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Abstract: In recent years, there has been an increasing interest in additives for fuel research in the 
field of internal-combustion engines. Many studies have been conducted to improve the performance 
and emissions of the engine. Many kinds of additives in the form of solids, liquids, and gases have 
been used. The objective of this review is to examine the effects of having additives on the performance 
and emissions of an internal combustion engine. Additives such as alcohol, hydrogen, and metal oxides 
are proven to be successful in improving performance or reducing emissions. Results from selected 
papers are discussed and summarised in a table. With the new developments in nanotechnology, many 
researchers have shown an increased interest in carbon-based nanoparticles such as multi-walled 
carbon nanotubes (MWCNT) and single-walled carbon nanotubes (SWCNT). Lately, with the 
discovery of graphene production techniques, graphene nanoplatelets (GNP) have also been applied 
as fuel additives. In addition to understanding the effects of the additives on the engine performance 
and emissions, researchers extended the research to predict the outcome of the performance and 
emissions. The experiments involving the predictions efforts are summarised in a table. From the 
summary, it is found that the prediction of the GNP as fuel additive effects to the performance and 
emissions has not yet been explored. This gap is an opportunity for researchers to explore further. 
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1. Introduction 

The internal combustion engine has become the foundation for vehicles, agriculture, and 
military operations as well as electricity generation. Acting as the heart of the vehicle, the internal 
combustion (IC) engine’s function is to give the power that moves the vehicle. The engine itself is 
comprised of many elements and components, each of which has its own specific role. The primary 
component of the fuel is hydrocarbons. The composition and properties of it will determine its 
performance and emission results in the combustion process.  

An internal combustion engine that runs on diesel fuel is known as a diesel engine. Diesel engines 
are commonly found in heavy-duty vehicles such as trucks, cars, and industrial transport that are used 
on the road. In comparison to S.I engines, C.I diesel engines have better fuel economy and reliability [1]. 
The excellent thermal efficiency of diesel engines is the primary reason for their vast range of 
applications, which include transportation, power generation, agricultural forms, and development 
domains [2].  

In any case, compression ignition diesel engines emit massive volumes of pollutants (NOx, soot, 
CO, UHC, and particulate matter), posing serious health and environmental dangers [3]. The majority 
of these discharges result from non-ideal combustion cycles, such as fragmented fuel ignition, high 
temperature and pressing blending product responses, ignition of engine lubricating oil and additives, 
and burning of non-hydrocarbon diesel fuel components such as sulphur compounds and fuel added 
substances [4]. In terms of the environment, smoke emissions produced by diesel engines can cause 
both pollution of water and air, which significantly reduces visibility and contributes to global climate 
change [5]. It's a different scenario when it comes to health. Dizziness, headaches, and irritation of the 
eyes, nose, and mouth can occur after a brief exposure to high diesel exhaust emission levels [6]. Long-
term exposure raises the risk of cardiovascular illness, cardiopulmonary disease, and respiratory 
disease, as well as lung cancer [7]. As a result of this, smoke emissions from diesel engines constitute 
a severe challenge that requires constant forecasting in order to keep them at a minimum, as well as 
other tactics such as fuel composition alteration, fuel additives, and other alternatives to manage smoke 
emissions [8]. 

Asia's rapid development has resulted in extremely high oil demand [9]. It is estimated that the 
world will consume 105 million barrels of oil per day in 2025 [10]. At this rate, the world is likely to 
run out of fossil fuels in the next 100 to 50 years [11]. Aside from that, the fuel price is extremely 
volatile [12]. Furthermore, fuel price fluctuations have a significant impact on economic, fiscal, and 
income patterns [13]. This is due to the fact that the fuel consumed in goods transportation has an 
impact on the price of goods [14]. 

With the conditions listed above, which include a mix of high emissions, high petroleum demand, 
volatile petroleum prices, and dwindling petroleum resources [15], it is well acknowledged that 
internal combustion engines must be more efficient [16]. To put it another way, the engine needs to 
consume less gasoline while producing more power [17]. The engine must also emit fewer pollutants. 
With these facts in mind, it's clear that we need to limit emissions from combustion engines [18]. As 
a result, a variety of studies have been done to improve performance and minimise emissions [19–21].  

Alternative vehicle concepts such as electric vehicles and fuel cells are one way to cut emissions [22]. 
The less radical option involves employing a combustion engine but with alternative fuels such as 
biodiesel instead of pure diesel [23]. Another alternative is to add additives to the fuel that is currently 
being used [24]. The first application of fuel additives was to eliminate knocking in gasoline engines 
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in the early twentieth century [25]. Combustion modifiers, antioxidants, corrosion inhibitors, and 
deposit control detergents are all examples of fuel additives [26]. Furthermore, gasoline additives can 
be utilised for a variety of applications, including octane boosters, fuel injector cleaners, and fuel line 
antifreezes [27]. This study aims to assess the current state of fuel additives in diesel and gasoline 
engines. In addition to observing the impacts, the study's scope has been expanded to include predicting 
the outcomes of additive effects on engine performance and emissions.  

2. Fuel additives in internal combustion engine 

Currently, the transportation sector is primarily reliant on internal combustion engines, such as 
diesel and spark-ignition engines. Combustion engines are likely to remain the most important engine 
for the next 30 years. Every year, the global transportation sector consumes more and more energy. 
The use of fossil fuels is a major contribution to this fact. Internal combustion engines that run on 
fossil fuels provide a lot of power to the transportation sector. Despite advancements in alternative 
fuels, around 90% of people still use traditional fossil fuels, with only a small percentage using 
renewable fuels [28]. The demand for transportation, industrial, and research services is increasing 
every day as the world's population grows, resulting in a petroleum fuel shortage. The rapid depletion 
rate of petroleum fuel, as well as the impact of its emission gases on the environment, has become a 
major issue for people all over the world.  

The literature suggested some popular additives that are in use. Hydrogen [29], CNG [30], LPG, 
ZnO [31], alcohols, methyl-esters [32], Mn2O3, Al2O3 [33], MWCNT [34], GO, and GNP are the latest 
additions to the list of materials used as additives. These additives can be classified into gaseous 
additives, liquid additives, and solid additives. These solid additives can be divided into metal and 
non-metal additives. This classification can be represented in Figure 1 below: 

 

Figure 1. Classification according to different forms of additives. 
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To understand the subject, the properties of the fuel and additives are observed in detail. The 
properties of the base fuel (diesel or biodiesel) can be summarised in Table 1, while the properties of 
gaseous and liquid additives are presented in Table 2. 

Table 1. Known roperties of base fuels (diesel and biodiesel) [28]. 

Properties 

Fuel/additive 

CV [MJ/kg] Density [kg/m3] Kinematic Viscosity 

[mm2/s]

Flash point [℃] 

pure diesel 44 825.96 3.96 72 

Biodiesel Chlorella 

Vulgaris 

38.7 860 3.7 124 

honge biodiesel HB20 42.123 835 4.12 104 

Table 2. Known properties of liquid and gaseous materials used as fuel additives [35]. 

Properties 

Fuel/additive 

CV [MJ/kg] Density [kg/m3] Kinematic Viscosity 

[mm2/s]

Flash point [℃] 

hydrogen 119.93 0.0838 110 - 

methanol 20.30 790 0.59 12 

ethanol 27 785 1.1 14 

CNG 45.76 720 - 81.6 

The carbon-based additives used are carbon nanotubes and graphene. The properties of the 
materials as in the Table 3 below: 

Table 3. Properties of carbon materials used as fuel additives [36]. 

Properties 

Fuel/additive 

CV [MJ/kg] Density [g/cm3] Specific Surface Area 

(m2g-1)

Thermal conductivity 

(kW/mK) 

SWCNT  1.3–1.4 1315 1750–3800 

Graphene 31.82 2.267 1598 5300 

Many parameters can be used to measure the performance and emissions of a diesel engine. 
However, after researching many articles in the field, standard parameters used to evaluate engine 
performance are brake torque, brake power, brake specific fuel consumption (BSFC), and brake 
thermal efficiency (BTE). Additionally, the emission parameters being observed are carbon 
monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), and unburned hydrocarbons (HC). 

3. Gaseous fuel additives 

3.1. Effect of gaseous fuel additives on performance  

In a study to determine the effect of hydrogen on diesel-biodiesel blend, Tayari [37] added 
different amounts of hydrogen mixtures to the engine. It was found that hydrogen improved the power 
performance. Torques in B20H10 and B10H10 were 10.6% and 8.4% higher than the biodiesel blends 
without hydrogen induction (B20H0 and B10H0). The engine's low power and torque are caused by 
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biodiesel's low heating value and high viscosity. Additional hydrogen to biodiesel improved the power 
and torque of the engine due to the faster rate of combustion caused by hydrogen. In another research 
by Ngang [38], the authors conclude that the torque of the diesel-LPG engine increases as the quantity 
of LPG fuel also increases. The findings strongly support the directly proportional relationship 
between the amount of LPG fuel introduced and the output torque of the diesel-LPG engine. The power 
output in the diesel-LPG mode of operation can be controlled by the amount of LPG introduced to the 
engine. Generally, increasing the LPG mass fraction yields more power. For example, the power 
of 60% LPG is higher than the power of 50% LPG. 

In an experiment by Surya [29], hydrogen enrichment of biodiesel was observed. The fuel used 
was a honge biodiesel blend (HB20). The hydrogen enrichment was between 10–13 l/min. H-B20-
A (Hydrogen 5 l/min + B20 + Al2O3 produced higher power of 6.4%. This combination also reduced 
specific fuel consumption by 2.72%. In a study to determine the effect of hydrogen on diesel-biodiesel 
blend, Tayari [37] added different amounts of hydrogen mixtures to the engine. It was found that 
hydrogen improved the BSFC performance. The average reductions of BSFC for B20H5 and B10H5 
were 3.4% and 5.1% compared to the biodiesel blends without hydrogen (B20H0 and B10H0). 
Biodiesel with hydrogen led to more power generation and increased the combustion efficiency of the 
engine due to high calorific value and mass flow rate of hydrogen. An example experiment by Akcay [39] 
indicated that hydrogen addition reduced the BSFC. The result showed With H40 (hydrogen induction 
of 40 l/min), the BSFCs of diesel fuel tests were decreased by 11.1%, 12.5%, and 7.9%, respectively, 
for the engine loads of 40, 60, and 80 Nm, as compared with the pure diesel fuel tests. It is seen that 
BSFC generally exhibits a decrease with the increasing load for each fuel and hydrogen addition. As 
a result of the increase in the cylinder wall temperatures, the decrease in the ignition delay and, 
accordingly, the progress of the combustion, BSFCs showed decreasing tendencies [40]. For example, 
in an experiment using spark-ignition engine, Yilmaz [41] found that the BSFC of alcohol (methanol 
and ethanol) had been reduced after the induction of hydrogen. The addition of hydrogen reduced the 
BSFC by around 4% compared to the alcohol-gasoline blend. This is because the lower heating value 
of hydrogen is very high compared to gasoline. Hydrogen addition increases thermal efficiency and 
decreases BSFC [42]. 

The effect of hydrogen addition on thermal efficiency was carried out by Yilmaz [41] in an 
experiment with alcohol-gasoline in a spark-ignition engine. It was found that the BTE increased 
with the hydrogen addition. Experimentally, Gnanamoorthi [43] also shows a better BTE (increased 
by 30.65%) with the addition of hydrogen. Another finding from Tabar [44] is that the BMEP of CNG 
is 4–14% less than that of gasoline throughout all the engine speeds. CNG has a 10% lower indicated 
power. When compared to gasoline, CNG has a remarkable 11–39% lower fuel consumption [44]. 
Sonachalam [45] demonstrated that the brake thermal efficiency (BTE) is increased by about 3.7% at 
a flow rate of 4 liters per minute (LPM) of acetylene injection in RCCI combustion mode. 

3.2. Effect of gaseous fuel additives on emissions 

An analysis of fuel additive effects on engine emissions was carried out by Gnanamoorthi [43], 
and it indicated that the emissions of HC, CO, and CO2 were reduced by 22.3%, 14% and 32.74% 
respectively with the addition of hydrogen. Similarly, another experiment by Selahaddin Orhan 
Akansu [46] pointed out that hydrogen produced fewer emissions, especially CO, CO2, and HC. This 
happens because of the chemical composition of hydrogen, which does not have carbon and has high 
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thermal efficiency. However, the emission of NOx increased. The reason for that is the high 
temperature of the combustion. As argued by Yilmaz [41], the NOx emission has been reduced when 
hydrogen is introduced into the combustion. The reason for that is the low adiabatic flame temperature 
of the methanol. The addition of hydrogen by Surya [29] was successful in reducing the CO by 15.91%. 
However, this experiment produced higher CO2 and NOx by 22.37% and 37.68% respectively. 

It was also reported by Yilmaz [41] that CO has been reduced with the addition of hydrogen. The 
fuel with the lowest CO emission was found to be G85M15H15, with a CO emission of 0.094%. On 
the other hand, CO2 has been reduced with the addition of hydrogen. The lowest CO2 emission was 
found to be 12.06% for G85M15H15 fuel. Another example, Sonachalam [45] found that acetylene 
addition to a diesel engine running with biodiesel shows significant decreases in polluting components 
such as smoke opacity, oxides of nitrogen (NOx), hydrocarbons (HC) and carbon monoxide (CO) are 
reduced by about 10%, 7.6%, 13.4% and 28.7%. As reported by [38], LPG addition reduced NOx and 
HC emission pollutants, despite the fact that the overall in-cylinder temperature increased. This 
demonstrates that adding LPG to a specific value allows for decreased emissions as long as the mixture 
remains lean. The ensuing increase in temperature and pressure is compensated for by the mixture 
becoming richer, cutting emissions and enhancing combustion efficiency.  

Figure 2 is a bar chart depicting the various effects of gaseous fuel additives on engine emissions. 
In the graphic, the percentage value of hydrogen, CNG, and acetylene additions are compared to their 
base fuels, which are gasoline-ethanol blend, gasoline, and biodiesel, respectively.  

 

Figure 2. Emission differences of fuel with gaseous additives compared to base fuels. 
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4. Liquid fuel additives 

4.1. Effect of fuel additives on performance 

Several studies have been undertaken to investigate the impact of liquid additives on engine 
performance and emissions. Najafi [47] conducted an experiment to estimate the performance and 
exhaust emissions of a four-cylinder SI engine. The engine operates on the different mixing ratios of 
ethanol and gasoline blends. A mixture of gasoline and bioethanol derived from potato peels has been 
employed. 0%, 5%, 10%, 15%, and 20% have been employed. The mixture was called E0, E5, E10, 
E15, and E20. The engine performance and emissions from the mixture have been compared with the 
performance and emissions from 100% gasoline. The experiment found that using ethanol blends 
improved brake power, brake thermal efficiency (BTE), engine torque, and volumetric efficiency. On 
the other hand, the brake specific fuel consumption (BSFC) decreased. BSFC is defined as the energy 
consumed per unit power produced considering the calorific value of the fuel.  Mohamed Nour [48] 
identifies the effects of pentanol/hydrous ethanol/diesel blend and octanol/hydrous ethanol/diesel have 
on compressed-ignition engine. The finding suggests that the addition of octanol to the hydrous 
ethanol/diesel blends achieves the lower BSFC at all loads. 

A deeper investigation by Yesilyurt [49] was performed to compare the engine performance, 
combustion, and emissions of direct-injected diesel engines fuelled with diesel, with diesel-butanol 
blend, and diesel-pentanol blend. Yesilyurt reported that the blended fuels produced lower EGT and 
CO2. However, more O2 is produced. The reason for the observation was the higher oxygen content in 
the alcohol. 

As highlighted by Godwin [50], gasoline blended with alcohol produced lower EGT compared 
to 100% gasoline. This is because gasoline has the highest calorific value and the lowest latent heat of 
vaporization, lean mixture formation, and flame propagation. This leads to an increase in cylinder 
temperature and more gasoline being used. 

Another experiment using alcohol was conducted by S. Phuangwongtrakul [51] to study the 
engine performance. Brake torque and brake specific fuel consumption while a different mixing ratio 
of ethanol was investigated. The experiment proved that a proper ethanol-gasoline mixing ratio 
can improve engine torque output while reducing emissions. By adding pentanol to biodiesel, 
Yesilyurt [52] found the maximum BTE values of the diesel fuel and B20, and B20P5 were found to 
be at 22.75%, 21.82%, and 20.96% under 750 W engine load condition, respectively. This little change, 
however, can be considered insignificant. 

4.2. Effect of liquid fuel additives on emissions 

From the experiment by Najafi [47], the result showed that the amount of CO and HC had been 
reduced, but CO2 and NOx emissions were higher. This is supported by  Dogan in 2017 [53] to identify 
irreversible processes using energy and exergy analyses. The fuels were blended in various proportions. 
E0 refers to 100 percent unleaded gasoline, while E10 refers to gasoline blended with 10% ethanol. 
E20 is ethanol with a concentration of 20%, and E30 is ethanol with a concentration of 30%. The fuel 
blends were then tested in gasoline engines at various speeds, loads, and under identical conditions for 
each fuel type. NOx levels were reduced as a result of the experiments and theoretical calculations.  

One of the new exploratory investigations by Yesilyurt [49] is the exhaust emission characteristics 
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of a solitary chamber, direct-infusion diesel motor running on biodiesel/diesel/1-butanol and 
biodiesel/diesel/n-pentanol fuel blends. Yesilyurt found that alcohol blended fuels reduced NOx 
by 0.56%–2.65%, CO by 6.90%–32.40%, and smoke by 10.47%–44.33%. The authors expressed that 
higher alcohols, particularly n-pentanol, could be an efficient additive to diminish NOx emissions by 
thinking about the acquired outcomes. 

In another major study, Uslu and Celik [54] utilised diethyl ether (DEE) blends with pure diesel 
to study the exhaust emission characteristics of a single-cylinder, direct-injection, and air-cooled 
diesel engine. An experiment was carried out at four engine speeds ranging from 1000 to 1600 
RPM with 200 RPM intervals and four engine loads, which were 150, 300, 500, and 1000-watt halogen 
lamps. Diesel fuel was mixed with DEE0, DEE2.5, DEE5, DEE7.5, and DEE10, which contained 2.5%, 
5%, 7.5%, and 10% by volume of DEE, respectively. According to the author’s findings, DEE10 
allows NOx emissions to be reduced by 56%. 

Another experiment was conducted by Dogan [53] to identify irreversible processes using energy 
and exergy analyses. The fuels were blended at different ratios. 100% unleaded gasoline is called E0, 
and gasoline blended with 10% ethanol is called E10. 20% ethanol is called E20 and 30% ethanol is 
called E30. The fuel blends then applied into gasoline engine with different speeds, under different 
loads and under the same conditions for each fuel type. The result from the experiments and theoretical 
calculations showed a reduction in carbon monoxide (CO). 

In another major study done by Uslu and Celik [54], it was identified that DEE10 allows NOx 
emissions to be reduced by 56% compared with diesel fuel, while CO emissions are reduced by 
about 45%. Dogan [53] conducted another experiment that focused on identifying irreversible processes 
using energy and exergy analyses. The fuels were mixed in various proportions. E0 refers to 100 percent 
unleaded gasoline, while E10 refers to gasoline blended with 10% ethanol. E20 is ethanol with a 
concentration of 20%, and E30 is ethanol with a concentration of 30%. The fuel blends are then applied 
to gasoline engines at varying speeds, under varying loads, and under the same conditions for each fuel 
type. Carbon dioxide levels were reduced as a result of the experiments and theoretical calculations (CO2).   

In the same vein, the experiments by Chao Chen [55] and Pinzi [56] found that the diesel/alcohol 
blend was able to reduce soot formation. This phenomenon might happen due to the high oxygen 
content in alcohol that helps in the burning of soot during combustion. A bar chart is plotted in 
Figure 3 to visualise the different effects of the liquid fuel additives on the engine emissions. 
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Figure 3. Emission differences of fuels with liquid additives compared to base fuels. 

5. Solid fuel additives 

5.1. Effect of solid fuel additives on performance 

Solid fuel additives are another important type of additive. Amirabedi [57] went above and 
beyond by incorporating Mn2O3 into the gasoline-alcohol mixture. She used gasoline that had been 
diluted with 10% ethanol. She then added 10 ppm and 20 ppm Mn2O3 as additional samples. The 
outcomes were very promising. In terms of efficiency, performance has improved. This is supported 
by Jayaraman's [58] findings, which investigate the effects of adding titanium oxide TiO2 to a B20 
blend in a CI engine. As a result, specific consumption has declined. At 25% load, B20 + 50 
produces the lowest BSFC of 0.46 kg/kw-hr. At 18.16 kg load, the maximum BTE for B20 + 50 + 
EGR was 32.64 percent. The BTE of B20 with TiO2 is higher than that of normal B20 because the 
TiO2 improved combustion and released a high heat rate.  

Jiangjun Wei [59] investigated the emission of CI engine operation with diesel-methanol blends 
using Aluminium Oxide Al2O3 as an additive. Among the highlights are reductions in BTE and BSFC 
of 3.6 and 3.7 percent, respectively. According to Örs [60], adding TiO2 to biodiesel-butanol blends 
increased brake engine torque and power by 10.20 percent and 9.74 percent, respectively. BSFC, on 
the other hand, can be reduced by 27.73%. Amirabedi [57] discovered that the performance in terms 
of power and efficiency has improved. This finding is supported by Soner's findings [61]. In his 
experiment, adding 50 ppm of Al2O3 and CuO to diesel fuel resulted in increased engine power.  

 
 



10 

AIMS Energy  Volume 10, Issue 1, 1–22. 

5.2. Effect of solid fuel additives on emissions 

The research by Örs [60] showed that CO and HC have been reduced by around 14.96% and 34.39%, 
respectively. with the TiO2 addition. However, the emission of CO2 and NO was increased by 5.75% 
and 3.94%, respectively. Research by Amirabedi [57] achieved a 51.83% reduction of HC by using 
gasoline with 10% ethanol and 20 ppm Mn2O3 compared to that of baseline gasoline. This is achieved 
when the engine runs at full load and the speed is set at 2800 rpm. The CO was reduced by 24.09% 
with respect to the baseline gasoline fuel. However, CO2 emissions increased by 13.27% in this 
experiment. Using aluminium oxide (Al2O3) as an additive, Jiangjun Wei [62] tested the emissions of 
a CI engine run with diesel-methanol blends. The results were lower CO and HC of 83.3% and 40.9%. 
However, the engine emitted a marginally higher NOX of 14.4%. A bar chart is plotted in Figure 4 to 
visualise the different effects of the solid fuel additives on the engine's emissions. 

 

Figure 4. Comparison of emissions in percentage difference to base fuel with the addition 
of solid additives. 

6. Carbon-based fuel additives 

6.1. Effect of carbon-based fuel additives on engine performance 

The section that follows discusses carbon-based fuel additives. This review focuses on carbon 
nanotubes and graphene. Heydari-Melaney [63] improved the performance of biodiesel-bioethanol 
mixtures by adding carbon nanotubes (CNT) and increasing torque, power, and BTE by 15.52%, 15.52%, 
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and 13.97%, respectively. BSFC, on the other hand, fell 11.73%. Similarly, Hosseini [64] used CNT 
as an additive in a CI engine that was powered by a diesel-biodiesel blend. The procedure for the 
experiment was carried out under full load with various blends and speeds. In his experiment, he 
discovered that the addition of CNT produced more torque than pure diesel fuel. He also discovered 
that power increased by 21.84% overall. BTE, on the other hand, was discovered to be decreasing 
from 1800 to 2800 rpm. This was caused by a decrease in volumetric efficiency. The addition of CNT 
reduced BSFC as well.  

Gad [65] used carbon nanotubes and graphene nanosheets as fuel additives in B20 blends. CNTs 
and graphene nanosheets are mixed into B20 at concentrations of 25, 50, and 100 ppm to create fuel 
blends. Thermal efficiency for B20CNT100 and B20CNS100 improved by 8% and 19%, respectively, 
according to the results. In another significant study, Razzaq [66] investigated the use of graphene and 
dimethyl carbonate (DMC) as additives in biodiesel. The goal is to investigate the effects on 
performance and emissions. According to his observations, the BTE increased with a small amount of 
GNP. However, increasing the amount reduces the BTE. The reason for this could be due to the higher 
viscosity.  

6.2. Effect of carbon-based fuel additives on engine emissions 

In Hosseini's experiment [64], he discovered that under various conditions, the emission of a fuel 
blend with CNT additives was reduced by 40.38 percent when compared to neat diesel. In the case of 
CO2, the average emission increased by 9.88 percent when all fuel blends with CNTs were compared 
to straight diesel fuel. The HC emissions of a fuel blend containing a CNT additive were reduced in 
general. In Gad's experiment [65], extremely large reductions in smoke thickness, CO, NOx, HC, and 
with B20CNT100 are observed, which are 28 percent, 27 percent, 22 percent, and 28 percent, 
respectively. For smoke thickness, CO, NOx, and HC, B20CNS100 obtained 54%, 47%, 44%, 
and 52%, respectively.  

Tomar and Kumar [67] conducted a similar investigation using a single-cylinder four-stroke 
diesel engine (Kirloskar) and diesel-Schleichera Oleosa Biodiesel mixes with alumina nanoparticles 
and multi-walled carbon nanotubes. Based on their findings, the authors believe that the use of alumina 
and MWCNT-added substances could be an effective fuel reformulation strategy. NOx emissions 
decrease as a result of the presence of nano-added substances in D80B20C100 fuel, owing to the 
amazing spongy inclination of MWCNT nanoparticles.  

Mei et al. [68] proposed a single-cylinder four-stroke air-cooled common-rail diesel engine 
operating at 3000 rpm with changing loads of 100%, 75%, 50%, and 25%. The authors used two 
different nanoparticles, CNTs and molybdenum trioxide (MoO3), and mixed them with clean diesel at 
concentrations of 50 mg/L and 100 mg/L for each nanoparticle. According to the authors, CNTs have 
a greater potential than MoO3 to reduce the entire estimated exhaust emission. CO, HC, NOx, and 
smoke discharge from CNT100 were reduced by 9.6%, 11.4%, 8.9%, and 15.25%, respectively, when 
compared to the exhaust emission produced by Mo100, which is 6.8%, 7.5%, 5.2%, and 8.3%. The 
authors also stated that the results could be attributed to CNTs' superior heat conductivity and surface 
deficiency when compared to MoO3.  

In Heydari-Melaney [63] experiment where CNT was mixed into biodiesel-bioethanol mixtures, 
The CO and UHC reduced by 5.47% and 31.72%, respectively. However, NOx emission increased 
by 12.22%. According to Razzaq [66], an increase in HC emission was observed compared to that of 
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B30 with the addition of GNPs in biodiesel blends. However, if the concentration in GNP is increased 
further, the HC emissions are reduced significantly. The CO emission was also increased with the 
increasing engine speeds. This is valid for all tested blends. The reason for this observation is caused 
by the difference in air-fuel quantity entering the combustion chamber for different engine operating 
conditions. Normally, NOx emissions contributed to the high temperature in the cylinder. The high 
temperature oxidized the nitrogen which is the main component of air sucked by the engine. In 
Razzaq’s experiment, the addition of GNPs in biodiesel blends reduced the NOx emission. This 
happens because GNP’s presence improved the ID period. 

Nivin Chacko [69] used GNP in an experiment that also showed a reduction in emissions, 
particularly NO. El-Seesy [70] discovered a reduction in emissions after using graphene nanoplatelets 
as an additive in jatropha biodiesel-diesel fuel. NOx, CO, and UHC emissions were reduced by 45 
percent, 55 percent, and 50 percent, respectively. Another study by Debbarma discovered that 
adding 75 ppm of GNP to biodiesel improved engine performance, particularly BTE, BSFC, and 
combustion behaviour, especially at higher loads [71]. Figure 5 depicts a bar chart that depicts the 
various effects of carbon-based fuel additives on engine emissions.  

 

Figure 5. Comparison of emissions in percentage difference to base fuel with the addition 
of carbon-based additives. 

In addition, a table to summarise the results from different experiments is depicted in Table 4 
below: 
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Table 4. Effects of fuel additives on internal combustion engine performance and emissions. 

Gaseous Additives 

Ref. Engine Fuel Additive Method Performance Emissions

[29] 4-cylinder 

Diesel 

B20 Al2O3 + H2 Full load between 

1200–2800 rpm 

Power ↑ 

BTE ↑ 

BSFC ↓

CO ↓ 

CO2 ↑ 

NOx ↑ 

[37] 1-cylinder 

Diesel 

B20 

 

H2 Full load. 

Various speed 

Torque ↑  

Power ↑ 

BTE ↑ 

CO ↓ 

CO2 ↓ 

HC ↓ 

NOx ↑ 

[43] 1-cylinder 

Diesel 

Diesel H2 Constant speed 

1500 rpm 

BTE ↑ 

 

CO ↓ 

CO2 ↓ 

HC ↓ 

NOx ↑ 

[45] 1-cylinder 

Diesel 

Biodiesel Acetylene 1500 rpm 

Different loads 

BTE ↑ 

 

CO ↓ 

HC ↓ 

NOx ↓ 

[38] 4-cylinder 

diesel 

diesel LPG different Speeds 

and loads

Torque ↑ 

Power ↑

HC ↓ 

NOx ↓ 

Liquid Additives 

Ref. Engine Fuel Additive Method Performance Emissions

[48] 1-cylinder 

Diesel 

Hydrous 

ethanol-

Diesel 

Pentanol and 

Octanol 

Different blends at 

different loads 

Power ↓ 

BTE ↑ 

BSFC ↑

CO ↓ 

CO2 ↓ 

NOx ↓ 

[72] 1-cylinder 

Diesel 

Diesel Alcohol Constant speed 

2500 rpm. 

Different alcohol 

percentage.

BTE ↓ 

 

CO ↓ 

HC ↑ 

NOx ↑ 

[52] 1-cylinder 

Diesel 

Biodiesel Pentanol 3000 rpm 

Different engine 

loads

BSFC ↑ 

BTE ↓ 

CO ↓ 

CO2 ↑ 

NOx ↓ 

Solid Additives (Metal-based) 

Ref. Engine Fuel Additive Method Performance Emissions

[73] 1-cylinder 

Diesel 

biodiesel CuO Various loads BTE ↑ 

BSFC ↓ 

CO ↓ 

HC ↓ 

NOx ↑ 

[62] 1-cylinder 

Diesel 

Diesel-

methanol 

Al2O3 Constant speed 

1400 rpm. 

Different loads

BTE ↑ 

BSFC ↓ 

CO ↓ 

HC ↓ 

NOx ↑ 

[60] 1-cylinder 

Diesel 

Waste 

Cooking 

Biodiesel 

TiO2 Various engine 

speeds. Full load 

Torque ↑  

Power ↑ 

BSFC ↓ 

CO ↓ 

CO2 ↑ 

HC ↓ 

NO ↑ 

Continued on next page
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Solid Additives (Carbon-based) 

Ref. Engine Fuel Additive Method Performance Emissions

[63] 1-cylinder 

Diesel 

Diesohol 

(diesel + 

alcohol) 

CNT Full load at 

different rpm 

Torque ↑  

Power ↑ 

BTE ↑ 

BSFC ↓

CO ↓ 

CO2 ↓ 

HC ↓ 

NOx ↑ 

[67] 1-cylinder 

Diesel 

Diesel & 

Diesel-

biodiesel 

blend 

MWCNT Constant speed 

1500 rpm. 

Different loads 

BTE ↑ 

BSFC ↓ 

CO ↓ 

NOX↓ 

[64] 1-cylinder 

Diesel 

Diesel-

biodiesel 

blend 

CNT Full load. Different 

blends and speed 

Power ↑ 

Torque ↑  

BTE ↓ 

BSFC ↓

CO ↓ 

CO2 ↑ 

HC ↓ 

NOX ↑ 

[66] 1-cylinder 

Diesel 

Palm oil 

biodiesel 

Graphene 

Oxide 

Nanoplatelets 

(GNP)

Varying engine 

speed. Different 

blends 

BTE ↑ 

BSFC ↑ 

 

HC ↓ 

CO ↑ 

NOX↓  

[74] 1-cylinder 

Diesel 

Jatropha 

biodiesel 

Graphene 

Nanoplatelets 

(GNP) 

Different Speeds, 

different loads, 

different fuel 

blends

BSFC ↓ CO ↓ 

HC ↓ 

NOX ↓ 

 

7. Prediction of the effects on performance and emissions 

Further, the study extends to the prediction of the effects on the performance and emissions of a 
diesel engine. The articles with predictions or simulations of the effects are being studied. Different 
research articles with additional predictions on the additive effects on the performance and emissions 
are selected. The following is a table summary of the effects that additives have on performance and 
emissions. 

In addition to understanding the effects the additive has on the fuels, the researchers go on further 
to predict the engine performance and emissions. The most popular method to predict the response of 
different factors in a study is called response surface methodology (RSM). 

According to Table 5, no prediction research has been conducted on the effects of graphene additives 
on the performance and emissions of diesel engines. As a result, this is an opportunity for research to 
fill this gap.  
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Table 5. Predictions on the effects of fuel additives on engine performance and emissions. 

No Base fuel Additives/blends Parameters Prediction Method Software/Tool Reference

Liquid Additives 

1 Waste plastic 

oil 

ethanol HC, CO, SFC DOE with Full 

factorial design 

Minitab [75] 

2 diesel DME BTE, BSEC Double Weibe - [76]

3 diesel higher alcohol additive 

(Decanol) 

BSFC, BTE, 

CO, CO2, HC, 

NOx

ANN and RSM Design Expert [77] 

4 diesel pongamia methyl 

esters 

BTE, UHC, 

NOx

RSM Minitab [78] 

Gaseous Additives 

5 diesel CNG BSFC, BTE, 

CO, CO2, HC, 

NOx

RSM Minitab and 

Design Expert 

[35] 

6 diesel LPG BSEC, BTE Fuzzy Logic ANFIS [79]

7 diesel Hydrogen 

 

CO, CO2, HC, 

NOx

DOE with Taguchi Minitab [80] 

Solid Additives (Metal) 

8 biodiesel NiO BSFC 

NOx, HC, CO

RSM Design Expert [81] 

9 biodiesel Alumina nanoparticles BSFC, BTE, 

CO, NOx

RSM Design Expert [82] 

10 biodiesel TiO2, and Al2O3 

nanoparticles  

BSFC, BTE, 

CO, NOx

RSM Design Expert [83] 

Solid Additives (Carbon based) 

11 diesel and 

biodiesel 

MWCNT BSFC, CO, 

NOx

RSM Design Expert [83] 

12 diesel and 

biodiesel 

MWCNT BTE, BSFC, 

UHC, CO, NOx

RSM Design Expert [84] 

13 fusel oil nano- biochar Torque, Power, 

BSFC, BTE, 

CO, NOx

RSM Design Expert [85] 

8. Conclusion and future recommendation 

According to the review, many different types of fuel additives have been developed. Many 
additives were available in gaseous, liquid, and solid forms. Many solid materials are being considered 
as fuel additives as nanotechnology advances. Carbon-based nanomaterials have shown a lot of 
promise in terms of improved performance and lower emissions. New graphene materials have also 
been discovered and added to the list of additives; however, the depth of research is still insufficient. 
More information on various types of engines and configurations would aid us in establishing greater 
accuracy on this subject.  
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