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Abstract: In this paper, we propose a forecasting system of sunshine radiation for planners to quickly 
and accurately predict the output of solar power. The field data, including observation time, 
temperature, relational humidity, wind speed and global radiation, were collected, and the data clusters 
were embedded in the Excel Database. To improve the computational performance, the data selection 
technique was used in the stage of data cleaning, data integration and data reduction. Using the 
Integration of the Radial Basis Function Network (RBFN) and Sliding Mode Control (SMC), a Sliding 
Mode Radial Basis Function Network (SMRBFN) was proposed to solve this forecasting problem. 
Since the Sliding Mode Control has the design’s sense of optimal parameters, three parameters in the 
SMRBFN were dynamically adjusted to promote the accurate and reliability of forecasting system. 
Linking the SMRBFN and Excel database, the learning stage and testing stage of SMRBFN retrieved 
the input data from Excel Database to perform and analyze the forecasting system. The proposed 
algorithm was tested on Kaohsiung district in summer and winter. The average prediction error of 
MAPE and RMSE obtained from the forecasting results are about 9% and 0.223, respectively. It can 
be proved that SMRBFN can efficiently forecast the sunshine radiation and accurately provide the 
output of solar power in an uncertainty environment. 

Keywords: forecasting system; sunshine radiation; data selection; sliding mode control; radial basis 
function network; solar power; mean absolute percentage error; root mean square error 
 

1. Introduction  

The CO2 emission of power sectors in Taiwan is about 1/3 of total CO2 emission, indicating the 
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significance of power sectors in the global warming issue. In 2022, Taiwan’s energy import 
dependency was about 97% and the proportion of electricity consumption accounts for 51.2% of the 
final energy consumption electricity consumption [1]. In Taiwan, as an isolated island, the power grid 
is not connected to other national grids. Thus, 100% of the electricity must be produced by itself, and 
stable energy and power supply are very important for Taiwan. When the electricity supply is 
insufficient or the system fails, it will be accompanied by serious economic losses. Whether electric 
energy can be fully supplied has become the deep expectation of people. Renewable Energy (RE) is needed 
for local energy markets to provide an important option of energy production in the near future [2]. Due to 
advances in solar energy technologies, solar power is currently considered one of the most rapidly 
increasing resources [3]. It is no doubt that the benefit of solar power is attracting many utilities in the 
electricity market [4]. 

Solar energy is called to play an important role in the future energy supply of the Taiwan. The 
development of solar power has become one of the main alternative energy sources. It not only 
provides alternatives to new energy sources, but also reduces environmental pollution caused by fossil 
fuels. The biggest challenge comes from the intermittent nature of the photovoltaic, which is the 
unpredictable nature and dependence on weather and climate conditions [5,6]. Due to the instability of 
the natural climate, the output of solar power is also discontinuous and intermittent. The instability of 
the solar power generation is easily affected by factors such as sunshine, clouds and rainfall changes. 
It leads to the increase of power supply instability in the power grid. Therefore, how to accurately 
forecast the output of solar power in the uncertainty environment is a very important issue for power 
management, demand planning and power security [7,8]. 

As it is an important research field of solar power forecasting, serval approaches have been 
reported in the past. Ref [9] evaluated the solar forecast quality improvement for a single-point forecast 
model by incorporating these expert variables. Ref [10] developed a probabilistic solar power 
forecasting method based on weather scenario generation considering inherent correlation among 
different weather variables. Ref [11] proposed a statistical method to solve the problem of stationarity 
of photovoltaic production data, and then predicted the power output model of solar power. Ref [12] 
analyzed the prediction of three different variables of photovoltaic, ambient temperature and wind 
speed, constructed a conversion model of photovoltaic and estimated the power generated at the connection 
terminal of the grid. Ref [13] presented a variety of time-series methods including deep-learning algorithm 
and machine learning algorithms to predict the photovoltaic power generation output for quick respond 
to equipment and panel defects. Ref [14] proposed an interpretable probabilistic model for short-term 
solar power forecasting using natural gradient boosting. Ref [15] proposed the hybrid cascaded forecasters 
network model to enable accurate Solar Power Generation Forecasting (SPGF) for the next 24 h. To help 
resolve the weather forecast error, Ref [16] introduced a SolarPredictor model to train genuine weather 
forecasts. Ref [17,18] utilized the historical database to predict the solar power using the machine learning 
and Support Vector Machine (SVM). Integrational Multilayer feedforward Neural Network (MFFNN) and 
Multiverse Optimization (MVO) was proposed to efficiently predict the PV outpour power [19]. 
However, the solar power forecasting is not easy to use due to various influences, such as climate 
factors and seasonal factors. Solar power is heavily affected by the weather, so the solar power 
forecasting is strongly volatile with the changing weather [20]. Solar power forecasting could rise up 
hundred times the normal value to reflect the volatility. It is complicated to perform solar power 
forecasting, especially when finding the best strategy in a huge amount of data. Therefore, we use data 
selection technology [21,22] to calculate the difference of the meteorological database in the same 
period, so as to reduce the amount of training data, thereby shortening the calculation time and 
improving the accuracy. 
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We propose a forecasting system of sunshine radiation for planner to quickly and accurately 
predict the output of solar power. The output of solar power is based on the prediction of sunshine 
radiation as the research goal. The data, including observation time, temperature, relational humidity 
and sunshine radiation in the Kaohsiung Weather Bureau [23], were collected and the data cluster are 
embedded in the Excel Database dependent. To improve the computational performance, the data 
selection technique was used at the stage of data cleaning, data integration and data reduction.  

Bad data are handled in the data selection technique. Integrational of the Radial Basis Function 
Network (RBFN) [24,25] and Sliding Mode Control (SMC) [26,27], a Sliding Mode Radial Basis 
Function Network (SMRBFN) is proposed to solve the forecasting problem. Since the Sliding Mode 
Control has the design’s sense of optimal parameters, the parameters in the SMRBFN were 
dynamically regulated to promote the accurate and reliability of prediction. Linking the SMRBFN and 
Excel database, the learning stage and testing stage of SMRBFN retrieved the input data from Excel 
Database to perform and analyze the efficiency and accuracy of the forecasting system. The 
proposed algorithm was tested on Kaohsiung district in summer and winter. Mean Absolute 
Percentage Error (MAPE) and Root Mean Square Error (RMSE) were calculated in the forecasting 
procedure. It is demonstrated that SMRBFN can efficiently forecast the sunshine radiation and 
accurately provide the output of solar power. 

2. Data selection 

The output of solar power output will change with time and weather information. The dominant 
factor affecting is the solar irradiance intensity. The output of solar power from a Photovoltaics (PV) 
module can be calculated as Eq (1) [28]: 

3600s PV PV GP ( t ) K A P ( t ) /         (1) 

)(tPs  represents PV output power at time t ( w ); )(tPG  is sunshine radiation at time t ( 2j / m ); PVA  

is the area of the PV array ( 2m ); PVK  is the efficiency of PV. 

The predicted data of sunshine radiation related attributes include time, temperature, relative 
humidity and the hour of sunshine. The sunshine radiation will change with time and weather 
information, as it is a very huge meteorological database. In this paper, a data selection technique was 
used to find meaningful information in the huge database. The data selection is to find the data group 
with the most similar temperature, relative humidity, sunshine hours and sunshine radiation, and 
identify the similarity of the data as shown in Eq (2). With chosen reference days, the similarity 
sequencing is carried out for the database according to the reference data, and the sequenced data were 
then integrated into a data set. 

2
,

2
,

2
,

2
,

)()(

)()(
G

iD
G
f

S
iD

S
f

R
iD

R
f

T
iD

T
f

i
HHHH

HHHH
H




    mi ,...,2,1     (2) 

T
fH  : Temperature of current weather 
R
fH  : The relative humidity of the current weather 
S
fH  : The sunshine hours of current weather 
G
fH  : The global radiation of current weather 
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T
D,iH  : The i th  temperature of the same period in the database 
R
D,iH  : The i th  relative humidity of the same period in the database 
S
D ,iH  : The i th  sunshine hours of the same period in the database 
G
D ,iH  : The i th  global radiation of the same period in the database 

iH  : The degree of similarity of the i th  data 

The data for training is selected after sorting and calculation as shown in Eq (3). 

 in HsortH      1 2i , ,...,m  & 1 2n , ,...,m    (3) 

nH : Data similarity calculated after sorting 
n : Ranking of the similarity of the data 

In this paper, data selection is used as the preprocessing of the meteorological database, and more 
meaningful data are selected from the historical database, as shown in Figure 1. 

 

Figure 1. Flowchart of data selection in historical data. 

3. Sliding mode control 

Sliding Mode Control (SMC) is essentially a kind of nonlinear control. It can be continuously 
changed according to the current state in the dynamic process, so that the system can be controlled at 
a certain level. The lower edge of the characteristic moves up and down with small amplitude and high 
frequency along the specified track. The SMC can be designed to work with the system disturbances, 
which can make the sliding mode motion system be robust. 

The properties of SMC are that in the state space of the system nRxxfx  ),( . It is a tangent 

plane, 0),,,()( 21  nxxxsxs  , which divided the state space into upper part 0s  and lower part. 

Three situations for the moving point on the tangent plane were defined as shown in Figure 2. 
1. Normal point: When the system movement point moves to the vicinity of the tangent plane s = 0, 

it passes through this point A. 
2. Starting point: When the system movement point reaches near the tangent plane s = 0, it leaves 

point B from both sides of the tangent plane. 
3. Ending point: When the system movement point reaches near the s=0, it tends to point C from 

both sides of the tangent plane. 
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Figure 2. The properties of three points on the tangent plane of SMC. 

In the sliding mode structure, normal point and starting point do not have much meaning, but the 
ending point does have a special meaning. Because all moving points in a certain area are ending points, 
they will be attracted to move in this area. At this time, the area where all the moving points are the 
ending points on the tangent plane s = 0 is called the sliding mode area, and the system moving in this 
area is called the sliding mode action. According to the requirement that all moving points on the 
sliding mode area must be ending points, when the moving point reaches the tangent plane s(x) = 0, 
they must be formulated in Eqs (4) and (5). 
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The basic problem of SMC assumes that there is a control system as shown in Eq (6). 
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.
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The control parameters u is defined in Eq (7). 
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The performance of SMC must satisfy the following conditions. 
1. Satisfying the accessibility condition, all moving points outside the tangent plane s(x) = 0 will 

reach the tangent plane within a limited time. 
2. Ensure the stability of sliding mode action. 
3. Meet the dynamic quality requirements of the control system. 

4. SMRBFN 

SMRBFN consists of the input, hidden and output layers. In the input layer, four variables are 
connected to the hidden layer. The output layer is defined the “sunshine radiation”. The weights wk 
connecting the k-th hidden node with the output node. Since the parameter selection of the RBFN has 
a great influence on the searching procedure, the parameters, the weight ( w ), the center (C ) and the 
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smoothing parameter (  ), which were often adjusted by trial and error. In order to adjust three 
parameters, the adaptability of the SMC is adopted to make the RBFN faster reaches the termination 
point. The SMRBFN structure is shown in Figure 3, the SMC process is performed in the SMRBFN. 
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Figure 3. The construct of SMRBFN. 

4.1. Input layer 

Xi is the i-th variable of the input layer. For each training data, set input matrix X = [xji] M × N, j = 
1, 2, …, M, i = 1, 2, …, N. In this paper, four historical data, including temperature, relative humidity, 
the hour of sunshine and sunshine radiation, were collected and the data clusters were embedded in 
the Excel Database according to the season, week and day. Using data selection, those historical data 
are classified and identified into the similarity of the data. The similarity data are then integrated into 
a data set for the input layer. 

4.2. Hidden layer 

In the hidden layer, Cj = [cj1, …, cjk, …, cjK] is called the j-th center of SMRBFN. || xji - cjk || is 
the Euclidean distance between the i-th node of the input layer and the k-th node of hidden layer. The 
Euclidean distance is determined by Eq (8). The k-th hidden layer output is defined as Eq (9). 
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In the Eq (10), the function ( x )  is Gaussian distribution function and  is smoothing parameter. 

4.3. Output layer 

In the output layer, let wjk be the weight between hidden node Hjk and output node yj and the j-th 
output of output layer be as Eq (11). 
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Calculate the error between simulation output yj and its expected value Tj by error function. Error 
function is defined as Eq (12). 
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ej(n) and yj(n) are the j-th error and the j-th simulation output of n-th epoch, respectively.  
SMRBFN is used to optimize the three parameters, weights jkw  , the center of C   and the 

smoothing parameters jk , and the parameters would refine the accuracy in the dynamic environment 

and can yield a minimum forecast error. The output layer is defined as “sunshine radiation”. To 
evaluate the accuracy for SMRBFN, the Mean Absolute Percentage Error (MAPE) and Root Mean 
Square Error (RMSE) are all used in this paper. The MAPE and RMSE are defined as  
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ture
tRad   is the actual value of global radiation at hour t and predict

tRad   is the forecasting value of 

sunshine radiation at hour t. T is the number of testing data. Figure 4 is the flowchart of proposed 
algorithm. 
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Figure 4. The flowchart of the proposed algorithm. 

5. Results and analysis 

The data from the historical meteorological database of Kaohsiung area were used to train and 
test the proposed algorithm. Many tests, including daily/weekly in summer/winter, were conducted. 
For comparison purposes, SMRBFN and RBFN were also built for tests. The simulation was 
implemented with Matlab on an Intel(R) Core (TM) i7-2320 computer with 8 GB RAM. 

5.1. Data selection 

After the data selection procedure, the number of selected data in the database is set to 20, 40 and 60 
at the same period as shown in Table 1. From the Table 1, it can be seen that when the number of 
selected data is set to 40 in summer, the error value is the lowest. The MAPE and RMSE are 9.3481% 
and 0.2993, respectively. In winter, the error value of the test is the lowest when the number of selected 
data is set to 40. The MAPE and RMSE are 11.456% and 0.2536, respectively. The executed time of 
all tests is under 0.04 s. 
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Table 1. The results for the number of selected data. 

 The number of 

selected data 

The number of 

training data 

The number of 

testing data 

MAPE (%) RMSE 

(kW) 

Executed 

time (s) 

Summer 20 18 2 10.2438 0.3045 0.01707 

40 36 4 9.3481 0.2993 0.01926 

60 54 6 12.2497 0.3336 0.03665 

Winter 20 18 2 14.8421 0.3637 0.01779 

40 36 4 11.456 0.2536 0.02153 

60 54 6 16.1487 0.3829 0.04168 

Figure 5 shows the sunshine radiation forecast of the various data selection in summer. In Figure 5, 
the deviation from the actual value is more if the number of data selected is 20. It can track very closely 
the actual value if the number of data selected is 40 and 60, respectively. The forecasting curve is close 
to the actual curve when the number of data selected is 40. It is proved that the data selection technique 
could track the actual data with the less data. This characteristic can be utilized to greatly reduce the 
training time, and the data storage can be reduced without losing originalities. We can minimize the 
data storage, shorten the preprocessing needs and reduce the network size. 

 

Figure 5. The sunshine radiation forecast of the various data selection. 

5.2. Daily sunshine radiation forecast 

Figure 6 shows the daily sunshine radiation forecast in summer. The forecasting results of 
SMRBFN can track very closely the actual value with SMC applied. It can be seen that SMRBFN has 
the capability to follow the spikes and it is not easily attainable by RBFN. Similarly, Figure 7 is the 
daily sunshine radiation forecast in winter. The forecasting results of SMRBFN can also track very 
closely the actual value with SMC applied. 
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Figure 6. The daily sunshine radiation forecast in summer. 

 

Figure 7. The daily sunshine radiation forecast in winter. 

Table 2 shows the daily forecasting errors of GRNN, SMRBFN and RBFN for comparison in 
summer and winter. In winter, the MAPE and RMSE of GRNN are 6.8594% and 0.1896, respectively, 
the MAPE and RMSE of SMRBFN are 3.9854% and 0.1066, respectively, and the MAPE and RMSE 
of RBFN are 8.6719 and 0.2404, respectively. It is obvious that SMRBFN has the ability to find better 
solutions. Although the errors are larger in summer, the prediction effect of SMRBFN is better than 
the other algorithms, and the error value is smaller. 

Table 2. The daily forecasting errors of GRNN, SMRBFN and RBFN. 

 Method MAPE (%) RMSE (kW) Executed time (s) 

Summer GRNN 

RBFN 

18.3106 

19.3417 

0.6954 

0.6549 

0.017321 

0.017454 

SMRBFN 16.0651 0.5588 0.017376 

Winter GRNN 

RBFN 

6.8594 

8.6719 

0.1896 

0.2404 

0.01765 

0.01848 

SMRBFN 3.9854 0.1066 0.01521 

GRNN: General regression neutral network. 
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5.3. Weekly sunshine radiation forecast 

Figure 8 shows the weekly sunshine radiation forecast, which is a typical summer week. From 
Figure 8, the forecasting value of SMRBFN is close to the actual values. It can be seen that SMRBFN 
has the capability to follow the spikes as shown in the 80th ~ 120th hour of this week. Similarly, Figure 9 
shows the weekly sunshine radiation forecast, which is a typical winter week. From Figures 8 and 9, 
it can also be seen that the strength and toughness of SMRBFN is better than that of RBFN, and it is 
easier to catch up with the peculiarity of sunshine radiation. 

 

Figure 8. The weekly sunshine radiation forecast in summer. 

 

Figure 9. The weekly sunshine radiation forecast in winter. 

Table 3 shows the weekly forecasting errors of SMRBFN and RBFN for comparison in summer 
and winter. Although the executed time is more than that of RBFN, MAPE and RMSE of SMRBFN 
are smaller. It is also shown that SMRBFN has better accuracy than RBFN. 
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Table 3. The weekly forecasting errors of SMRBFN and RBFN. 

 Method MAPE (%) RMSE (kW) Executed time (s) 

Summer 
RBFN 11.5419 0.4218 0.017069 

SMRBFN 9.3159 0.3504 0.018953 

Winter 
RBFN 13.4771 0.2754 0.015339 

SMRBFN 9.0019 0.2230 0.019794 

6. Conclusions 

In this paper, the concept of data selection is used to pre-process the historical data of the 
meteorological database and to select more meaningful data from the database at the same time period, 
which can reduce the number of modeling data and shorten the calculation time of modeling and 
prediction. Integration of RBFN and SMC, a SMRBFN is used to forecast the sunshine radiation for 
finding the output of solar power. SMC is a new toughness algorithm, which is used to adjust the 
parameters in RBFN training stage to improve the forecasting ability, and a good performance with a 
close spike tracking capability can be seen. The results of the cases demonstrate that SMRBFN is 
robust, efficient and accurate. It proved that SMRBFN has the capability to produce better results for 
forecasting sunshine radiation. 

SMRBFN integrated the RBFN and SMC to forecast load based on summer and winter. Data 
selection algorithm was used to choose meaningful data. It is very important that the proposed 
algorithm can avoid problems of data insufficiency, bad data or data volatility and can reduce sizes of 
the training data set. From this study, we can see that more data needs more execution time and could 
be less efficient. This is opposed to the idea that “more data means more accuracy.” Meaningful data 
is the key to a better prediction. With the proposed algorithm, we can minimize the data storage, shorten 
the preprocessing needs, reduce the network size and get better results. 
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