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Abstract: Solar irradiance is one of the most important parameters that need to be estimated and 

modeled before engaging in any solar energy project. This article describes a non-linear regression 

model based on genetic programming technique for estimating solar irradiance in a specific region in 

the United Arab Emirates. The genetic programming is an evolutionary computing technique that 

enables automatic search for complex solutions. The best nonlinear modeling function that can 

estimate the global solar radiation on horizontal will be developed taking into account measured 

meteorological data. A reference approach to model the solar radiation is first presented. An 

enhanced approach is then presented which consists of multi nonlinear functions of regression in a 

parallel structure where each function is designed to estimate the global solar irradiance in a specific 

seasonal period of the year. Statistical analysis measures have been used to evaluate the performance 

of the proposed approaches. The obtained results are comparable with the outcomes of models 

developed by other researchers in the field. 
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1. Introduction  

With the increased concern and interest in energy preservation and environmental protection, 

the world today is moving into a new era; transition from almost total dependence of the fossil fuel to 

an increased use of alternative sources of energy. Solar radiation is one of the promising and 
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potential renewable energy sources especially in regions like UAE. 

An accurate and detailed long-term knowledge of the available global solar irradiance on 

horizontal surfaces is of a major importance for the design and development of solar energy systems 

in a given region. Information about solar radiation can be obtained by installing expensive 

measuring sensors (pyranometers) at as many locations as possible in this region thus, requiring daily 

maintenance and data acquisition; consequently, increasing the cost of collecting solar radiation data. 

In most of the cases, the potential sites for solar energy implementation are not covered by measuring 

stations, especially in the deserted regions. Many countries do not have sufficient network of weather 

stations for collecting solar data. For such regions, empirical models have to be developed using 

meteorological data from available measurement stations. These models are then used to estimate 

solar irradiance values at other locations in the region where solar energy systems are planned [2].   

UAE is among countries having potential for solar energy where the solar irradiance has 

significant strength, the average annual solar hours is approximately 3568 h (i.e. 9.7 h/day), which 

corresponds to an average annual global solar irradiance of approximately 2285 kWh/m
2
 (i.e.     

6.3 kWh/m
2
 per day) [2]. 

Numerous researchers have developed statistical and empirical regression models to predict the 

monthly average daily global solar irradiance in their regions using various weather      

parameters [3–20]. The mean daily sunshine duration and air delta temperature were the most 

available and commonly used parameters. The most popular model developed by researchers was the 

linear model by Angström-Prescott. This model establishes a linear relationship between global solar 

irradiance and sunshine duration taking into account extra-terrestrial solar irradiance and the 

theoretical maximum daily sunshine hours. Many studies with empirical regression and machine 

learning models were presented in the literature for many regions around the world. Recently, 

different models predicting global solar irradiance using various meteorological and climatological 

variables have been published [16–37]. 

Assi et al. [25,26] used four meteorological 12-years data between 1995 and 2007 to train and 

validate a Feed Forward ANN-based estimation system of solar radiation in Al-Ain city in UAE. The 

authors examined several MLP architectures and tested more than twelve alternatives based on 

various derivatives of back-propagation training algorithms. 

Antonanzas et al. [27] presented a new methodology to build parametric models for the 

estimation of global solar irradiation. The models were adjusted to specific on-site characteristics 

based on an evaluation of the variables importance. Authors have adjusted general parametric models 

such as the Bristow and Campbell BC models [27] with the on-site particularities. The presented 

methodology was appropriate for the investigated case study. The daily range of maximum and 

minimum temperatures, the logical variable of rainfall, and the daily mean wind speed were among 

the parameters that showed higher correlation with solar irradiance and that were included in the 

newly developed models  

Ahmed and Adam [28] applied a feed forward back- propagation neural network on weather 

data measured at Qena-Egypt during the year 2007. The proposed approach used location 

coordinates and sunshine hours to estimate monthly average daily global solar radiation. The authors 

presented a comparative study between the described MLP-based approach and other empirical 

models. Based on their experimental results, authors showed the advantages of the MLP-based 

estimation technique for solar radiation estimation over the existing empirical regression models. 

Khatib et al. [29] developed a feed forward multi-layer perceptron with four inputs: longitude, 
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latitude, day of the month, and sunshine radiation to predict the clearance index. The clearance index 

helped in calculating the solar irradiation. The models used long term solar radiation data for 28 sites 

in Malaysia measured between years 1984 and 2004.  

Ramedani et al. [30] investigated two models based on Support Vector Regression technique 

(SVR) which is a type of Support Vector Machines (SVM) for predicting Global solar Radiation 

GSR in Tehran province. The authors examined two kernel functions for SVR: a radial basis function 

and a polynomial function. The authors designed and validated their approach on a measured daily 

data consisting on Temperature and sunshine parameters and belonging to seven-year period. The 

proposed approach, mainly the one based on radial basis function (SVR-rbf) showed better 

performance when compared to an ANN-based and a Neuro-Fuzzy based systems. Olatomiwa et al. [31] 

proposed a hybrid approach for predicting solar radiation based on SVMs coupled with the 

meta-heuristic Firefly algorithm FFA. The FFA has been applied to detect the optimal parameters of 

the SVM algorithm. The performance of the proposed approach showed superiority comparing to 

others based on ANN and GP when they have been tested on temperature and sunshine hour’s data 

records collected from three different regions in Nigeria. Mohamadani et al. [32] presented a 

comparative evaluation among three soft computing methodologies for estimating global solar 

radiation in a specific region in Iran based on temperature measures. The developed models are an 

Adaptive Neuro-Fuzzy inference system ANFIS, a radial basis function SVR (SVR-rbf), and a 

polynomial basis function SVR (SVR-poly). The statistical analysis showed a superiority for the 

SVR-rbf over the two remaining examined models when validated on daily temperature measures. 

Kizi [33] proposed a Fuzzy-Genetic FG approach to model and predict solar radiation. The heuristic 

genetic algorithm has been used to find the optimum parameters of the Fuzzy inference method. The 

author used latitude, longitude, and altitude as inputs to the FG model to estimate one month ahead 

solar radiation in some regions in Turkey. 

Recently, many researchers tried to instigate the most significant meteorological variables and 

parameters for estimating and predicting GSR [34,35]. Mohamadi et al. [34] examined the influence 

of meteorological parameters on horizontal GSR. They examined nine climatological parameters 

collected from three different cities in Iran. The authors applied an adaptive neuro-fuzzy inference 

technique in their selection procedure, and they determined the most influential parameters’ 

combinations for each city and have concluded that it is not possible to introduce an optimal 

combination of inputs for all cities. They justified their conclusion by the fact that GSR, which is 

special for each region, depends on climate conditions and geographical location that are special for 

each region.  

Demirhan and Atilgan [35] presented a robust coplot optimization approach coupled with a GP 

technique for solar radiation estimation. The robust coplot analysis technique has been applied on the 

measures of solar radiation and other related parameters to identify the optimal set of covariates in a 

data that consists of solar radiation, meteorological, and terrestrial variables. The main goal was to 

handle the multicollinearity problem that may exist among variables, and to eliminate the effect of 

outliers on the space of solar radiation modeling. The optimal set of covariates have been then used 

in a GP technique to construct monthly and yearly solar radiation estimation models. Pan I et al. [36] 

presented a GP-based approach for predicting solar radiation using six geographical and sunshine 

duration data from India. The authors introduced what they called Multi-Gene Genetic Programming 

(MGGP) models where each individual solution, named a gene, is composed by a weighted 

combination of sub-individuals named Single-Gene Genetic Programming (SGGP) models. The 
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authors indicated that the MGGP based approach has outperformed the other ones based on simple 

individual SGGP models as well as other classical regression models. 

The current article investigates the prediction of global solar irradiance on horizontal using 

evolutional computational technique, namely the genetic programming (GP). Recently, the GP 

techniques showed good performance and flexibility in modelling non-linear regression    

problems [38,39]. Practically, The GP demonstrates its advantages in dynamically building complex 

formulas (solutions), and its flexibility to choose a set of functions and operators that match the 

problem to be solved. Such flexibility is possible due to the fact that the structure of the binary trees 

that represent solution candidates can be dynamically changed during the evolutionary process. 

These characteristics give the GP the ability to skip out of the local minima problem commonly 

found in the neural networks models especially in their feed-forward structures with 

back-propagation training algorithms. In the solar radiation estimation literature, the Genetic 

Algorithm GA has been used to select the optimal parameters of machine learning based models [33], 

whereas the GP algorithm has been used as core models of estimation [35,36]. 

In this article, the design and validation of a new GP based approach to estimate global solar 

irradiance using meteorological data will be described. The main idea is to find the best model for 

the relation between a set of meteorological parameters and the solar irradiance on a specific 

geographical area. Two approaches have been validated: A reference approach that consists of one 

global model that estimates the solar irradiance with respect to four climatological parameters, and a 

second approach that consists of a set of several models in a parallel structure. Each model consists 

of a nonlinear function that is dedicated to estimate the global solar irradiance in a specific seasonal 

or bi-seasonal period of the year. The experimental results indicated the advantages of using such 

type of multi-model structure when dealing with a set of data with large variability during the year. 

The remaining of this article is organized as follows: In section 2, the genetic programming is 

explained as an optimization heuristic technique, the GPLAB toolbox of MATLAB® that has been 

used in the adopted approach is then introduced. In section 3, the GP based reference approach that 

consists of one estimation function is described. Then, an enhanced approach also based on GP is 

given. Moreover, the dataset used for the design and the validation of the proposed approaches is 

introduced and described in this section. Discussion of the results is presented in section 4. Finally, 

section 5 includes conclusions and future perspectives.  

2. Genetic Programming and GPLAB Toolbox 

2.1. Genetic Algorithm 

The GP is an extension of the conventional genetic algorithm [40,41]. Genetic Algorithm (GA) 

is a metaheuristic method usually used to find an optimal solution in optimization problems based on 

a natural selection process. The GA starts by an initial population of random individuals. Each 

individual is represented by what is called chromosome that is an array of genes. Each gene 

represents a parameter to be optimized. Every individual (chromosome) represents a possible 

solution of the optimization problem and has its own fitness measure. The fitness is a measure for 

each individual that indicates how the solution related to this individual is suitable to solve the 

problem.  

The GA uses the so called genetic operators: crossover, mutation, and cloning to evolve from a 
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population to another until it reaches a population that consists of an optimal solution based on a 

chosen fitness objective function [40,41]. It starts by an initial random population of individuals. 

Then, in each generation, the GA performs the following steps: 

- Select from the present population the individuals that have the best computed fitness. 

- Use the best individuals to generate the next population by the crossover of those individuals. 

This is similar to the biological reproduction based on natural selection. A new individual has 

part of its genes coming from the first parent and the other part from the second parent. 

- Based on a computed probability, a mutation operator may be applied to one or many 

chromosomes by changing the value of one of its genes. Similarly, and based on another 

computed probability, a chromosome with good fitness may be cloned and promoted to 

evolve to the next generation. 

This procedure is repeated until an optimum individual is found. Figure 1 illustrates the 

operations of crossover and mutation of two individuals to produce new individuals for the next 

generation. 

 

Figure 1. The crossover and mutation operators of the GA. The crossover produces two 

new children individuals from two parent individuals, and the mutation changes 

randomly the values of one or more than one gene. 

2.2. Genetic Programming  

The GP aims to find the best computer program (function) that is composed of both data and 

operators and that solves a specific problem [41,42,43]. A chromosome in GP is represented by a 

binary tree data structure where internal nodes represent algebraic and/or logical operators whereas 

the external ones represent numbers and parameters related to the problem to be solved. Figure 2 

shows examples of binary trees that represent mathematical expressions/functions. A function can be 

considered as a computer program that consists of a set of data (terminals) and actions (operators). 

The process of evolution in GP starts by an initial random population of chromosomes that 

represent possible solutions (functions) and tries to generate new populations subsequently [42]. 
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Figure 2. Examples of binary trees that represent algebraic functions.  

The evolution is controlled by a fitness function that is equivalent to the objective function 

adopted in local heuristic search techniques. The fitness function is special for each optimization 

problem and allows the evaluation of fitness of each chromosome (solution) in a population. Figure 3 

illustrates the effect of the crossover operator on two selected individuals. 

 

Figure 3. The crossover of two individuals to produce two new ones for the next generation. 

2.3. GPLAB toolbox 

GPLAB is a Genetic Programming toolbox for MATLAB® [44]. GPLAB provides most of the 

features and operators commonly used in GP. Its modular structure allows considering it as an 

extendable tool that is suitable for prototyping new techniques of heuristic local search in GP. 

GPLAB enables a set of facilities and features to handle and control the structure and the size of both: 

the chromosomes that represent individual solutions and the populations that represent sets of those 

individuals. In addition, GPLAB allows the dynamic control of the variable size of populations 

during run time. This feature is indeed important in case of limited computational resources [45,46,47]. 

Moreover, GPLAB implements a technique for automatically adjusting the probabilities of adopted 

genetic operators during runtime. This feature allows the use of the GPLAB toolbox as a test 
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workbench for new genetic operators 

3. Genetic Programming Based Systems 

In this work, a GP based approach to estimate solar irradiance is designed, implemented, and 

validated. In the first phase of this work, a reference system is proposed, which consists of a single 

function that can model the relation between solar irradiance and a set of climatological factors in a 

specific geographical area. The reference system showed promising performance. In the second 

phase, the performance of the reference system is analyzed and an enhanced one that consists of 

multiple independent models is suggested. Each model is dedicated to estimate the solar radiation 

amount in a specific seasonal period of the year. All components of the two proposed approaches 

were designed, implemented, and validated using the GPLAB toolbox. 

In the design and validation phases, a meteorological dataset provided by the National Center of 

meteorology and Seismology (NCMS) in Abu-Dhabi—UAE is used. The dataset consists of daily 

data records for the period between 2004 and 2007. Each daily record includes the measures of: air 

temperature, wind speed, relative humidity, and sunshine duration. The dataset has been divided into 

two subsets; a design subset having records for the years between 2004 and 2006 inclusive and a test 

subset that includes records for the year 2007. Table 1 shows some samples of the dataset. In this 

table, the first four columns represent the four meteorological records.  

Table 1. Samples of meteorological records (dataset).  

Max Temperature Mean wind Speed (knot) Sun Hours Mean Relative 

Humidity % 

Total Radiation 

(kWh/sq.m) 

25.7 5.6 8.9 68 462.8 

24.5 7.1 9.6 67 459.3 

23.0 5.4 10.2 54 515.5 

25.1 6.4 10.1 47 505.0 

23.6 8.3 1.6 63 230.6 

3.1. The Reference System 

The problem of developing an appropriate function that models the relation previously 

discussed, looks like a search problem for an optimal state that represents the expected function. In 

our case, the targeted function includes operand and operators. The operands consist of the 

climatological parameters and other constants that may appear in the resulting function. Besides, the 

set of operators may include arithmetic operators, exponential operators, and any other algebraic or 

non-algebraic ones like: square root, natural log, exponentials, etc. 

The functions investigated in this work can be represented by binary trees data structures, where 

the internal nodes represent the operators whereas the terminals represent the operands. Figure 4 

illustrates an example of a binary tree that represents a solution candidate. In Figure 4, X1, X2, X3, 

and X4 represent temperature, wind speed, sun hours, and humidity respectively.  
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Figure 4. An example of a binary tree that represents a function for modeling (estimating) 

solar radiation.  

Equation (1) shows the algebraic function that can be obtained using the binary tree of Figure 4. 

In this equation, sr, tmp, sh, ws, and hum stand for solar radiation, temperature, sun hours, wind 

speed, and humidity respectively. The internal nodes in the tree include the four arithmetic operators: 

addition (+), difference (-), and division (/), and multiplication (*), plus it includes the decimal log, 

as well as the square root (     ). Figure 4 shows that the depth of the tree is equal to six. Actually, the 

maximum depth allowed for trees in each population is one of the adjustable parameters in a GP 

evolution process.   

                                   
                 

          
                         

In this work, fixed values for the following parameters have been adopted: 

- The population size is set to be equal to 500 individuals. In our experiments the performance 

of optimization has been slightly affected by variations in the size of population. 

- The fitness function that evaluates the efficiency of candidate solutions (chromosomes). A 

fitness function related to the root mean square error (RMSE) has been used. 

- The depth of each of the binary trees that represents chromosomes (solution candidate) is set 

to be dynamic. The maximum value of that depth is chosen to be equal to six. GPLAB 

provides a technique that permits to start by an initial depth of trees that can be dynamically 

increased until a selected maximum value. 

On the other hand, alternatives have been investigated:  

- The probability of applying each of the genetic operators (crossover and mutation).  

- The sampling method to select individuals from the current population to participate in 

generating new individuals for the next generation.  

The first three columns in Table 2 show combinations of parameters adopted in designing the 

proposed approach. The implemented fitness function computes, for each individual, the RMSE 

between the set of exact output values available in the design dataset and the output values returned 

by that individual. Equation (2) describes the RMSE computation. 
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Where Hpi represents the estimated value of global solar irradiance, Hi is the measured value that is 

available in the design dataset, and N is the total number of records in that dataset. 

Table 2. Combinations of parameters with the fitness of best individuals in the last 

population for each combination. 

Operators probability Sampling method Set of functions Best fitness in last 

population 

Crossover prob. : 0.85 

Mutation prob. : 0.15 

Roulette {arithmetic ,      , log10} 4.402 

Crossover prob. : 0.85 

Mutation prob. : 0.15 

Tournament {arithmetic ,      , log10} 4.491 

Dynamic Roulette {arithmetic ,      , log10} 4.503 

Dynamic Tournament {arithmetic ,      , log10} 4.174 

As for the probabilities of applying each of the genetic operators, the GPLAB allows either to 

fix the values of those probabilities or to dynamically compute them at each iteration during the run 

time. The computation in this case is based on the history of each operator in producing individuals 

with the best fitness and on statistics about the newly produced individuals [44]. The results 

presented in the right most column of Table 1 indicate that the best fitness value (in this case the 

lowest) is the one related to dynamic probabilities of operators and tournament sampling method. 

Figure 5 shows the binary tree associated to the best individual in the last population of the best 

combination. Equation (3) represents the function stored in that binary tree. 

                                      
      

      
                            

 

Figure 5. Binary tree related to the function of the fittest individual, where X1 = 

temperature, X2 = wind speed, X3 = sun hours, and X4 = humidity.  
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3.2. The Multi-Model System  

The results obtained using the reference system show remarkable difference between the 

measured values and the estimated ones. Figure 7 compares the measured and the estimated monthly 

average daily global solar irradiance values.  

The records of the design dataset have been investigated, and the values of each meteorological 

factor have been analyzed. Analysis showed that the values of some factors, especially the humidity, 

have wide variations, i.e. a large deviation around the average value over a year. Such variations 

make the search for an optimal model quite difficult.   

One of the suggestions to improve the whole performance is by estimating the global average 

solar irradiance over relatively short period of time in a year by using a multi-model approach. The 

main idea is to find the function with best fitness for estimating the global solar irradiance for each 

seasonal period of the year. Applying this strategy lead to build proficient functions. A function has 

been built for each two consecutive months of the year. Thus, the multi-mode system consists of six 

nonlinear functions. Figure 6 illustrates the structure of the proposed approach. 

 

Figure 6. Structure of the multi-model approach. 

The evolutional computation process is launched with the same combination of parameters 

described in the 1
st
 and 4

th
 rows of Table 2. The estimation performance is significantly improved. 

Table 3 shows the obtained enhancement in terms of fitness of the best individual when the 

multi-model strategy is applied. The best performance is obtained with dynamic probabilities of 

genetic operators, tournament sampling, and set of functions that contains arithmetic, algebraic and 

logarithmic operators. 

Table 3. The fitness of the best individual of the last population for the multi-model 

approach. 

Operators probability Sampling method Set of functions Best fitness in last 

population 

Crossover prob. : 0.85 

Mutation prob. : 0.15 

Roulette {arithmetic ,      , log10} 2.137 

Dynamic Tournament {arithmetic ,      , log10} 1.218 

Error statistical analysis showed good improvement as will be described in the next section. 
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4. Results 

The estimation performance of the suggested approach was assessed through a statistical 

analysis of error. The analysis was conducted by computing the RMSE and Mean Bias Error MBE 

that measure the variation of estimated values against the measured available ones. Low RMSE and 

MBE values are desired and indicate an accurate estimation. The RMSE computation is described 

earlier in equation (2), whereas the MBE computation is described in equation (3).  

       
           
 
   

 
                                                                                

Table 4 compares the values of RMSE of the best two reference models and the new model that 

consists of parallel multi-functions.   

Table 4. The RMSE and MBE of the best functions. 

Operators probability Best fitness in 

last population 

RMSE MBE 

Operators prob.: [0.85, 0.15] 

Sampling: roulette 

Model: reference model 

4.402 1.862 1.322 

Operators prob. : dynamic 

Sampling: tournament 

Model: reference model 

4.174 1.026 0.68 

Operators prob. : dynamic 

Sampling: tournament 

Model: Parallel 

1.218 0.210 0.052 

Figure 7 and Figure 8 show the measured and estimated values of monthly average daily global 

solar irradiance for the best reference model and the multi- model. The later shows better 

performance in estimating monthly average daily global solar irradiance. 

 

Figure 7. Monthly average daily global solar irradiance estimation of the best reference system. 
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Figure 8. Monthly average daily global solar irradiance estimation of the multi-model system. 

Figure 9 shows the binary tree that represents one of the best functions in the multi-model 

approach. Equation (4) represents the function of the binary tree shown in this Figure. 

 

Figure 9. Binary tree that represents one of the functions in the multi-model system. 

   
       

   
  

   
         

  
  

      

      
                                               

The suggested genetic programming based approaches show comparable performance with 

respect to other empirical regression and neural models. Table 5 compares the RMSE of the results 

obtained by the suggested approach to those obtained by other models conducted by other groups. 

Table 5. The RMSE of the multi-functions model compared to other models.  

Model RMSE 

Quadratic Regression model 0.214 

Logarithmic Regression model 0.259 

ANN 3-10-4-1 0.374 

ANN 3-20-8-1 0.391 

GP model with parallel functions 0.210 
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5. Conclusions and Perspectives 

This article described new approaches for estimating global solar irradiance using 

meteorological records. The suggested methods are based on a GP heuristic technique. The first 

method (reference system) consists of estimating the nonlinear function that can model the relation 

between solar irradiance and four meteorological parameters. The performance of the reference 

system is promising. An enhanced model that consists of multi-function was proposed and it showed 

better performance with respect to the first method. The performance of the proposed approaches 

was evaluated using statistical analysis measures.  

The GP showed its advantages in dynamically building complex formulas that represent 

solution candidates for the problem to be solved. As an evolutionary process, the GP shows its ability 

to resolve the local minima problem and to converge toward a global minima. The problem of local 

minima is commonly found in the neural networks models especially in their feed-forward structures 

commonly used in the literature coupled with the classical back-propagation training algorithm. 

Moreover, the GP technique provides analytical expressions as solutions, like the expression given in 

Equation (3), which is not available in most of the machine learning techniques, for instance the 

neural and the neuro-fuzzy models. The later property is important for researchers to understand the 

contribution of each variable input in the calculation of the dependent variable output.  

In our experiments, we controlled the well-known bloat (inflation) problem of GP by using a set 

of techniques provided by the GPLAB environment [44]. Some of those techniques consist of 

automatic resizing of the population in runtime to save computational resources. Those techniques 

are adequate in cases of complex problems when the complexity of the expressions’ models increases 

dramatically during the evolutionary process.  

A similar approach to our enhanced one has been proposed in [35] with two main differences: 

First, in that approach the input data has been pre-analyzed by using an optimization technique to 

handle the multicollinearity problem that may exist among the variables, which is not available in 

our approach that has been applied on data records of four meteorological variables. Second, the 

approach in [35] consists of a set of twelve models, each model is dedicated to estimate the solar 

radiation in a specific month of the year whereas our approach consists of six models. Each of our 

parallel models is devoted to estimate the solar radiation for a semi-seasonal period of the year. In 

general, the increase of number of learning-based models requires more training data records to 

adjust those models during the design phase which may not be always possible. One of our future 

suggestions is to automate the splitting of data into seasonal subsets based on an automatic learning 

technique in order to optimize the estimation performance.  

In this work, the proposed GP approach is not compared to other learning based estimation 

techniques of the same type. Such comparison needs comparing the convergence time of each 

approach as well as the performance of estimation using the same data sets and same leaning 

parameters. This could be one of our future perspectives. On the other hand, the obtained results in 

this work are comparable to those obtained by mathematical regressions and neural models that were 

conducted by other research groups. Finally, the obtained results showed the advantage of using the 

parallel modular structure over the global one.  

Three main future perspectives can be drawn for this work. The first one consists of finding a 

way to automatically splitting the data into seasonal or semi seasonal periods in order to optimize the 

performance of estimation. The second perspective consists of comparing or GP based approach with 
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other machine learning based techniques by using the same data sets. The third perspective consists 

of validating the proposed approach using new meteorological datasets with larger number of 

weather parameters in each record.  
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