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Abstract: This paper presents a bibliographical survey of the work carried out to date on the solid 

state transformer (SST). The paper provides a list of references that cover most work related to this 

device and a short discussion about several aspects. The sections of the paper are respectively 

dedicated to summarize configurations and control strategies for each SST stage, the work carried 

out for optimizing the design of high-frequency transformers that could adequately work in the 

isolation stage of a SST, the efficiency of this device, the various modelling approaches and 

simulation tools used to analyze the performance of a SST (working a component of a microgrid, a 

distribution system or just in a standalone scenario), and the potential applications that this device is 

offering as a component of a power grid, a smart house, or a traction system. 
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1. Introduction 

The future smart grid is being designed to mitigate or avoid consequences derived from power 

quality events (e.g., voltage sags), improve reliability indices (e.g., by reducing the number of 

interruptions and their duration), and increase the system efficiency (e.g., by reducing losses). The 

increasing penetration of renewable generation and a fast implementation of the electric vehicle are 

two trends that can stress the current grid by causing voltage variations larger than those the system 

can withstand. A solution for many of these problems is the Solid State Transformer (SST). 
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Transformers are widely used to perform functions such as voltage transformation and isolation. 

Although the conventional transformer has been, and still is, the traditional link between end-users 

and the distribution network, the high-frequency SST design could cope with many of the challenges 

of the future smart grid since it can enhance power quality performance and expand the capabilities 

of the conventional transformer: voltage sag compensation, instantaneous voltage regulation, 

harmonic compensation, power factor correction, auto-balancing, short-circuit protection, variable-

frequency output, bidirectional power flows. Since the size of a conventional copper-and-iron based 

transformer is inversely proportional to the operating frequency, an increase of this frequency would 

provide a higher utilization of the magnetic core and a reduction in transformer size. In addition, the 

SST can be used as a link between standard ac power-frequency systems and systems operating with 

either dc or ac at any power frequency. 

The first patent on a device that could be seen a predecessor of the current SST designs was 

presented in 1992 [1]. Since then several patents have been presented; see, for instance [2–5]. 

The SST design can be seen as a universal interface that can provide not only power quality 

improvements but efficient management of distributed resources. By incorporating the SST, utilities 

can integrate various power requirements, monitoring, and communications into a universal 

customer interface such as the SST, which can also provide some operational benefits (e.g., reduced 

environmental concerns by introducing a design that does not use liquid dielectrics, efficient 

management of distribution resources by incorporating online monitoring and other automation 

functionalities). The goal of this paper is to provide a bibliographical review of the work carried out 

to date on the SST. The main contribution of this work is a list of references ordered by publication 

year. However, since there are many aspects of the SST that make this device so attractive as a 

component of the future power systems, several short sections have been included to discuss some 

important features of the SST. Each section is aimed at summarizing the current status with a 

selection of relevant works. Readers interested in an introduction to the SST can consult  

references [6–8]. 

Although the list of references covers SST designs of various voltage levels and different 

applications, it might be assumed by default that the primary SST application is to function as a 

medium voltage/low voltage (MV/LV) distribution transformer. Since standardized voltages used for 

MV distribution grids are usually equal or higher than 10 kV, multilevel topologies must be 

considered for the MV side of the SST if conventional Si-based semiconductors are used. In general, 

it can be assumed that if the highest SST voltage is equal or above the lowest standardized  

voltage (i.e., 3.3 kV), a SST design must be based on a multilevel converter configuration at the MV 

side.  

Different topologies of multilevel converters have been proposed for SST applications. 

Irrespective of the selected topology, the operation of a multilevel converter has to face important 

challenges (e.g., capacitor voltage balancing and complex control strategies). Once the converter 

topology has been selected, the selection of a proper control strategy for each SST stage becomes 

crucial for a correct performance of the device. In addition, the SST capabilities (e.g., bidirectional 

power flow, harmonic compensation, current balance) and performance (e.g., reliability, efficiency) 

are closely connected with the selected configuration and control strategies; Section 2 provides a 

summary of the work related to multilevel converter designs for SST implementation and the 

corresponding control strategies. A fundamental component of the SST is the high-frequency 

transformer (HFT); Section 3 summarizes the current state of HFT designs for SST implementation. 
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It is widely accepted that the efficiency of current SST designs is lower than that of their 

conventional iron-and-copper counterpart; Section 4 discusses this aspect and reviews the main 

works related to analyze SST efficiency.  

The performance and benefits of the SST as a part of large distribution system can be predicted 

by implementing and testing reliable and accurate computer models; Section 5 summarizes the work 

carried out on modelling and simulation of the SST, including the experience collected with real-

time simulation platforms.  

The SST can be seen as a replacement of the conventional transformer. However, the foreseen 

applications of the SST cover an area wider than that of the conventional transformer. Section 6 

summarizes the work dedicated to date for fixing the potential applications of the SST. 

Other important aspects, such as the semiconductor technologies that could be adequate for this 

device are not covered here. Readers are referred to the literature; see for instance [6–12]. 

Although other designations have been used to name this device (i.e., Intelligent Universal 

Transformer, Electronic Power Transformer), this paper exclusively uses the acronym SST to name it. 

2. SST topologies and control strategies 

2.1. Introduction 

If it is assumed that the SST can be used to link DC and AC systems running at medium and 

low voltage levels, a very high number of combinations may result; for instance, the SST can be used 

to link MV and MV, MV and LV, or LV and LV DC and/or AC systems. Remember that in case of 

AC systems, they can be single- or multi-phase. In fact, a myriad of configurations have been 

proposed and even analyzed under the concept SST (or any other designation used to date for this 

device). To facilitate the study, those configurations will be classified taking into account the number 

of stages and the configuration of converters to be installed at both MV and LV sides.  

Figure 1 shows three examples of single-phase SST configurations that can be used to illustrate 

the concept of stage when applied to this device. One can observe that a common component to all of 

these configurations is the HFT. For a discussion about SST configurations taking into account the 

number of stages, see [13]. SST MV-side converters must be multilevel. Although many 

configurations have been proposed, multilevel converters can be broadly classified into two main 

groups, depending on whether the configuration is based on a cascaded connection of converters or 

not; Figure 2 shows two examples.  

On the other hand, note that Figure 2b displays only the MV input stage. As for LV converters, 

those for three-phase systems can be classified into two groups depending on whether they have 

three or four wires (i.e., they include the neutral). The control strategies to be used in a SST will 

depend of the overall configuration, the topology selected for each SST stage, and the desired 

functionalities. The rest of this section provides a short summary of the work carried out to date on 

these topics. For a discussion of SST configurations and control strategies, see reference [14]. Table 

1 provides a short list of the SST prototypes presented to date.  

Other SST prototypes, not listed in the table, were presented in [15–50]. 



294 

AIMS Energy                                                       Volume 6, Issue 2, 291–338. 

 

a) Single-stage SST 

 

b) Two-stage SST 

 

c) Three-stage SST 

Figure 1. Different single-phase SST topologies. 

 

 

a) Cascaded multilevel configuration b) MMC-based configuration—MV side 

Figure 2. Different configurations for multilevel converters to be used at the SST MV side. 
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Table 1. SST Prototypes. 

Ratings Configuration Control Capabilities Laboratory tests Refs. 

10 kVA, 

7.2 kV/240V 

Three stage, 

cascaded H-bridge 

PWM Unidirectional power 

flow, power-factor 

correction 

Steady state, load unbalanced [51,52] 

20 kVA, 

2.4kV/120-240 

VAC or 48V DC 

Single phase, three 

stage, NPC 

multilevel, 

multiport-output 

DC/AC inverter 

PWM Unidirectional power 

flow 

Steady state, load change, 

load unbalance, voltage sag, 

nonlinear load,  

[53–55] 

50 kVA, 

2.4 kV/240V/ 

120V 

Three stage, Three 

level NPC in MV 

side 

PWM Voltage sag 

compensation, fault 

isolation 

voltage sag, load variation, 

load unbalance 

[56]  

5 kVA,  

220 V/380 V 

Two stage, direct 

AC/AC high-

frequency link, dual 

bridge matrix 

converter topology 

PWM bidirectional power 

flow, low harmonic 

distortion 

Load unbalance, unbalanced 

input voltage 

[57] 

100 kVA, 13.8 

kV/120V or 240 V 

Three phase, three 

stage, cascaded 

blocks  

PWM Unidirectional power 

flow 

Steady state, load unbalance, 

voltage sag, non-linear load, 

load variation, capacitor 

switching transient, 

[58] 

1.5 kW, 

230 V/39V 

Three stage, 

cascaded H-bridge 

PWM Bidirectional power 

flow, harmonic 

voltage compensation, 

reactive power 

compensation 

Voltage sag, nonlinear load [59] 

2 kW, 110V/20V Single-stage, 

AC/AC, two level 

PWM Bidirectional power 

flow, maximum 

power-point tracking 

Steady state [60] 

20 kVA, 

7.2 kV/240 V 

Three stage, 

cascaded H-bridge 

PWM Bidirectional power 

flow 

Steady-state [61–71] 

54 kW, 1.5 

kVAC/60VDC 

Two stage, cascaded 

H-bridge 

PWM Bidirectional power 

flow 

Steady state, load variation, 

power flow reversal 

[72,73] 

1 kW, 

208V/120V 

Three-stage, two 

level 

PWM Bidirectional power 

flow 

Start-up transient [74] 

100 kW,  

10kVAC/750VDC 

Two stage, 

AC/DC/DC, MMC 

PWM Bidirectional power 

flow 

Steady state [75] 

2 kVA, 

1.9 kV/127 V 

Three stage, 

multilevel converter  

PWM, ZVS  Bidirectional power 

flow, voltage sag 

compensation 

Steady state, voltage sag, 

power flow reversal 

[76,77] 

10 kW, 

3.6 kV/120 V 

Three stage, two 

level 

PWM Bidirectional power 

flow, harmonic 

voltage compensation 

Steady state, nonlinear load, 

load variation 

[78–82] 

1 kW, 353.55/220 Two stage AC/AC, 

MMC 

PWM Unidirectional power 

flow 

Steady state [83] 

600 kVA,  

3.3 kV DC/3.3 kV 

DC 

Three stage, 

cascaded H-bridge 

in MV side  

PWM Bidirectional power 

flow 

Steady state [84] 

5 kW, 3300V AC/ 

380VDC 

Two stage, cascaded 

H-bridge  

Phase shift 

modulation 

Bidirectional power 

flow 

Steady state [85] 

2 kVA, 

380V/120V 

Three stage, 

cascaded  

PWM Bidirectional power 

flow 

Steady state, power flow 

reversal, startup transient  

[86] 

5.8 kVA, 5KVDC/ 

800VDC 

Three stage, NPC 

with SiC 

PWM Bidirectional power 

flow 

Steady state [87] 

Continued on next page 
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Ratings Configuration Control Capabilities Laboratory tests Refs. 

2 kW,  

300 V/60 V 

Three stage, two 

level 

PWM Bidirectional power 

flow 

Steady state, load variation [88] 

50 kVA, 

480V/480V  

Single stage, Dyna-

C AC/AC topology 

PWM Bidirectional power 

flow  

Steady state [89,90] 

150 kVA, 

port1:750VDC 

port2:375VDC 

port3:750VDC 

Triple active-bridge 

with energy storage 

Phase shift 

modulation 

Bidirectional power 

flow 

Steady state [91,92] 

2 kW, 400V/208V Single stage, 

AC/AC, matrix 

based 

Predictive 

Control 

Bidirectional power 

flow 

Steady state, load variation, 

unbalanced voltage and 

current  

[93,94] 

3-kVA, 

2.4kV/127V 

Three stage, two 

level 

PWM Unidirectional Steady state, nonlinear load [95] 

10 kVA,  

208 V 

Single stage 

AC/AC, two level 

ZVS Bidirectional power 

flow 

Steady state [96] 

2 kW, 

600VDC/200VDC 

Three phase 

modular multilevel 

dc/dc converter 

PWM, ZVS, 

dual-phase-shift 

method 

Bidirectional power 

flow 

Steady state [97] 

10 kVA, 

3.8 kVDC/ 

200VDC  

Three stage, single 

phase single 

converter cell based 

SST for wind energy 

conversion system 

PWM Bidirectional power 

flow 

Steady state, load variation [98] 

2.2. Converter topologies for SST application 

The possible configuration of a SST has been analysed in many works. References [13,99–109] 

are some of the works in which the SST configurations were analysed and/or compared. With respect 

to the number of stages, the main conclusions from the present literature can be summarized as 

follows: single- and two-stage topologies provide limited functionalities as compared to three-stage 

topologies, which can provide all the desired SST functionalities while simplifying the control design. 

A list of selected references in which some of the most popular SST configurations were analyzed is 

presented below. 

Three possible topologies for the higher voltage side of a SST were identified in [101]: the 

diode clamped multilevel converter, the flying capacitor multilevel converter, and the series stacked 

converter. Reference [110] analyzed different topologies that can provide a reliable energy 

management with the SST. References [111,112] proposed a two-level three-stage bidirectional SST. 

For the MV side converter configuration, references [113–115] proposed a neutral point 

clamped (NPC) topology; references [10,116] presented a cascaded H-bridge multilevel inverter 

configuration, while references [106,107,109,117] suggested a modular multilevel converter (MMC) 

configuration.  

References [89,90] proposed a bidirectional SST configuration, named as dynamic-current (or 

Dyna-C), with a minimal device count: the topology has two current-source inverter stages with a 

high-frequency galvanic isolation, and 12 switches for four-quadrant three-phase ac/ac power 

conversion. The input and output stages can work with arbitrary power factors and frequencies. 

Dyna-C can be configured as isolated power converters for single- or multi-terminal dc, and single- 
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or multiphase ac systems. Its modular nature allows Dyna-C to be connected in series and/or parallel 

for high-voltage high-power applications. 

References [118,119] presented a 270 kVA SST based on 10 kV SiC MOSFET: five levels were 

needed in order to support a 24 kV input voltage; each device has a 10 kV blocking capability. Three 

flying capacitors enable the operation of zero voltage switching (ZVS) with phase shift control. 

Reference [120] introduced a new SST topology that included a reduced number of SiC MOSFETs 

and smaller switching losses. 

The configuration of the SST has been the subject of many other works; see [107,121–158]. 

2.3. Control strategies 

A three-stage SST includes up to four different converters (see Figure 1c). Dozens of strategies 

have been proposed for controlling the various converters of a SST; they primarily depend on each 

converter configuration and the SST functionalities (e.g., bidirectionality). A summary of control 

strategies used with lab prototypes is provided in this subsection. For a discussion on strategies to be 

used with a three-stage SST, see [14]. 

Reference [159] presented a linear-quadratic-regulator with integral action to improve dynamic 

performance; the integral action is added to cancel the steady-state errors. 

A source-based commutation method for a HFT controlled through a matrix converter was 

proposed in [160–162]. 

Reference [163] presented a simple predictive control technique for multilevel configurations 

either on the line-side (high voltage) or on the load-side (low voltage); the control is performed in 

two steps: (i) generation of the reference value of the primary current; (ii) evaluation of the 

optimized delay-angle between primary and secondary voltages using a predictive algorithm. 

An energy-based control design method for a three-stage cascaded multilevel SST was proposed 

in [164]; by selecting the total energy in the two dc link capacitors as the control objective, this 

approach resulted in a control design. 

An advanced control methodology based on fuzzy logic controllers was proposed in [165–167]. 

 References [65,168] analyzed up to four different control strategies for a 20 kVA SST with a seven-

level cascaded rectifier stage, three output parallel dual active bridges (DAB), DC/DC stage and an 

inverter stage. References [169,170] studied soft-switching techniques for MV isolated bidirectional 

DC/DC NPC-based converters. 

A control strategy for a cascaded H-bridge based converter was proposed [171]: the input-stage 

part was responsible for the power quality improvement and high-voltage DC link voltage balance; 

the DAB stage was responsible for maintaining the low-voltage DC link voltage; the output-stage 

part was responsible for the output terminal voltage regulation and parallel module current sharing 

control. Power synchronization and interleaving modulation were adopted in the output-stage part. 

Reference [68] presented a cascaded H-bridge converter-based SST to interface a 7.2 kV AC 

grid and a 400 V DC distribution; a single-phase dq vector control was used. A new voltage balance 

control method was proposed to resolve the voltage unbalance of the dc links in H-bridges; see  

also [85,172].  

A hierarchical power management strategy, including primary, secondary, and tertiary control, 

for a DC microgrid was proposed in [70,173]. 
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Reference [174] investigated the concept of convertible static transmission controller (CSTC) 

using modular converter. Algebraic models of the CSTC were derived in two different  

configurations (series–shunt and shunt–shunt). 

References [175–177] analyzed the black start operation of a single phase SST with the master-

slave control mode and using dual loop structures.  

Reference [178] proposed a current sensorless controller for balancing the power in the DC-DC 

stage of a cascaded multilevel converter-based SST; the equalization of the active power component 

of duty cycles in the cascaded multilevel rectifier stage can be a good indicator of power balance. 

Additionally, the power balance of the DC-DC stage can guarantee the voltage balance in the 

rectifier stage if the differences among the power devices are negligible. Reference [179] proposed a 

trapezoid current modulated discontinuous conduction mode AC-DC DAB converter for a two-stage 

SST; the soft switching converter exhibited a high efficiency, and could be operated in open loop 

control without current sensors.  

Reference [116] presented a power and voltage balance control scheme of a cascaded H-bridge 

modular inverter for microgrid applications operating under unbalanced conditions; the control 

method was designed to address the presence of power and voltage unbalance.  

A control architecture with two communication networks aimed at improving the 

communication modularity among power modules of a SST was presented in [180]. The 

communication structure was based on a two full-duplex RS-485 networks (one for each SST side) 

from which the central unit communicates and controls the local units using of a custom protocol. 

Reference [181] proposed a sliding mode control scheme for the rectifier stage with constant 

power load. This approach can stabilize the dc-link voltage and guarantee the input current 

sinusoidal in the presence of significant variations in the load power.  

References [93,94,182,183] presented a predictive control for a matrix converter-based SST; the 

goal was to reduce the complexity of the traditional modulation strategy and improve its performance.  

Other works related to control strategies of SST were presented in [128,150,152,158,184–218]. 

3. High-frequency transformer 

The high-frequency transformer (HFT) is a fundamental component of the SST, and a 

requirement to achieve a reduction of size with respect to conventional transformers. To fulfill high-

voltage, high-power, and high-frequency operation requirements, several issues and challenges need 

to be addressed [9]: (i) the selection of the magnetic material is critical to achieve high power density 

and low losses; (ii) the winding configuration can significantly affect the efficiency at high  

frequency; (iii) thermal behavior is a challenge to consider in order to avoid breakdown for a high-

voltage and high-power designs; (iv) a high-voltage operation makes the insulation requirement 

another challenge, especially when oil is eliminated and a compact design is required.  

It is important to keep in mind that a higher frequency causes extra losses in the magnetic  

core (as a result of eddy currents) and in windings (due to skin and proximity effects); that is, a 

volume reduction at higher frequencies is at the expense of increased (core and winding) losses. A 

thermal management strategy is also important to more accurately evaluate the power losses.  

Consequently, multiple degrees of freedom exist when optimizing the design of a HFT; they can 

be categorized in electric, geometric, and material parameters. For instance, two electric parameters 

to be accounted for are the number of turns (it determines the ratio of flux density and current density, 
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so it has to be set such that the sum of core and winding losses is minimized) and the operating 

frequency (when increased it reduces the core losses but increases the proximity losses in the 

winding and the switching losses of the semiconductors). Two very important specifications of a 

HFT are the power rating and the operating frequency since, when combined with the magnetic core 

and conductor materials, they strongly influence the efficiency and power-density. 

Reference [219] proposed a transformer for 12 and 24-pulse rectifier systems; a size reduction 

of 1/3 with respect to a conventional 60 Hz design could be achieved by operating the transformer 

core at 990 Hz and utilizing conventional grain oriented steel. 

Reference [61] proposed optimum size and weight reduction of a 7 kVA dry-type HFT, whose 

high-voltage side insulation should withstand 15 kV. The design required a relatively high leakage 

inductance (lack of leakage inductance may lead to additional inductors which results in higher size, 

weight, and cost), so meeting the leakage inductance requirement became an important issue. Since 

the leakage inductance depends on the winding arrangement and the number of turns, to adjust the 

leakage flux, a two-winding arrangement (the windings on both sides are totally separated and one 

winding is totally covered up with the other winding) and several core materials were considered. 

Metglas amorphous alloy cores turned out to be the best choice.  

Reference [220] presented an accurate equivalent circuit of a MV coaxial winding by 

comparing results from a finite element method (FEM) and lab measurements. The design provides 

uniformly and symmetrically distributed electromagnetic flux with good electric and magnetic 

shielding. An overall efficiency of 99.5% remaining below 100 °C under oil-free and natural 

convection was achieved for a 30 kVA transfer.  

Reference [221] presented the optimization of a HFT with different targets (i.e., weight, volume, 

and cost) under certain constraints like a given cooling performance, insulation requirements, and 

selected semiconductors. By means of a detailed transformer model it was possible to find the 

optimum frequency with respect to size, weight or efficiency for different designs, and 

systematically investigate improvements arising from different core materials, wire structures, 

geometries and cooling designs.  

A design and optimization method for HFTs was proposed in [9]. The authors carried out a 

comparison of different magnetic materials; the main conclusion was that a nanocrystalline core is 

the option that better satisfies both power density and efficiency requirements.  

Reference [222] presented the optimization of a water-cooled HFT prototype for maximum 

power density and efficiency; the electric and thermal specifications, as well as certain dimensions 

that define clearance space and cooling system, were specified.  

Reference [223] presented an optimization methodology applied to a 50 kW, 5 kHz HFT, and 

aimed at finding the highest power density while the efficiency, isolation, thermal and leakage 

inductance requirements are meet taking into account thermal management.  

Reference [224] proposed a toroidal design for a Metglas core using a procedure aimed at 

optimizing the number of turns and minimizing (core plus winding) losses.  

Reference [225] detailed an optimization procedure for a 166 kW/20 kHz prototype. The 

authors could achieve 99.4% efficiency at a power density of 44 kW/dm
3
. As a consequence of the 

relatively high-power rating, the cooling system became a major challenge. The work also provided 

analytic solutions for high-frequency losses, which were separated into skin and proximity losses.  

Reference [226] presented the optimal design of 20/0.4 kV HFT; the goal was to maximize 

efficiency and power density, and minimize weight. The maximum allowable temperature rise was 
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considered as an inequality constraint while desired values of leakage and magnetizing inductances 

were considered as equality constraints. Results did show that an efficiency and power density above 

99.70% and 13 kW/dm
3
 can be achieved using a nanocrystalline-based core.  

For more details on the design of HFTs for SST applications, see references [202, 227–236]. 

4. Solid state transformer efficiency 

It is widely accepted that the efficiency of the current SST designs is lower than that of their 

conventional iron-and-copper counterpart; see, for instance, [6,8,237]. To accurately evaluate SST 

efficiency, the losses of all SST components must be taken into account; these losses include 

conduction and switching losses in power electronics converters, filter and HFT losses. The losses 

can be estimated through experimental test setups or by detailed modelling in simulation tools such 

as Matlab/Simulink or EMTP-like tools. The lower SST efficiency is basically due to the high losses 

of power electronic converters and the need of filters at both SST sides.  

There are some great challenges regarding to the design of efficient converter topologies. 

Standardized voltages equal or above 10 kV are considered for MV side applications by most 

utilities. Since the maximum operating voltage of Si semiconductors is about 3.6 kV, multilevel 

topologies are necessary for the MV side of actual SST configurations. An alternative is to use SiC 

semiconductors. Although, this technology is not mature enough at the time this work is prepared, it 

appears as one of the best options for highly efficient and compact SST designs.  

Basically, the improvement of SST efficiency can be accomplished by means of the following 

approaches: (i) advanced converter configurations combined with optimized control strategies for all 

SST stages; (ii) optimized design of the HFT; (iii) use of wide band gap semiconductors (i.e., SiC), 

since they can provide lower losses even when working at higher switching frequencies. This latter 

improvement is due, among other things, to the significant reduction of the number of 

semiconductors that can be accomplished with this technology.  

Although not many works have been dedicated to the estimation and reduction of SST losses, 

some experience is already available.  

An interesting conclusion of a study presented in [238] was that soft switching control might be 

a good option for enhancing SST efficiency.  

Reference [239] analyzed the efficiency of five different topologies of SST with considering 

commercially available Si semiconductors. Reference [240] studied the efficiency of three modular 

SSTs under daily loading profile. A computer model for representing semiconductor losses was 

proposed in [241].  

Reference [242] analyzed the behavior of a SST model implemented in OpenDSS for power 

flow calculations; the SST efficiency was estimated as a function of load level and power factor. 

The efficiency of the SST was also analyzed in [100,137,140,232,243–259]. 

5. Computer modeling and simulation 

The SST is a versatile device that can provide new power quality solutions to the future smart 

grid. Given the complexity of the actual designs and the difficulties that arise when its performance 

as component of an actual power system has to be analyzed, computer-based simulation appears as a 

reasonable alternative.  
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A significant experience is already available in SST modeling. Several types of SST models 

have been developed and tested; they depend of the application to be analyzed and can be 

categorized into three main types: switching (detailed) models, average models, and steady-state 

models. Other approaches (i.e., state-variable model) have been considered. Table 2 provides a 

selection of SST models implemented to date; the table provides the main characteristics of the 

implemented models, the simulation tool and the modeling approach. 

Table 2. SST simulation tools. 

Simulation tool Modeling approach Configuration References 

Matlab/Simulink Switching model Single phase, three-stage, multilevel [59,262]  

Matlab/Simulink Switching model Single phase, three stage, multilevel, bidirectional [68]  

Matlab/Simulink Average model Three phase, three stage, multilevel, bidirectional [84]  

Matlab/Simulink Switching model Three phase, single stage, multilevel, bidirectional [97]  

Matlab/Simulink Switching model Single phase, three stage, multilevel, bidirectional  [106,107,109,281]  

Matlab/Simulink Average model Three phase, three stage, two level, bidirectional [111,112,279,280]  

Matlab/Simulink Switching model Three phase, three stage, multilevel, bidirectional [117,241]  

Matlab/Simulink Average model Three phase, three stage, two level, bidirectional [159]  

Matlab/Simulink Switching model Three-phase, single-stage, two level, bidirectional [160,162,263–267]  

Matlab/Simulink Average model Single phase, three stage, multilevel, bidirectional [164,270] 

Matlab/Simulink Average model Single phase, three stage, multilevel, bidirectional [168]  

Matlab/Simulink Average model Single phase, three stage, multilevel, bidirectional [173]  

Matlab/Simulink Switching model Three phase, single stage, two level, bidirectional  [260]  

Matlab/Simulink Average model Three phase, three stage, two level, bidirectional [261]  

Matlab/Simulink Average model Three phase, three stage, multilevel, bidirectional [268]  

Matlab/Simulink Average model Single phase, three stage, multilevel, bidirectional [269]  

Matlab/Simulink Switching model Three phase, three stage, multilevel, bidirectional [271]  

Matlab/Simulink Average model Three phase, three stage, two level, bidirectional [272]  

Matlab/Simulink Switching model Three phase, three stage, two level, bidirectional  [273,274] 

Matlab/Simulink Switching model Single phase, three stage, multilevel, bidirectional [275–277] 

Matlab/Simulink Switching model Three phase, three stage, two level [278] 

Matlab/Simulink Switching model Three phase, three stage, multilevel, bidirectional [282] 

Matlab/Simulink Switching model Three phase, three stage, two level, bidirectional  [283] 

Matlab/Simulink Average model Single phase, three stage, two level, bidirectional [284]  

Matlab/Simulink Switching model Three phase, three stage, two level , bidirectional [285]  

Matlab/Simulink Average model Three phase, two stage, multilevel, bidirectional [286]  

Matlab/Simulink Average model Single phase, two and three stage, two level, bidirectional [287] 

Matlab/Simulink Switching model Single phase, two stage, two level, bidirectional [288]  

Matlab/Simulink Switching model Three-phase, three-stage, multilevel, bidirectional [289]  

Matlab/Simulink Switching model Three phase, three stage, multilevel, bidirectional [290] 

Matlab/Simulink Switching model Three phase, three stage, two level, bidirectional [291] 

Matlab/Simulink Average model Single phase, three stage, two level, bidirectional [292]  

Matlab/Simulink Switching model Three phase, three stage, two level, bidirectional [293] 

Matlab/Simulink Switching model Three phase, three stage, multilevel, bidirectional [294] 

Matlab/Simulink Switching model Single phase, two stage, multilevel, bidirectional [295]  

Continued on next page 
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Simulation tool Modeling approach Configuration References 

Matlab/Simulink Switching model Single phase, three stages, multilevel, bidirectional [296] 

Matlab/Simulink Average model Single phase, two stage, two level, bidirectional [297] 

Matlab/Simulink Switching model Three phase, three stage, two level, bidirectional [298] 

Matlab/PLECS Average model Single phase, two stage, multilevel, bidirectional [62] 

Matlab/PLECS Switching model Single phase, three stage, two level, bidirectional [177]  

Matlab/PLECS Switching model Single phase, single stage, multilevel, bidirectional [299]  

Matlab/ PLECS Average model Single phase, three stage, two level, bidirectional [300,301]  

Matlab/PLECS 
Switching/Average 

models 
Single phase, three stage, two level, bidirectional [302] 

Matlab/PLECS Switching model Three phase, three stage, multilevel [303] 

Matlab/PLECS Switching model Single phase, two stage, two level, bidirectional [304] 

Matlab/PLECS/RTDS Average model  Single-phase, three-stage, two level, bidirectional [305] 

PLECS Switching model Three phase, single stage, two level, bidirectional [306]  

PLECS Average model Single phase, three stage, two level, bidirectional [307] 

PLECS Average model Single phase, three stage, multilevel, bidirectional [308] 

PLECS/SPICE 
Phasor-based 

model 
Three phase, three stage, multilevel, bidirectional [309] 

PSPICE Switching model Single phase, three stage, two level, bidirectional [80] 

SPICE Switching model Single phase, two stage, two level [310,311] 

SPICE/SABER Switching model Single phase, single stage, multilevel  [118]  

SABER Switching model Single phase, single stage, two level, bidirectional [312]  

PSCAD/EMTDC Switching model Single phase, three stage, multilevel, bidirectional  [76] 

PSCAD/EMTDC Average model Single phase, three stage, multilevel, bidirectional [176]  

PSCAD/EMTDC Switching model Single phase, single stage, two level, bidirectional [313,314]  

PSCAD/EMTDC Switching model Three phase, three stage, multilevel [315] 

PSCAD/EMTDC Switching model Three phase, three stage, two level, bidirectional [316] 

PSCAD/EMTDC Switching model Three phase, three stage, multilevel, bidirectional [317] 

PSCAD/EMTDC Average model Three phase, three stage, two level, bidirectional [318] 

PSCAD/EMTDC Average model Three phase, three stage, two level, bidirectional [319] 

PSCAD/EMTDC Switching model Single phase, three stage, multilevel, bidirectional [320,321] 

PSCAD/EMTDC Switching model Three phase, three stage, two level, bidirectional [322] 

PSCAD/EMTDC Switching model Three phase, three stage, two level, bidirectional [323]  

PSCAD/EMTDC Switching model Three phase, three stage, multilevel, bidirectional [324] 

PSCAD/EMTDC Average model Single phase, three stage, two level, bidirectional [325] 

PSCAD/EMTDC Switching model Three phase, three stage, two level, bidirectional [326]  

PSCAD/EMTDC Average model Three phase, three stage, multilevel, bidirectional [327] 

PSCAD/EMTDC Switching model Three phase, three stage, multilevel, bidirectional [328] 

PSCAD/EMTDC Switching model Single stage, DC/DC, multilevel, bidirectional [329] 

EMTP/ATP Switching model Three phase, three stage, multilevel, bidirectional [115]  

EMTP/ATP Switching model Three phase, three stage, two level, bidirectional [330] 

EMTP/ATP Switching model Three phase, three stage, multilevel, bidirectional [331] 

PSIM Switching model Single-phase, two-stage, multilevel, bidirectional [85]  

PSIM Switching model Single stage, DC/DC, multilevel, bidirectional [170,333]  

Continued on next page 
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Simulation tool Modeling approach Configuration References 

PSIM Switching model Single-phase, two-stage, multilevel, bidirectional [179] 

PSIM Switching model Single stage, DC/DC, two level, bidirectional [332] 

PSIM Switching model Three phase, three stage, multilevel, bidirectional [334,335]  

PSIM Average model Single phase, single stage, two level, bidirectional [336] 

Digsilent Average model Three phase, three stage, two level, bidirectional [337] 

Simplorer Switching model Three phase, three stage, multilevel [338]  

RTDS Average model Single phase, three stage, multilevel, bidirectional [339]  

RTDS Average model Single phase, three stage, two level, bidirectional [340] 

OPAL-RT Switching model Single phase, three stage, two level, bidirectional  [341] 

Multisim/Labview Switching model Single phase, single stage, two level, bidirectional [342,343]  

OPENDSS Steady-state model Three phases, three stage, two level, bidirectional [242] 

Not much experience on SST models is currently available for steady-state power flow 

calculations. Reference [242] presented a SST model for OpenDSS implementation. The model can 

be used to explore and assess the impact of the SST on distribution system performance (i.e., in 

steady-state power flow calculations) considering either a short- or long-term evaluation.  

On the other hand, a significant experience is already available with switching (detailed) models. 

The use of these models generally requires the use of very short time-step sizes (i.e., equal or shorter 

than 1 μs), which implies long simulation times and limits the size of the system that can be 

practically analyzed. The most popular tool for this type of models is MATLAB/Simulink, although 

some important experience is also available with EMTP-like tools. 

Real-time simulation platforms are widely used for transient simulation of power systems, 

testing of protection devices, or rapid control prototyping. The need of a very short time-step for 

switching models of SSTs can be a drawback with many of these simulation platforms. To mitigate 

or circumvent this limitation the so-called dynamic average models (DAM) can be developed: a 

DAM approximates the behavior of a converter by applying the moving average operator at the 

switching frequency to the detailed switching model; the switching effects are removed from the 

model, but the dynamic behavior is preserved. DAMs, named average models hereinafter, can 

reproduce with a high accuracy the transient behavior of the original detailed switching model but 

using a larger time step size, facilitating the implementation of transient models in real-time 

simulation platforms. Figure 3 shows three different average models proposed in the literature. 

Simulation results with an average model of the three-stage SST for the Future Renewable 

Electric Energy Delivery and Management (FREEDM) green hub system were presented in [270,344].  

Reference [269] presented a SST average model that was validated by comparing results from 

those with the detailed switching model; see also [345,346].  

Reference [347] proposed a SST average model aimed at analyzing the transient performance of 

a distribution network.  

References [111] and [348] presented an average model of a bidirectional SST for feasibility 

studies and real-time implementation; several cases were studied to evaluate the behavior of the 

model under different operating conditions, check its feasibility for power quality improvements, and 

explore the implementation in a real-time simulation platform; see also [112,279]. 
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Reference [349] presented a SST average model for studying renewable energy integration. A 

three-phase test system model including substation and loads was implemented in PSCAD.  

Reference [261] proposed a model for transient stability studies; the dynamic model neglects 

high-frequency transients. To verify the accuracy of the proposed model, a comparison between 

results from such simplified dynamic model and a detailed model implemented in Matlab/Simulink 

were carried out; see also [350]. Reference [309] proposed a modular dynamic-phasor SST model for 

stability analysis; the model provided a significant reduction of simulation time. Reference [337] 

detailed the implementation of a SST model in Digsilent Power Factory; the model was based on the 

dynamic average technique and is compatible with LV-side three-phase, four-wire configuration. 

The SST performance was analyzed in [351] by means of a 70th-order state-space model. The 

system model included renewable generation and storage systems and their corresponding interface 

circuits to DC and AC buses. The model was used to evaluate the performance of a distribution 

system under grid connected and islanded conditions. 

 

a) Average model for a DC/AC inverter [269] 

 
b) Average model for a three-stage bidirectional SST [111] 

 
c) Average model for a three-stage SST [349] 

Figure 3. Some average models for the solid state transformer. 
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Reference [331] presented a model of a MV/LV bidirectional SST. A multilevel converter 

configuration of the MV side is obtained by cascading a single-phase cell made of the series 

connection of an H bridge and a dual active bridge (DC/DC converter); the aim was to configure a 

realistic SST design suitable for MV levels. The SST model, including the corresponding controllers, 

was built and encapsulated as a custom-made model in the ATP version of the EMTP for application 

in distribution system studies [115,352]. 

Reference [117] presented a model of a bidirectional MV/LV SST for distribution system 

studies. A modular multilevel converter configuration is used in the MV side of the STT. The LV 

side uses a three-phase four-wire configuration that can be connected to both load and generation. 

The model developed was implemented in MATLAB/Simulink, and its behavior was tested by 

carrying out several case studies under different operating conditions. 

Detailed dynamic analysis of buck-type SST under general load condition was presented  

in [353]; the study showed that under general inductive load condition, the open-loop system is 

marginally stable and serious output voltage oscillation can be provoked by any random disturbance 

upon input voltage, control signal or output current. 

A SST model and its mapping to IEC 61850 was presented in [354]. 

A significant experience is also available on SST modeling for implementation in real-time 

simulation platforms. Reference [302] proposed an average model suitable for simulation with RTDS; 

the model was tested and validated by comparing its performance to that of detailed full switching 

model and a cycle-by-cycle average model built in Matlab and PLECS [305].  

Reference [63] introduced the development of a platform intended as a distributed controller for 

grid intelligence system at FREEDM Systems Center. This platform can serve as a real-time local 

converter controller and a communication node for distributed deployment of energy management 

schemes. One device it controls is the SST, a key element to interface renewable energy sources to 

distribution systems in FREEDM Center. Both the hardware design and software structure for SST 

control were presented. The communication part used the Distributed Network Protocol 3.0. 

Reference [340] proposed a new protection technique for SST; it was verified by hardware in 

the loop (HIL) testing.  

Reference [95] proposed a platform based on the Xilinx Zynq®-7000 family to test SST 

performance; SST functions include: link to information and communication technologies, voltage 

transformation, integration of distributed renewable energy resources. The platform embedded a 

double-core ARM® Cortex™-A9 processor and Field Programmable Gates Array technology; all 

within a programmable system on a chip. 

The implementation and simulation of the SST in either off- and on-line simulation platforms 

has been the subject of many works not listed in Table 2; see [126,178,355–415]. 

6. Applications of the solid state transformer 

Future distribution grids will be characterized by a growing need for integration of renewable 

energy sources, energy storage devices and other smart grid technologies. The SST can perform as a 

universal interface for integrating distributed energy resources or as part of microgrids of any 

architecture. The potential applications of the SST have been analyzed in some references; see, for 

instance, [6,100,416–419]. In general, it is assumed that instead of using SST as a simple 

replacement of a conventional transformer, the SST will provide additional functionalities that could 
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significantly improve power quality. Figure 4 schematizes some potential applications of the SST in 

a future distribution system. The SST might work as an interface of a DC-based fast charger (not 

shown in the figure), a traction system, a distributed energy source with or without energy storage 

capability [300], in microgrid architectures [420], or providing reactive power compensation and 

active harmonic filtering to any type of loads. A review of the SST applications proposed in the 

literature is provided in this section. The applications have been classified into three groups: the SST 

as a component of the distribution system, application in traction systems, and other applications 

(heating, lighting, smart house). 

SST in the future grid: Reference [64] presented the next generation power distribution system 

architecture: the FREEDM system, which enables the plug-and-play of distributed renewable energy 

resources and storage devices. The FREEDM system is a highly attractive candidate for the future 

power distribution system; for more details, see references [67,71,292,421–423].  

 

Figure 4. Potential applications of the SST. 
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A three-port converter based on the Cuk topology was presented in [427]: the converter 

interfaces one unidirectional input power port (envisioned to be a DC power source such as PV or 

fuel cell) and two bidirectional output ports, representing respectively a grid-tied inverter DC bus 

and a storage system.  

Reference [286] presented the SST as interface of hybrid DC and AC microgrid systems. 

Reference [75] proposed a three-phase MMC-based SST that can be link a DC systems and LV 

renewable energy systems. Reference [428] presented a SST topology based on a quad-active-bridge 

converter that can provide isolation for load, generation and storage; see also [288].  

Reference [429] proposed the application to grid connected PV systems; see also [430]. 

Reference [313] proposed the SST as interface of a system that combined a PV array and a battery 

storage: since the power can flow from the network to the PV-battery side and vice versa, the battery 

can be charged from either the network or the PV array. Reference [431] presented the SST as 

interface in a PV-assisted charging station with an autonomous energy management strategy. For 

application of the SST as interface of PV systems, see also [297,430], and [432–438]. 

References [69,439] studied a SST-interfaced wind energy conversion system with integrated 

active power transfer, reactive power compensation and voltage conversion functions; the proposed 

configuration can effectively suppress the voltage fluctuation caused by the transient nature of wind 

energy without additional reactive power compensation. For the application of the SST in wind 

energy conversion systems, see also [98,298,322,440,441]. 

Reference [442] described the design and performance of a bidirectional isolated DC/DC 

converter using a 20 kHz HFT for a 53.2 V, 2 kWh lithium-ion battery energy storage system. 

Reference [443] analyzed a flywheel energy storage system for wind farms fed from a DC 

system via a SST. The application of the SST in wind energy systems was also studied  

in [204,438,444,445]. For more details on the application of SSTs in microgrids, see  

references [66,116,173,326,341,446–449]. 

The application of the SST in distribution system has also been analyzed  

in [206,215,253,256,259,337,382,404,405,450–466]. 

SST application in traction: The constraints of weight and size on the traction transformer are 

becoming stronger with the new generation of trains, in which reliability and efficiency become very 

important. The SST is considered a viable solution for the replacement of bulky low-frequency 

transformers in railway systems operating at 16⅔ Hz. Reference [467] presented an overview of SST 

technology for traction applications. The multilevel converter proposed in [468] exhibited reduced 

weight and size, and an improved global life cycle cost; the proposed multilevel topology consisted 

of sixteen bidirectional direct current converters (cycloconverters), fed from a 15 kV/16.7 Hz 

catenary through a choke inductor and connected to sixteen medium frequency transformers (400 Hz) 

supplied by sixteen four-quadrant converters connected in parallel to a 1.8 kV DC link. For more 

information on the application of the SST in traction, see references [469–472]. 

Other applications: A single-stage bidirectional SST for induction heating applications was 

proposed in [60,473]: the SST can simultaneously track the maximum power point and improve the 

output power factor by using an adjustable switching frequency controller. Reference [474] 

presented a single-stage bidirectional SST for lighting: the system supplies multi-lamp units that are 

controlled simultaneously by the SST using a PWM scheme; the SST contains a single-input  

multi-output HFT that provides galvanic isolation in each unit; the design exhibits good efficiency, 

low weight and small volume, and allows operation without any bulky storage elements; the control 
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strategy may achieve fluorescent lamps operation free from voltage flicker and disturbances, 

improving illumination, protecting lamps, and increasing lifetime of lamps.  

Reference [314] proposed the combination of a bidirectional SST and a dynamic voltage 

restorer to correct voltage distortions on a sensitive load.  

Reference [475] presented the application of a dynamic power limiter at the PCC of a microgrid; 

the limiter was a high-frequency isolated power-converter system comprised of a HFT and three-

phase to single-phase matrix converters.  

Reference [476] presented the SST potential in integrating sources and appliances at the 

domestic level. Reference [477] proposed a smart house fed from a microgrid-supplied SST. 

7. Conclusion 

The solid state transformer (SST) offers several benefits for future smart grids: DC and high-

frequency AC power supply, enhanced power quality performance, fast voltage control, reactive 

power compensation, reactive power control at both primary and secondary sides. The SST can also 

provide operational benefits, such as an efficient management of distribution resources by 

incorporating on-line monitoring. In a few words, the SST can be seen as a universal interface that 

can provide power quality improvements, efficient management of distributed resources, and a link 

between systems operating at different power frequencies. 

This paper has presented a bibliographical survey on the work carried out to date on design, 

testing, modelling, and potential applications of the SST. The number of references included in this 

paper confirms the interest in the SST and the foreseen benefits that this device can offer. 

The paper has been organized taking into account the aspects mentioned above; the various 

sections has been dedicated to summary the work made on SST configurations and control strategies, 

design of the HFT to be used in the isolation stage, efficiency, modelling and validation, and SST 

applications.  

The two tables included in the paper provide a selected list of prototypes and computer models 

implemented in different simulations tools, including real-time simulation platforms. The high 

number of both lab prototypes and computer models already built prove that the SST technology is 

becoming mature. Actually, some SST designs are already working; for instance, in traction systems. 

The most challenging issue is the low SST efficiency: the high number of semiconductors 

needed for any multilevel configuration, the amount of semiconductor losses and the need of filters 

at both SST sides are three important factors that have impact on efficiency. Not much field 

experience is currently available with actual designs and real costs (including operation and 

maintenance costs). 

Reliability is another aspect for which some work is required: the high number of 

semiconductors that are needed to build a multilevel configuration increase the probability of failure 

and losses. Redundant designs that could increase reliability would also increase losses and costs, 

and in turn reduce efficiency. For more details on this subject see [53,54]. 

Although the field experience does not yet suffice to decide about the most convenient SST 

configuration, it seems that those configurations based on a three-stage offer the best operational 

benefits in most power system applications. 

Some studies show that with the present technology the volume, weight and manufacturing cost 

of a SST could exceed those of a traditional iron-and-copper transformer [478]. The usage of SiC-
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based technologies could provide a solution to all these drawbacks and permit smaller, lighter, more 

efficient, and cheaper designs. 
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