtime (s) 

DMOWOA 1.030514 3.482239 1.201272 981.971946 48.642809 2.425075E-03 488.08 

DMO 1.663914 1.735726 0.154112 573.027822 54.724284 2.425081E-03 507.10 

WOA 1.026966 4.124698 1.189613 1953.97648 49.287535 2.604337E-03 529.81 

DE 1.0305156 3.481452 1.201295 981.730091 48.641944 2.425075E-03 537.03 

SA 1.0297633 3.985231 1.1871969 1153.36510 49.164517 2.453717E-03 1037.09 

PSO 1.0305369 3.471742 1.2015711 978.090865 48.631283 2.425089E-03 520.57 

GWO 1.0299345 4.035756 1.1853753 1136.06045 49.214774 2.460404E-03 557.67 

IGBO [61] 1.030514 3.482264 1.201271 981.982332 48.642836 2.425075E-03 NA 

GOTLBO [34] 1.030439 3.4573 1.201258 982.1211 48.61538 2.427130E-03 NA 

MLBSA [37] 1.0305 3.4823 1.2013 981.9823 48.6428 2.425075E-03 NA 

TLABC [32] 1.03056 3.4715 1.20165 972.93567 48.63131 2.42507E-03 NA 

IJAYA [35] 1.030514 3.4822 1.201272 981.9763 48.64281 2.425075E-03 NA 
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Figure 8. RMSE bar chart of Photowatt-PWP201 module. 

For the STM6-40/36 module, Table 8 shows the parameters extracted by each algorithm, and 

Figure 9 is the bar chart of RMSE. As shown in Table 8, only DMOWOA, MLBSA, and TLABC 

achieved the lowest RMSE values. SA had the highest RMSE value. 

Table 8. STM6-40/36 module parameters are extracted from each algorithm. 

Method Iph (A) Isd (μA) Rs (Ω) Rsh (Ω) a RMSE Runtime 

(s) 

DMOWOA 1.6639047 1.7386536 0.1538559 573.417952 54.730897 1.729814E-03 493.08 

DMO 1.6639143 1.7357265 0.1541121 573.027824 54.724282 1.729834E-03 509.05 

WOA 1.6620926 2.0608957 0.1378843 663.11838 55.408003 1.884297E-03 524.98 

DE 1.6639003 1.7416859 0.1536555 573.732383 54.737794 1.729815E-03 533.03 

SA 1.6619204 3.8724258 0.0565242 775.104134 58.093992 2.572752E-03 991.59 

PSO 1.6639057 1.7379582 0.1539021 573.347891 54.729314 1.729814E-03 510.36 

GWO 1.6603481 3.3048336 0.0850471 860.127103 57.389381 2.494334E-03 570.67 

IGBO[61] 1.663905 1.738653 0.153856 573.418117 54.730896 1.729814E-03 NA 

GOTLBO[63] 1.663236 2.9641 0.002246 17.90892 1.581384 2.233818E-03 NA 

MLBSA[27] 1.663905 1.7387 0.004274 15.92829 1.520303 1.729814E-03 NA 

TLABC[27] 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298E-03 NA 

IJAYA[63] 1.6637 1.8353 0.0040 15.9449 1.5263 1.7548E-03 NA 
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Figure 9. RMSE bar chart of STM6-40/36 module. 

Table 9 summarizes the results of each algorithm for the STP6-120/36 module. Figure 10 

presents the RMSE values of each algorithm for the STP6-120/36 module, indicating that 

DMOWOA, GOTLBO, MLBSA, TLABC, and IJAYA achieved the lowest RMSE values, followed 

by DMO, DE, PSO, and SA. GWO achieved the maximum RMSE. 

Table 9. STP6-120/36 module parameters are extracted from each algorithm. 

Method Iph (A) Isd (μA) Rs (Ω) Rsh (Ω) a RMSE Runtime(s) 

DMOWOA 7.4725388 2.3348795 0.1654074 799.416456 45.363577 1.660060E-02 488.63 

DMO 7.4724523 2.3379871 0.1653883 805.843419 45.367562 1.660062E-02 502.95 

WOA 7.4701126 2.5580463 0.1639131 1134.88340 45.639551 1.664355E-02 528.12 

DE 7.4724591 2.3406457 0.1653676 806.593423 45.370987 1.660063E-02 529.53 

SA 7.4713237 2.3449073 0.1653393 938.835347 45.501526 1.661138E-02 1002.39 

PSO 7.4724061 1.7379582 0.1539021 811.83797 45.376454 1.660069E-02 518.40 

GWO 7.4982327 7.5755745 0.1424305 934.576494 49.212400 1.925649E-02 566.35 

IGBO [61] 7.472530 2.334995 0.165407 799.916580 45.363725 1.660060E-02 NA 

GOTLBO [63] 7.472529 2.334887 0.004595 22.220503 1.260100 1.660060E-02 NA 

MLBSA [27] 7.47253 2.3350 0.00459 22.21991 1.260103 1.660060E-02 NA 

TLABC [27] 7.4725 2.3349 0.0046 22.2117 1.2601 1.6601E-02 NA 

IJAYA [63] 7.47253 2.3350 0.00459 22.21809 1.260102 1.660060E-02 NA 
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Figure 10. RMSE bar chart of STP6-120/36 module. 

Table 10. Photowatt-PWP201 module: IAE of DMOWOA. 

Item  Model data  Experiment current data  Experiment power data 

  VM (V) IM (A)  IE (A) IAE_I (A)  PE (W) IAE_P (W) 

1  0.1248 1.0315  1.029118847 0.00238115   0.12843403  0.00029717  

2  1.8093 1.0300  1.027380741 0.00261926   1.85883997  0.00473903  

3  3.3511 1.0260  1.025741449 0.00025855   3.43736217  0.00086643  

4  4.7622 1.0220  1.024106793 0.00210679   4.87700137  0.01003297  

5  6.0538 1.0180  1.022291430 0.00429143   6.18874786  0.02597946  

6  7.2364 1.0155  1.019930298 0.00443030   7.38062361  0.03205941  

7  8.3189 1.0140  1.016362718 0.00236272   8.45501981  0.01965521  

8  9.3097 1.0100  1.010495764 0.00049576   9.40741241  0.00461541  

9  10.2163 1.0035  1.000628591 0.00287141   10.22272187  0.02933518  

10  11.0449 0.9880  0.984548016 0.00345198   10.87423438  0.03812682  

11  11.8018 0.9630  0.959521338 0.00347866   11.32407893  0.04105447  

12  12.4929 0.9255  0.922838511 0.00266149   11.52892923  0.03324972  

13  13.1231 0.8725  0.872599390 0.00009939   11.45120905  0.00130430  

14  13.6983 0.8075  0.807274025 0.00022597   11.05828178  0.00309547  

15  14.2221 0.7265  0.728336268 0.00183627   10.35847124  0.02611559  

16  14.6995 0.6345  0.637137811 0.00263781   9.36560725  0.03877450  

17  15.1346 0.5345  0.536212884 0.00171288   8.11536751  0.02592381  

18  15.5311 0.4275  0.429511145 0.00201115   6.67078054  0.03123529  

19  15.8929 0.3185  0.318774291 0.00027429   5.06624793  0.00435928  

20  16.2229 0.2085  0.207389294 0.00111071   3.36445578  0.01801887  

21  16.5241 0.1010  0.096166930 0.00483307   1.58907197  0.07986213  

22  16.7987 −0.0080  −0.008325661 0.00032566   −0.13986028  0.00547068  

23  17.0499 −0.1110  −0.110936796 0.00006320   −1.89146128  0.00107762  

24  17.2793 −0.2090  −0.209247621 0.00024762   −3.61565242  0.00427872  

25  17.4885 −0.3030  −0.300863984 0.00213602   −5.26165978  0.03735572  

SIAE      0.04892354    0.51688326   
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Table 11. STM6-40/36 module: IAE of DMOWOA. 

Item  Model data  Experiment current data  Experiment power data 

  VM (V) IM (A)  IE (A) IAE_I (A)  PE (W) IAE_P (W) 

1  0.0000 1.6630  1.663458477 0.00045848   0.00000000  0.00000000  

2  0.118 1.663  1.663252528 0.00025253   0.19626380  0.00002980  

3  2.237 1.661  1.659551023 0.00144898   3.71241564  0.00324136  

4  5.434 1.653  1.653914907 0.00091491   8.98737360  0.00497160  

5  7.260 1.650  1.650566119 0.00056612   11.98311002  0.00411002  

6  9.680 1.645  1.645430806 0.00043081   15.92777020  0.00417020  

7  11.59 1.640  1.639233735 0.00076626   18.99871899  0.00888101  

8  12.60 1.636  1.633712893 0.00228711   20.58478245  0.02881755  

9  13.37 1.629  1.627286004 0.00171400   21.75681387  0.02291613  

10  14.09 1.619  1.618313771 0.00068623   22.80204103  0.00966897  

11  14.88 1.597  1.603090239 0.00609024   23.85398276  0.09062276  

12  15.59 1.581  1.581588568 0.00058857   24.65696578  0.00917578  

13  16.40 1.542  1.542330778 0.00033078   25.29422476  0.00542476  

14  16.71 1.524  1.521192818 0.00280718   25.41913199  0.04690801  

15  16.98 1.500  1.499194924 0.00080508   25.45632981  0.01367019  

16  17.13 1.485  1.485275448 0.00027545   25.44276842  0.00471842  

17  17.32 1.465  1.465654417 0.00065442   25.38513450  0.01133450  

18  17.91 1.388  1.387589528 0.00041047   24.85172845  0.00735155  

19  19.08 1.118  1.118391479 0.00039148   21.33890942  0.00746942  

20  21.0200 0.0000  −0.000024852 0.00002485   −0.00052239  0.00052239  

SIAE      0.02190395   0.28400442 

 

Figure 11. Comparison of experimental data and model data on Photowatt-PWP201 

module: (a) I-V curve, (b) P-V curve. 

The I-V and P-V curves of the Photowatt-PWP201 module are shown in Figure 11, and its IAE 

values are shown in Table 10. Table 10 reveals that the current-related IAE values remain below 4.83E-03, 

while power-related IAE values stay below 7.98E-02. Table 11 shows the IAE of the STM6-40/36 
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module calculated by DMOWOA, and Figure 12 shows the I-V and P-V curves. In Table 11, the 

current-related IAE values are all below 2.80E-03, and the power-related IAE values are all 

below 4.69E-02. Table 12 shows the IAE value of DMOWOA for the STP6-120/36 module, and 

Figure 13 shows the I-V and P-V curves of the STP6-120/36 module solved by DMOWOA. In Table 12, 

the current-related IAE values are all below 3.26E-02, and the power-related IAE values are all 

below 5.32E-01. The precision of the extracted parameters of DMOWOA be validated based on the 

data presented in both the table and figure. 

Table 12. STP6-120/36 module: IAE of DMOWOA. 

Item  Model data  Experiment current data  Experiment power data 

  VM (V) IM (A)  IE (A) IAE_I (A)  PE (W) IAE_P (W) 

1  19.2100 0.0000  0.002281450 0.00228145   0.04382665  0.04382665  

2  17.65 3.83  3.833350655 0.00335065   67.65863906  0.05913906  

3  17.41 4.29  4.267341161 0.02265884   74.29440961  0.39449039  

4  17.25 4.56  4.541152144 0.01884786   78.33487448  0.32512552  

5  17.10 4.79  4.784403781 0.00559622   81.81330466  0.09569534  

6  16.90 5.07  5.085581533 0.01558153   85.94632791  0.26332791  

7  16.76 5.27  5.274825808 0.00482581   88.40608054  0.08088054  

8  16.34 5.75  5.782600330 0.03260033   94.48768939  0.53268939  

9  16.08 6.00  6.044320443 0.04432044   97.19267272  0.71267272  

10  15.71 6.36  6.347122775 0.01287723   99.71329880  0.20230120  

11  15.39 6.58  6.566551247 0.01344875   101.05922369  0.20697631  

12  14.93 6.83  6.813611664 0.01638834   101.72722214  0.24467786  

13  14.58 6.97  6.957709845 0.01229015   101.44340954  0.17919046  

14  14.17 7.10  7.087575446 0.01242455   100.43094407  0.17605593  

15  13.59 7.23  7.217384025 0.01261598   98.08424890  0.17145110  

16  13.16 7.29  7.283998507 0.00600149   95.85742035  0.07897965  

17  12.74 7.34  7.331344298 0.00865570   93.40132636  0.11027364  

18  12.36 7.37  7.363181985 0.00681802   91.00892933  0.08427067  

19  11.81 7.38  7.395998685 0.01599869   87.34674447  0.18894447  

20  11.17 7.41  7.420314779 0.01031478   82.88491608  0.11521608  

21  10.32 7.44  7.439089236 0.00091076   76.77140092  0.00939908  

22  9.740 7.42  7.446761859 0.02676186   72.53146051  0.26066051  

23  9.060 7.45  7.452540600 0.00254060   67.52001784  0.02301784  

24  0.0000 7.4800  7.470986525 0.00901348   0.00000000  0.00000000  

SIAE      0.31712351   4.55926232 
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Figure 12. Comparison of experimental data and model data on STM6-40/36 module: (a) 

I-V curve, (b) P-V curve. 

 

Figure 13. Comparison of experimental data and model data on STP6-120/36 module: (a) 

I-V curve, (b) P-V curve. 

5.4. Statistical results and convergence curves 

In this section, the experimental results and convergence curves of different algorithms for 

solving the parameters of the photovoltaic model are presented and analyzed. Table 13 shows the 

minimum, maximum, average, and standard deviation of RMSE for PV models solved by different 

algorithms. All of the algorithms were run independently 30 times. In Table 13, Min represents the 

lowest RMSE value, Max represents the highest RMSE value, Mean represents the average RMSE 

value, and SD represents the algorithm’s stability. The lowest RMSE values for each module are in 

bold. Due to the lack of specific experimental data in the literature, comparisons are limited to four 

basic statistical indicators, consistent with the methods of comparison in the literature. The statistical 

analysis of the proposed methodology is limited. 

For the single diode model, according to Table 13, DMOWOA achieves the lowest RMSE value, 

while DMO excels across minimum, maximum, and average RMSE. Furthermore, MLBSA exhibits 

the lowest standard deviation, indicating consistent performance. 
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Table 13. Statistical results of different algorithms for solving photovoltaic models. 

PV model Method RMSE 

  Min Max Mean SD 

SDM DMOWOA 9.860219E-04 9.964806E-04 9.870776E-04 3.188117E-06 

 DMO 9.860219E-04 9.860226E-04 9.860221E-04 1.807731E-10    

 WOA 1.107616E-03 4.578496E-02 7.102568E-03 1.236875E-02 

 DE 9.860219E-04 1.438509E-03 1.001135E-03 8.260681E-05 

 SA 1.049349E-03 2.246603E-03 1.881534E-03 3.583774E-04 

 PSO 9.860259E-04 9.861631E-04 9.860669E-04 3.742250E-08 

 GWO 1.005399E-03 3.815095E-02 6.366746E-03 1.267456E-02 

 IGBO [61] 9.860219E-04 9.864489E-04 9.860444E-04 8.838088E-08 

 GOTLBO [34] 9.87442E-04 1.98244E-03 1.33488E-03 2.99407E-04 

 MLBSA [37] 9.8602E-04 9.8602E-04 9.8602E-04 9.1461E-12 

 TLABC [32] 9.86022E-04 1.03970E-03 9.98523E-04 1.86022E-05 

 IJAYA [35] 9.8603E-04 1.0622E-03 9.9204E-04 1.4033E-05 

DDM DMOWOA 9.824894E-04 1.409552E-03 9.990270E-04 7.755141E-05 

 DMO 9.857786E-04 9.881073E-04 9.863471E-04 5.804664E-07 

 WOA 1.114960E-03 4.118252E-02 8.491764E-03 1.326261E-02 

 DE 9.860225E-04 1.106283E-03 1.011058E-03 2.937064E-05 

 SA 9.880796E-04 2.206404E-03 1.335049E-03 2.916275E-04 

 PSO 9.835519E-04 9.892810E-04 9.860059E-04 1.062786E-06 

 GWO 1.010862E-03 3.808132E-02 2.65525E-03 6.70687E-03 

 IGBO [61] 9.826373E-04 1.370334E-03 1.026447E-03 1.131003E-03 

 GOTLBO [34] 9.83177E-04 1.78774E-03 1.24360E-03 2.09115E-04 

 MLBSA [37] 9.8249E-04 9.8798E-04 9.8518E-04 1.3482E-06 

 TLABC [32] 9.84145E-04 1.50482E-03 1.05553E-03 1.55034E-04 

 IJAYA [35] 9.8293E-04 1.0622E-03 9.9204E-04 1.4033E-05 

Photowatt-PWP201  DMOWOA 2.425075E-03 2.608133E-03 2.528525E-03 9.102414E-05 

 DMO 2.425081E-03 2.425201E-03 2.425115E-03 2.670061E-08 

 WOA 2.604337E-03 2.742507E-01 5.317646E-02 1.020819E-01 

 DE 2.425075E-03 2.425715E-03 2.425124E-03 1.212543E-07 

 SA 2.453717E-03 4.271164E-03 2.647786E-03 3.345887E-04 

 PSO 2.425089E-03 2.478674E-03 2.428055E-03 9.703640E-06 

 GWO 2.460404E-03 2.888445E-03 2.647212E-03 1.062403E-04 

 IGBO [61] 2.425075E-03 2.430055E-03 2.425573E-03 1.574886E-06 

 GOTLBO [63] 2.427130E-03 2.574944E-03 2.469844E-03 3.1248E-05 

 MLBSA [37] 2.425075E-03 2.425312E-03 2.425084E-03 4.336794E-08 

 TLABC [63] 2.42507E-03 2.44584E-03 2.42647E-03 3.99568E-06 

 IJAYA [35] 2.4251E-03 2.4393E-03 2.4289E-03 3.7755E-06 

STM6-40/36 DMOWOA 1.729814E-03 3.585698E-02 3.419714E-03 6.185169E-03 

 DMO 1.729834E-03 1.729963E-03 1.729883E-03 3.131366E-08 

 WOA 1.884297E-03 7.355741E-03 3.726836E-03 1.181472E-03 

 DE 1.729815E-03 1.733418E-03 1.730283E-03 6.743370E-07 

    Continued on next page 
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PV model Method RMSE 

  Min Max Mean SD 

STM6-40/36 SA 2.572751E-03 3.197710E-03 3.025829E-03 1.597912E-04 

 PSO 1.729814E-03 1.734963E-03 1.730976E-03 1.294072E-06 

 GWO 2.494334E-03 3.376361E-03 3.291131E-03 1.616028E-04 

 IGBO [61] 1.729814E-03 1.729840E-03 1.729816E-03 8.152893E-09 

 GOTLBO [63] 2.0281E-03 3.3307E-03 2.5944E-03 3.696259E-04 

 MLBSA [27] 1.7298E-03 2.7932E-03 1.7788E-03 1.968672E-04 

 TLABC [27] 1.7298E-03 6.5053E-03 2.1827E-03 9.22E-04 

 IJAYA [63] 1.7298E-03 3.3248E-02 2.7814E-03 5.754224E-03 

STP6-120/36 DMOWOA 1.660060E-02 2.846505E-02 1.784015E-02 3.673024E-03 

 DMO 1.660062E-02 1.660071E-02 1.660066E-02 2.601586E-08 

 WOA 1.664356E-02 3.558664E-02 2.582329E-02 5.148497E-03 

 DE 1.660063E-02 1.664268E-02 1.664078E-02 7.583427E-06 

 SA 1.661138E-02 2.593994E-02 2.380168E-02 1.903130E-03 

 PSO 1.660069E-02 1.664214E-02 1.662816E-02 1.878813E-05 

 GWO 1.925649E-02 1.413122E-02 7.216812E-02 2.532743E-01 

 IGBO [61] 1.660060E-02 1.664210E-02 1.661328E-02 1.980840E-05 

 GOTLBO [63] 1.7987E-02 3.6968E-02 2.5473E-02 5.612662E-03 

 MLBSA [27] 1.6601E-02 1.8269E-02 1.6731E-02 3.01E-04 

 TLABC [27] 1.6601E-02 2.1497E-02 1.6963E-02 9.47E-04 

 IJAYA [63] 1.66006E-02 1.7155E + 00 1.3486E-01 4.298527E-01 

In the double diode model analysis, Table 13 reveals that DMOWOA and MLBSA share the 

lowest minimum RMSE. Notably, DMO achieves the lowest mean and standard deviation, 

demonstrating overall stability and accuracy. Finally, MLBSA has the lowest maximum RMSE, 

suggesting its potential for robust performance across diverse scenarios. 

For the Photowatt-PWP201 module, according to Table 13, DMOWOA achieves the lowest 

minimum RMSE. Interestingly, DMO dominates in all three categories, boasting the lowest 

maximum mean square error, root mean square error, and standard deviation. 

Table 13 shows that DMOWOA obtains the lowest value in the ‘Min’ category for both the 

STM6-40/36 and STP6-120/36 modules. For the STM6-40/36 module, IGBO also achieves the 

lowest values in the ‘Max’ and ‘SD’ categories, while DMO achieves the lowest value in the ‘Mean’ 

category. For the STP6-120/36 module, DMOWOA performs well in all categories, demonstrating 

its strong competitiveness. DMO achieves the lowest values in the ‘Max’, ‘Mean’, and ‘SD’ 

categories for this module. 

A visual inspection of Figure 14 suggests that DMOWOA achieves the fastest convergence 

speed. DMOWOA’s performance is particularly noteworthy for the DDM and STM6-40/36 modules, 

where it converges to the optimal solution in the fewest iterations. Based on the results, DMOWOA 

is a promising candidate for the robust, efficient, and accurate extraction of photovoltaic      

model parameters. 
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Figure 14. Convergence curves: (a) single diode model, (b) double diode model, (c) 

Photowatt-PWP201 module, (d) STM6-40/36 module, (e) STP6-120/36 module. 

5.5. Comparison with literature 

This section compares the experimental results of DMOWOA for various PV models with those 

reported in the literature. Table 3 compares the performance of DMOWOA, IGBO [61], GOTLBO [34], 

MLBSA [37], TLABC [35], and IJAYA [35] in solving the SDM. DMOWOA achieves the lowest 

RMSE value among all algorithms in Table 3. In Table 5, DMOWOA and MLBSA achieve the 

lowest RMSE values, followed by IGBO [61], IJAYA [35], GOTLBO [34], and TLABC [35]. 

The analysis findings for various photovoltaic models are proposed as follows. For the 

Photowatt-PWP201 module, in Table 7, DMOWOA and IGBO [61], GOTLBO [63], MLBSA [37], 

TLABC [63] all got the minimum RMSE, and the worst was IJAYA. In Table 8, the results of 

extracting parameters of the STM6-40/36 module are shown. DMOWOA and IGBO [61], MLBSA [27], 

TLABC [27], IJAYA [63] all obtained the minimum RMSE, and GOTLBO [63] got the maximum. 

For the STP6-120/36 module, in Table 9, DMOWOA and IGBO [61], MLBSA [27], TLABC [27], 

IJAYA [63] all obtained the minimum RMSE, and GOTLBO [63] obtained the maximum RMSE. 

Overall, DMOWOA achieved the lowest RMSE value in all models. This is consistent with the 

results of previous studies and even outperforms other methods in some models. Therefore, DMOWOA 

is a promising candidate for efficient, accurate, and alternative PV model parameter extraction. 

6. Conclusions and future work 

The accurate extraction of photovoltaic parameters plays a key role in the design and efficient 

operation of photovoltaic systems. In this study, combining the DMO and the WOA, an adaptive 

dwarf mongoose optimization algorithm of the hybrid whale algorithm is proposed. In this method, 

the integration of the search phase of dwarf mongoose and the bubble net attack mode of the whale 
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optimization algorithm was employed to enhance its capability to escape local optima. Reconcile 

exploration and exploitation by incorporating inertia weights. The proposed algorithm is employed to 

solve various photovoltaic models to validate its performance. The experimental results are 

compared with other established algorithms. The test data demonstrates that DMOWOA can quickly 

and accurately obtain results and has strong competitiveness in accuracy and reliability. The 

proposed DMOWOA can serve as an efficient alternative approach for addressing the parameter 

estimation of photovoltaic models. However, the proposed DMOWOA cannot solve multi-objective 

optimization problems. In future work, the proposed algorithm can be enhanced by incorporating 

other methodologies, thereby addressing various optimization problems within the energy domain. 
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