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Abstract: This study examines how a carbon tax could affect industrial-related carbon dioxide (CO2) 

emissions in Japan. Rather than forecasting the effects of a tax, the paper employs a time-series 

autoregressive moving average (ARMA) model to determine how past subsidies and fuel price 

changes affected investments in energy and carbon intensity in Japan’s iron & steel, chemical, and 

machinery industries from 1993 to 2004. The results suggest the impacts varied greatly across 

industries. In the iron & steel industry, subsidies and price changes produced negligible effects on 

investments in energy and carbon intensity. This may be because existing iron & steel technologies 

have long lifetimes and substantial replacement costs. It may also be because the few large 

companies dominating the industry were relatively immune to subsidy provisions and pricing 

changes. In the chemical industry, subsidies and fuel prices gave rise to investments that improved 

carbon and energy intensity. This may be because the industry has relatively higher operation costs 

that could be cut easily given financial incentives. In the machinery industry, two of three fuel price 

changes (oil and gas), but not subsidy provisions, yielded improvements in carbon and energy 

intensity. This may reflect the heterogeneity of companies and products comprising the industry. 

Overall, the study underscores that policymakers need to tailor the rates and revenue recycling 

provisions of a carbon tax to an industry’s unique features to stimulate CO2 reductions. 
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1. Introduction 

In the wake of the 2015 Paris Agreement, many countries are reconsidering which policies 

could drive deep reductions in carbon dioxide emissions (CO2). Carbon pricing is likely to feature 

prominently in this re-evaluation. In Japan, the government introduced a carbon tax in 2012 by 

adding a modest surcharge to current petroleum and coal tax schemes for crude oil, petroleum 

products, coal, liquefied petroleum gas and liquefied natural gas [1]. The tax revenue will then be 

recycled to help finance energy efficient and renewable energy technologies. The tax could also 

foreseeably motivate industries and consumers to save energy. But the current rates JPY289/tCO2 

(USD 2.4/tCO2) are too low to induce these effects [2]. This raises an important question: what if tax 

rates were higher? 

This paper examines this hypothetical ―what if‖. But rather than forecasting the effects of a 

higher carbon tax, the paper analyses historical fuel prices, subsidies, and investment data. This 

approach is taken because implementing a higher carbon tax would increase fuel prices and generate 

revenue that could subsidize investments in production upgrades, efficiency reforms, or technologies 

running on lower carbon fuels [3,4]. The consequent price gaps between conventional and lower 

carbon products may further influence consumer behavior [5,6]. Thus the paper will assess whether 

subsidy provisions and fuel price changes could improve energy and carbon intensity, thereby 

lowering CO2 emissions, and whether investments could lead to energy efficiency and carbon 

intensity improvements. 

The study will focus on energy-intensive industries. At present, Japan’s industries account for 

36% of the total CO2 emissions and 44% of total energy consumption. In the past, Japan succeeded 

in mitigating industrial-related CO2 emissions with reductions of 70MtCO2 between 1990 and   

2014 [7]. However, these aggregate figures shed little light on what kinds of policy instruments 

affected energy and carbon-intensity in which industries. The paper hence concentrates on the iron & 

steel, chemical, and machinery industries for two reasons. The first is that they are significant 

contributors to CO2 emissions. The three selected industries account for 75% of CO2 emissions in 

Japan’s manufacturing sector (47.9% for iron & steel, 17.7% for chemical, 9.4% for machinery) [7]. 

They are also the top three contributors to the total domestic product in the manufacturing sector 

(11% in iron & steel, 16% in chemical and 42% in machinery industry) [8]. The second reason they 

are selected involves possible differences in their structure and responsiveness to varying policy 

changes. The paper will therefore also explore whether and to what extent the aforementioned fuel 

price changes and subsidy provisions had varying effects on investments that mitigate CO2 across 

different industries. 

A time-series autoregressive moving average (ARMA) regression is used for these purposes. 

The regression results suggest the effects varied across industries. In the iron & steel industry, 

subsidies and price changes had negligible effects on energy or carbon intensity. This may be 

because existing iron & steel technologies have long lifetimes and sizable replacement costs [9,10]. 
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It may also be because the industry is dominated by a few large companies that were relatively 

immune to policy changes
1
. In the chemical industry, subsidies and fuel prices gave rise to 

investments that improved carbon and energy intensity. This may be because the industry has 

relatively higher operation costs that could be cut given financial incentives. In the cost structure of 

chemical industry, about 35 per cent of the total domestic production (gross outputs) is spent to 

purchase fuel products including coal, crude petroleum, natural gas, and oil and coal products
2
. In the 

machinery industry, two of three fuel price changes (oil and gas), but not subsidy provisions, yielded 

improvements in carbon and energy intensity. This may reflect the heterogeneity of products that 

make up the industry
3
 and other factors (such as a generally greater responsiveness to consumer 

demands and technology trends)
4
. Overall, the study underlines that policymakers need to be 

cognizant of potentially varying effects of a carbon tax across different industries. This may require 

careful reflection on both the rate and the recycling of revenue in key industries. 

The remainder of the paper is divided into seven sections. The second section reviews literature 

to develop a simple conceptual model illustrating the links between key drivers of CO2 emission 

reductions. In the third section it describes the data and model based on the literature review. In the 

fourth and fifth sections results of a models are reported and discussed. The sixth section describes 

study limitations. A final section concludes with possible policy implications for a carbon tax in 

Japan. 

2. Reducing CO2 Emissions 

Cutting industrial-related CO2 emission often involves improving energy or carbon intensity. 

The former involves lowering energy per unit of production, while the latter entails lowering CO2 

emitted per unit of energy [11,12]. Improving energy intensity requires altering energy consumption 

patterns or deploying energy efficient technologies [13–17]. Improving carbon intensity requires 

shifting to less-CO2 intensive energy sources or alternative fuels [12,18,19]. To lower energy use, 

fuel reductions, exhaust heat recovery and fuel swtching can be achieved through investments in 

improved technologies and equipment as well as operational efficiency gains. For energy efficiency 

improvements, the transformation of primary energy resources and economic structures can reduce 

energy demands [20]. On the other hand, fuel switching can curb energy use and improve CO2 

emission intensity of industrial energy use [21,22]. For instance, Kagawa & Inamura (2001) 

demonstrate the main reduction of energy demand stems from structural changes to input factors. 

In industries, renewable energy can replace conventional fossil fuels in non-utility generation; 

heat recovery and waste can also be reused for energy [24]. For example, the cement & ceramics and 

                                                        
1 A half of the total final energy consumption in iron and steel industry is by blast furnace manufacturing which is dominated by 15 

entities in Japan. Data is available from METI (http://www.meti.go.jp/statistics/tyo/kougyo/result-2/h26/kakuho/sangyo/index.html and 

http://www.enecho.meti.go.jp/statistics/total_energy/results.html). 
2 Ministry of Internal Affairs and Communications. Available from: http://www.soumu.go.jp/english/dgpp_ss/data/io/io11.htm 
3 Machinery industry includes establishments such as electronic components and transportation equipment as well as production 

machinery. The number of business entities engaged in machinery industry accounts for about 78 per cent of the total establishments of 

manufacturing sector in Japan. (METI. Available from: 

http://www.meti.go.jp/statistics/tyo/kougyo/result-2/h26/kakuho/sangyo/index.html) 
4
 Machinery industry need to respond to fast changing consumer product demands and related technological trends. Therefore, energy 

consumption is likely to move with shifts in demands for products [64]. The industry also has comparatively high electricity demands 

[64] (also see METI. Available from: http://www.enecho.meti.go.jp/statistics/total_energy/results.html) 
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pulp & paper industries could reduce CO2 emissions by altering the fuel mix, using more biomass, 

improving efficiencies, and recycling energy from heat [25]. As suggested by these options, a 

combination of energy efficiency improvement and fuel switching is often needed to curb energy use 

and CO2 emissions. 

Japan employed several of the above techniques to reduce its dependencies on imported oil and 

stabilise energy supplies throughout its modern history. Though initial efforts focused on shifting 

from oil to coal and improving coal efficiency in the 1980s [26], the approach concentrated more on 

shifting from coal to natural gas and nuclear by the 1990s into 2000s [27,28]. Following the 

Fukushima accident, renewable energy became a greater point of emphasis [29]. 

While the above options are well known, widespread implementation can be challenging. 

Gillingham et al. (2009) suggests a key reason for the challenge is market failure. Market failures 

stem from prices that do not reflect the true marginal social cost of energy consumption, thus 

curtailing incentives to adopt new technologies or otherwise improve production methods. Another 

hurdle is that decision makers are not always rational; hence they do not always minimise present 

value for energy service provisions even when a full accounting suggests the benefits outweigh the 

costs [30]. 

A carbon tax could be one of the tool to help overcome these barriers. By making fossil fuels 

more expensive and renewable energy more competitive, carbon pricing can incentivise industries to 

adopt technical measures such as fuel reduction, fuel switching and efficiency reforms. Since it puts 

a price on carbon, pricing can also send a signal to the market. If the price on carbon is high enough, 

it may also persuade consumers to reduce energy consumption [31–33]. This paper thus sets out to 

examine the effects of carbon tax on improving carbon and energy intensity. However, instead of 

looking at the impact of carbon tax, this paper focuses on a three key instruments that could improve 

carbon and energy intensity: 1) fuel price changes; 2) subsidy provisions; and 3) investments. 

2.1. Subsidy provisions 

One instrument that could improve energy and carbon intensity is subisdy provisions. Subsidies, 

including targeted grants and favourable loans, are a relatively straightforward approach to 

promoting new technologies or operational effiiciency reforms [34,35]. But while subsidies could 

help open or expand technology markets and encourage a range of supporting reforms, many 

maintain they are not cost-effective [25,36]. Rather often subsidies perform better when combined 

with tax policies [37–39]. More concretely, taxes on fuels can incentivise reductions in energy, while 

subsidies from tax revenue promote investments in energy efficient technologies. For instance, the 

Netherlands stimulated investments in clean automobiles with the subsidies that came from extra tax 

revenue from energy-intensitive cars [37]. In case of Japan, subsidies for measures of energy 

conservation and renewable energy are provided from the Special Account for measures to improve 

energy supply and demand structure of government budget. The financial sources of the Special 

Account include tax revenue from the petroleum and coal tax [40,41]. The subsidies includes fiscal 

incentives such as tax breaks as well as grants
5
. 

                                                        
5 Tax break can improve the payback period by reducing the cost of energy-saving equipment through the reduction of tax payments 

[65]. 
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2.2. Fuel price changes 

Another possible instrument involves changing energy prices. Price changes incentivise energy 

use reductions. Estimating price elasticity has been used to assess regulatory policies and impacts of 

energy price shocks [42]. However, studies on energy price elasticity of energy demand show that 

price elasticity is much smaller than elasticities associated with GNP or energy efficiency 

improvements [20]. Price elasticity also tends to differ for particular fuel types and time-periods [43]. 

Moreover, there is a time lag between the price elasticity in the period of price rise and the period of 

price fall, and this cross-temporal variation is influenced by various factors such as technological 

changes, lifestyle changes, demographic changes [44]. Therefore, for the detailed of energy price 

elasticity of demand, each fuel type and individual industrial sector needs to consider price elasticity; 

these too vary significantly across fuel types and industries [43]. In the case of Japan, studies show 

that price elasticity of energy demand is significant only when the energy price reached the highest 

price levels in the long term although there are time lags in the price elasticity of energy demand and 

the elasticity varies by sectors [44]. 

2.3. Investment 

Shifting investment from high to low energy intensity technologies or facilities is another 

approach to reducing CO2 emissions. Although Japan improved industrial energy efficiency, a shift to 

more energy efficiency technologies is required to reduce CO2 emissions. Technology innovation and 

technology installation to stimulate fuel switching, heat energy recycling and energy efficiency 

improvement can catalyse these reductions. Low-carbon research on Japan suggests that major 

investments in technologies offer cost-effective opportunities to improve energy efficiency as well as 

enhance international competitiveness [45]. Thus, stimulating investment is one of the factors that 

can promote the reductions of CO2 emissions in manufacturing industries. To facilitate technology 

investment, technology application and spill-over, policy and regulations play important roles by 

generating a market and securing investment in low-carbon technologies [46,47]. 

Investment in improving energy efficiency and replacing carbon intensive technologies can 

often be enhanced by a combination of subsidies. According to the IPCC (2007)
6
, subsidies are 

frequently used to stimulate investment in energy-saving measures by reducing investment cost. 

Kimura & Ofuji (2013) analyses the effectiveness of subsidy programs for energy efficiency 

investment in Japan. The result implies that although a half of company questionnaire responses 

imply that, even though there was no subsidy, they were planned to implement energy efficiency 

investment, the subsidy programs were mostly cost-effective when compared to the avoided costs 

and carbon emission prices. 

From here, the paper begins to employ econometric analysis to assess what types of 

instruments--subsidies, fuel prices and investments—reduce carbon and energy intensity in which 

sectors. The purpose of the modelling, as illustrated in Figure 1, is to understand: 

a. the impacts of subsidies on carbon and energy intensity; 

                                                        
6 In IPCC (2007), subsidies to industrial sector include favourable loans and fiscal incentives, such as reduced taxes on 

energy-efficient equipment, accelerated depreciation, tax credits and tax deductions as well as grants. 
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b. the impacts of fuel price changes on carbon and energy intensity; and 

c. the impacts of investment on carbon and energy intensity. 

This paper also reflects on possible differences across industries. In so doing, it hypothesizes 

that in industries that have high upfront capital cost such as iron & steel [50], policy instruments 

(subsidies) and price incentives (fuel prices) will not significantly reduce energy and carbon intensity. 

On the other hand, in industries with higher operational cost such as chemical industry [51], 

increasing subsidies for energy efficiency and renewable energy and fuel prices can create stronger 

incentives to transition to more efficient facilities. Thus, increasing subsidies of energy efficiency 

and renewable energy and fuel prices could have a more discernible impact on carbon and energy 

intensity. In industries that require high levels of electricity consumption such as the machinery 

industry
7
, carbon and energy intensity could be affected by external factors such as energy mix of 

electricity companies, as well as by energy conservation and less emission measures implemented by 

the industry. 

 

Figure 1. Policy and economic framework of carbon and energy intensity. 

3. Methodology 

A time-series analysis is used to assess the effects of these three policy instrument on carbon 

and energy intensity. Carbon intensity and energy intensity data from 1994 to 2013 is gathered for 

this analysis. A series of diagnostic tests are initially performed to determine: 1) whether serial 

correlations exist in the data; and 2) whether subsidies, fuel prices and investment variables have 

statistically and substantively significant effects on carbon and energy intensity in the three industrial 

sectors of interest. 

3.1. Model specification 

Temporal trends and complex error processes may affect time series data. There are numerous 

ways to analyze the time-series data where a variable is observed sequentially over time [52]. An 

                                                        
7 Approximately 69 per cent of the total energy consumptions is from electricity consumptions. METI. Available from: 

http://www.enecho.meti.go.jp/statistics/total_energy/results.html. 
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ARMA model is one of such approach. An ARMA model is a time series model that identifies the 

data-generating process underlying the data (carbon and energy intensity in this paper). As a 

simplistic and univariate model, ARMA is particularly useful when data requirements are limited to 

the series of interest [53]
8
 On the other hand, Autoregressive distributed lag models (ADL) observe 

structural relationships in historical data between dependent variable and different exogenous 

variables [54]
9
, vector auto-regression model (VAR) considers endogenous variables to affect each 

other and is also used as a multiplier analysis with the exogenous variables [55]. Although ARMA 

and ADL models are similar model as both models can include exogenous variables, this paper uses 

ARMA with an exogenous variable because the model is relatively intuitive model that can help 

illustrate the effect of an explanatory variable on a dependent variable [53,54]. 

 

Figure 2. Model identification and diagnosis test. 

In the case of industrial energy intensity and carbon intensity, the unique properties of the 

industrial sector may affect the structure of the data. Therefore, to identify the methods for modeling 

a time series and variables observed at regular intervals annually, the time series carbon and energy 

intensity is disaggregated by sector. To identify the appropriate model for carbon and energy intensity 

data in the iron & steel, chemical and machinery industries, the below steps are followed (See Figure 

2 for an illustration of these steps): 

(1) A diagnostic test is performed to check if a simple static ordinary least squared (OLS) is 

appropriate for analyzing the data. A Durbin–Watson or Breusch–Godfrey is used to test for 

autocorrelation. These tests can assess the null hypothesis that there is no autocorrelation. 

(2) If there is serial correlation, a set of diagnostics using the autocorrelation function (ACF) 

and partial autocorrelation function (PACF) to determine how current values in a series 

correlate with previous values to identify appropriate lag variables. It also helps isolate 

whether carbon and energy intensity data demonstrate trend and seasonal variations that 

would necessitate using an ARMA model. 

(3) The Ljung–Box Q-test is then deployed to diagnose whether Box–Jenkins modeling process 

sufficiently filters the data. The test assesses the presence of autocorrelation in quantitative 
                                                        
8 As examples using these models, ARMA model is used to assess the impact of exogenous shock on electricity demand [66]. ADL is 

used to analyze energy demand to respond differently (asymmetrically) to price increases and decreases [20,67], and VAR is used to 

assess relationship between economic growth and energy consumption [68–70]. 
9
 In ADL model, the current dependent variable is regressed on the values of the dependent variable with lags and 

the present and lagged values of one or more explanatory variables.  
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manner. That is, it tests for autocorrelation at multiple lags by measuring the accumulated 

autocorrelation of lags [52]. 

(4) The final step involves using the properly specified model to test which explanatory 

variables have a significant effect on carbon and energy intensity. 

3.2. Data 

The data and variables used in the analysis are as follows. The dependent variables are logged 

carbon intensity and logged energy intensity. Logged subsidies, logged fuel prices and logged 

investments are the explanatory variables (for the equation of ARMA model, please see Appendix 1). 

Subsidies data is extracted from the breakdown of expenditure of subsidies for energy supply 

and demand measures (Special Accounts for Sophisticated Structure of Energy Supply and Demand 

budget)
10

, which includes subsidies for energy efficiency and renewable energy technologies. The 

subsidy data is applied to the time series regression model. 

For fuel price data, price index of fuels (oil, coal and natural gas) published by the Institute of 

Electrical Engineers of Japan is used [56]. This analysis uses the price of oil, coal and liquefied 

natural gas as fuel variables. Depending on the type of fuels, the impact of the changes in fuel prices 

differ across industries. Therefore, the paper tests whether three fuel types fit the model: oil, coal and 

natural gas. To estimate the impacts of investment, capital investment flow data (installation basis) is 

extracted from the National Accounts of Japan database published by the Cabinet Office
11

. 

The investment data is published by Ministry of Economy, Trade and Industry (METI) and 

includes total investment amount for newly installed facilities and equipment of industrial sectors. 

By using capital investment data of each industry and testing the variables for carbon and energy 

intensity, it is possible to determine whether new capital investment (installation base) improves 

carbon and energy intensity. 

Data availability affects the time period for the analysis. Historical data on subsidies is available 

from 1990 to 2013, while investment flow data are available from 1994 to 2013. Thus, time-series 

regression analysis is applied for the 1994 to 2013 period. 

4. Results 

The time-series regression analysis of carbon and energy intensity suggest that for energy 

intensity, the non-seasonal ARMA (0,1) model best fits the data (see Appendix 1for a review of the 

equation and Appendix 2 for the model identification). The ARMA (0,1) means that the time lag of 

the impacts is influenced by the previous change in the residuals. The paper uses an ARMA (0,1) 

model for carbon and energy intensity in each industry. 

  

                                                        
10

 Budget data is available from Ministry of Finance. Available from: 

https://www.mof.go.jp/budget/budger_workflow/budget/index.html  
11

 GDP data: Gross Capital Stock of Private Enterprises data is available from Cabinet Office, Government of Japan. Available from: 

http://www.esri.cao.go.jp/jp/sna/menu.html 
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4.1. Subsidy provisions 

4.1.1. Carbon intensity 

As one of the factors influencing carbon intensity and energy intensity, the impact of subsidies 

is assessed using the ARMA (0,1) model. The results indicate that subsidies for measures to enhance 

the energy supply-demand structure (including energy efficiency and renewable, and CO2 mitigation) 

improve carbon intensity in the chemical industry (Table 1). Since the z-ratio is more than |2.33|, it is 

statistically significant at the 0.01 level; there is only a 1% probability that the subsidies impact 

carbon intensity by random chance. However, the magnitude of the impact is small with an estimated 

effect of −0.0043. In case of iron & steel and machinery industry, values are not statistically 

discernible from zero—with z scores that are less than the standard |1.64| threshold. 

Table 1. Carbon intensity. 

  Iron & steel Chemical Machinery 

  SUB SUB SUB 

  Estimate 
Standard 

error 
z-ratio   Estimate 

Standard 

error 
z-ratio   Estimate 

Standard 

error 
z-ratio   

Intercept 0.838 0.005 40.267 *** 0.877 0.036 24.594 *** 0.700 0.077 9.101 *** 

SUB 0.0000 0.0003 1.303   −0.004 0.002 −2.424 ** 0.005 0.003 1.545   

MA(1) 0.667 0.155 4.790 *** 0.183 0.539 0.340   0.767 0.147 5.207 *** 

 

Residual variance=0.0000009. 

AIC=−215.99. 

log-likelihood=110.99. Ljung–Box test 

for autocorrelation=12.068 (p=0.674). 

Residual variance=0.0000021. 

AIC=−198.26. 

log-likelihood=102.13. Ljung–Box test 

for autocorrelation=12.459 (p=0.644). 

Residual variance=0.0000113. 

AIC=−164.13. 

log-likelihood=85.06. Ljung–Box test for 

autocorrelation=13.210 (p=0.586). 

OIL: logged oil price; COAL: logged coal price; GAS: logged gas price. 

MA(1): First-order moving average 

*: the alpha level of 0.05; **: the alpha level of 0.01; ***: the alpha level of 0.001 

Notes: Estimates computed in R3.0.0. 

4.1.2. Energy intensity 

The result also indicate that subsidies have impacts on energy intensity in the chemical industry 

(Table 2). The coefficient estimates suggest that the impact of the effect on energy intensity in the 

chemical industry is not only statistically significant but larger than carbon intensity in absolute 

terms (Table 3). Energy intensity improved by 4.3% (based on the coefficient of -0.043), on average, 

with increased subsidies. On the other hand, in the iron & steel and machinery industry, the results 

are similar to carbon intensity in that that there are no significant impacts on energy intensity with 

increasing subsidies. 
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Table 2. Energy intensity. 

  Iron & steel Chemical Machinery 

  SUB SUB SUB 

  Estimate 
Standard 

error 
z-ratio   Estimate 

Standard 

error 
z-ratio   Estimate 

Standard 

error 
z-ratio   

Intercept 1.924 0.798 2.412 ** 4.363 0.237 18.425 *** 3.854 1.248 3.087 *** 

SUB 0.046 0.031 1.507   −0.043 0.009 −4.764 ** −0.039 0.048 −0.814   

MA(1) 0.852 0.238 3.580 *** 0.361 0.198 1.823 * 0.703 0.222 3.165 *** 

  

Residual variance= 0.0000008.  

AIC=−77.58. 

log-likelihood=41.79. Ljung–Box test 

for autocorrelation=12.7516 

(p=0.6215). 

Residual variance= 0.00013.  

AIC=−116.24. 

log-likelihood=61.12. Ljung–Box test 

for autocorrelation=14.7107 (p=0.4724). 

Residual variance= 0.0022.  

AIC=−58.93. 

log-likelihood=32.47. Ljung–Box test 

for autocorrelation=11.9376 

(p=0.6837). 

OIL: logged oil price; COAL: logged coal price; GAS: logged gas price. 

MA(1): First-order moving average 

*: the alpha level of 0.05; **: the alpha level of 0.01; ***: the alpha level of 0.001 

Notes: Estimates computed in R3.0.0. 

4.2. Fuel prices 

4.2.1. Carbon intensity 

The results to the fuel price models indicate that there is a price elasticity of carbon intensity in 

the chemical industry. The results suggest that, though there is statistically significant effect on oil 

the price elasticity for carbon intensity, the expected improvement of carbon intensity was very small 

with estimated coefficients −0.0016 on a logged scale (Table 3). In the case of coal price and gas 

price, both price variables demonstrate a statistically significant effect on improving carbon intensity 

(coefficients estimates −0.0023). That is, there is an estimated 0.23% improvement in carbon 

intensity with each unit increases in fuel prices. On the other hand, the fuel price elasticity of carbon 

intensity is not statistically significant in the iron & steel industry. In machinery industry, the 

significance depends upon the fuel type. Although there is statistically significance in oil and gas 

price, the impacts have a counter-intuitive worsening effect on carbon intensity with estimated 

coefficients of +0.0042 and +0.0052, respectively. Coal price does not show a significant effect on 

the machinery industry. 
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Table 3. Carbon intensity. 

  Iron & steel Chemical Machinery 

  Estimate 
Standard 

error 
z-ratio   Estimate 

Standard 

error 
z-ratio   Estimate 

Standard 

error 
z-ratio z-ratio 

OIL 

Intercept 0.831 0.005 168.171 *** 0.780 0.009 89.230 *** 0.776 0.017 44.689 *** 

OIL 0.0007 0.0005 1.305   −0.0016 0.0009 −1.774 * 0.0042 0.0017 2.457 ** 

MA(1) 0.662 0.147 4.504 *** 0.603 0.203 2.964 ** 0.637 0.135 4.719 *** 

  

Residual variance= 0.0000008.  

AIC=−217.92. 

log-likelihood=111.96. Ljung–Box test 

for autocorrelation=12.068 (p=0.6351). 

Residual variance= 0.000003.  

AIC=−193.88. 

log-likelihood=99.94. Ljung–Box test 

for autocorrelation=9.2392 (p=0.8647). 

Residual variance= 0.00001.  

AIC=−167.03. 

log-likelihood=86.51. Ljung–Box test for 

autocorrelation=19.1849 (p=0.2055). 

COAL 

Intercept 0.840 0.006 135.345 *** 0.784 0.012 67.351 *** 0.797 0.024 128.842 *** 

COAL −0.0002 0.0007 −0.294   −0.0023 0.0013 −1.762 * 0.0024 0.0027 0.885   

MA(1) 0.676 0.155 4.358 *** 0.738 0.260 2.834 *** 0.645 0.141 4.101 *** 

  

Residual variance= 0.0000009.  

AIC=−216.07. 

log-likelihood=111.04. Ljung–Box test 

for autocorrelation=13.780 (p=0.5422). 

Residual variance= 0.000003.  

AIC=−194.14. 

log-likelihood=100.07. Ljung–Box test 

for autocorrelation=7.862 (p=0.9292). 

Residual variance= 0.00001.  

AIC=−162.58. 

log-likelihood=84.29. Ljung–Box test for 

autocorrelation=14.609 (p=0.4799). 

GAS 

Intercept 0.830 0.006 128.841 *** 0.788 0.011 69.819 *** 0.764 0.023 33.673 *** 

GAS 0.0007 0.0006 1.166   −0.0023 0.0011 −2.111 * 0.0052 0.0022 2.409 ** 

MA(1) 0.637 0.155 4.101 *** 0.643 0.224 2.872 ** 0.596 0.141 4.234 *** 

  

Residual variance=0.0000008.  

AIC=−217.38. 

log-likelihood=111.69. Ljung–Box test 

for autocorrelation=13.419 (p=0.5699). 

Residual variance= 0.000003.  

AIC=−195.01. 

log-likelihood=100.51. Ljung–Box test 

for autocorrelation=9.448 (p=0.853). 

Residual variance= 0.00001.  

AIC=−166.64. 

log-likelihood=86.32. Ljung–Box test for 

autocorrelation=20.65 (p=0.1484). 

OIL: logged oil price; COAL: logged coal price; GAS: logged gas price. 

MA(1): First-order moving average 

*: the alpha level of 0.05; **: the alpha level of 0.01; ***: the alpha level of 0.001 

Notes: Estimates computed in R3.0.0. 

4.2.2. Energy intensity 

Price elasticity of energy demand often depends on the sectors and fuel types, thus it is 

reasonable to assume that the price elasticity of energy intensity varies with sectors and fuel types. 

Fuel prices for oil, coal and gas in the chemical industry appear to register significant effects on 

improving energy intensity with the coefficients −0.029, −0.027 and −0.035, respectively (Table 4). 

The impact of the increase in oil and gas prices in machinery industry statistically significant and is 
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larger in absolute terms than the chemical industry with the coefficients −0.081 and −0.106. In the 

machinery industry, the share of energy consumptions of oil and oil products in the total energy uses 

fell from 20% in 1990 to 10% in 2013 while oil prices increased from 1990 to 2013. Fuel price 

elasticities of energy intensity do not seem significant in iron & steel industry, though coal and coal 

product accounts for 70.1% of the total energy use in the iron & steel industry (as of 2013). 

Table 4. Energy intensity. 

  Iron & steel Chemical Machinery 

  Estimate 
Standard 

error 
z-ratio   Estimate 

Standard 

error 
z-ratio   Estimate 

Standard 

error 
z-ratio z-ratio 

OIL 

Intercept 3.242 0.173 18.718 *** 3.530 0.044 80.855 *** 3.662 0.206 17.769 *** 

OIL −0.012 0.017 −0.676   −0.029 0.004 −6.776 *** −0.081 0.020 −4.012 *** 

MA(1) 0.659 0.195 3.376 *** 0.353 0.246 1.435 * 0.726 0.185 3.925 *** 

  

Residual variance= 0.001.  

AIC=−75.66. 

log-likelihood=40.83. Ljung–Box 

test for autocorrelation=13.5178 

(p=0.5624). 

Residual variance= 0.00009.  

AIC=−124.27. 

log-likelihood=65.13. Ljung–Box 

test for autocorrelation=24.1075 

(p=0.06329). 

Residual variance= 0.0013.  

AIC=−69.95. 

log-likelihood=37.98. Ljung–Box test 

for autocorrelation=13.4167 

(p=0.5701). 

COAL 

Intercept 3.068 0.212 14.494 *** 3.474 0.089 39.118 *** 3.712 0.246 14.122 *** 

COAL 0.007 0.024 0.274 
 

−0.027 0.010 −2.694 ** −0.098 0.028 −0.973   

MA(1) 0.635 0.212 2.990 ** 1.000 1.147 0.872   1.000 0.203 4.921 *** 

  

Residual variance= 0.0001.  

AIC=−75.28. 

log-likelihood=111.96. Ljung–Box 

test for autocorrelation=14.2754 

(p=0.5048). 

Residual variance= 0.00017.  

AIC=−107.94. 

log-likelihood=56.97. Ljung–Box 

test for autocorrelation=24.5917 

(p=0.0557). 

Residual variance= 0.0.0013.  

AIC=−67.19. 

log-likelihood=36.59. Ljung–Box test 

for autocorrelation=15.6845 

(p=0.4033). 

GAS 

Intercept 3.209 0.233 13.748 *** 3.596 0.069 51.954 *** 3.946 0.288 13.684 *** 

GAS −0.008 0.022 −0.360   −0.035 0.007 −5.226 *** −0.106 0.028 −3.851 *** 

MA(1) 0.669 0.203 3.300 *** 0.451 0.234 1.929 * 0.876 0.180 4.868 *** 

  

Residual variance= 0.00097.  

AIC=−75.33. 

log-likelihood=40.67. Ljung–Box 

test for autocorrelation=14.0869 

(p=0.5189). 

Residual variance= 0.00011.  

AIC=−118.62. 

log-likelihood=62.3. Ljung–Box test 

for autocorrelation=24.98842 

(p=0.0501). 

Residual variance= 0.0012.  

AIC=−70.16. 

log-likelihood=38.08. Ljung–Box test 

for autocorrelation=10.3797 

(p=0.7952). 

OIL: logged oil price; COAL: logged coal price; GAS: logged gas price. MA(1): First-order moving average 

*: the alpha level of 0.05; **: the alpha level of 0.01; ***: the alpha level of 0.001 

Notes: Estimates computed in R3.0.0. 
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4.3. Investment 

4.3.1. Carbon intensity 

As for investment, by using logged investment amount in industries it is possible to assess 

whether investments in new plants and equipment are devoted to improving energy efficiency or 

increasing alternative energy use (including renewable energies), which contribute to improving 

carbon and energy intensity. The results indicate that the impact of increasing investment in chemical 

and machinery industry is significant on carbon and energy intensity (Table 5). A one unit of increase 

in investment in chemical industry improves 0.28% of carbon intensity and a one unit of increase in 

investment in machinery industry improve carbon intensity by 4.8%. 

Table 5. Carbon intensity. 

  Iron & steel Chemical Machinery 

  INV INV INV 

  Estimate 
Standard 

error 
z-ratio   Estimate 

Standard 

error 
z-ratio   Estimate 

Standard 

error 
z-ratio   

Intercept 0.496 2.795 0.177   8.193 1.281 6.393 *** 11.813 2.624 4.502 *** 

INV 0.153 0.163 0.941   −0.286 0.074 −3.870 *** −0.482 0.141 −3.421 *** 

MA(1) 0.651 0.209 3.124 *** 0.765 0.313 2.447 ** 0.707 0.180 3.923 *** 

  

Residual variance= 0.00094.  

AIC=−76.07. 

log-likelihood=41.04. Ljung–Box test 

for autocorrelation=14.5235 

(p=0.4863). 

Residual variance= 0.00012.  

AIC=−116.8. 

log-likelihood=61.4. Ljung–Box test 

for autocorrelation=20.7272 

(p=0.1458). 

Residual variance= 0.00146.  

AIC=−67.15. 

log-likelihood=36.57. Ljung–Box test 

for autocorrelation=15.5819 (p=0.4104). 

INV: logged investment (installed based) amount by sector 

MA(1): First-order moving average 

*: the alpha level of 0.05; **: the alpha level of 0.01; ***: the alpha level of 0.001 

Notes: Estimates computed in R3.0.0. 

4.3.2. Energy intensity 

The result of impact of investment on energy intensity suggests that in chemical industry, the 

variable of investment is statistically significant with a coefficient of −0.027 (Table 6). However, in 

other industries, the impacts of investment are not discernibly different from zero in terms of their 

effects on energy intensity. 
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Table 6. Energy intensity. 

  Iron & steel Chemical Machinery 

  INV INV INV 

  Estimate 
Standard 

error 
z-ratio   Estimate 

Standard 

error 
z-ratio   Estimate 

Standard 

error 
z-ratio   

Intercept 0.9368 0.0822 11.401169 *** 1.2323 0.1168 10.548472 *** 0.4952 0.2315 7.3278558 *** 

INV −0.0057 0.0048 −1.206176   −0.027 0.0067 −4.002377 *** 0.0174 0.0124 −0.638437   

MA(1) 0.6475 0.1781 3.634986 *** 0.4418 0.31 1.425193 * 0.6775 0.134 5.0488047 *** 

  

Residual variance= 0.0000008.  

AIC=−217.38. 

log-likelihood=111.69. Ljung–Box test 

for autocorrelation=10.5245 

(p=0.7855). 

Residual variance= 0.0000018.  

AIC=−201.31. 

log-likelihood=103.66. Ljung–Box test 

for autocorrelation=10.2885 

(p=0.8012). 

Residual variance= 0.000013.  

AIC=−162.58. 

log-likelihood=84.29. Ljung–Box test for 

autocorrelation=19.3235 (p=0.1994). 

INV: logged investment (installed based) amount by sector 

MA(1): First-order moving average 

*: the alpha level of 0.05; **: the alpha level of 0.01; ***: the alpha level of 0.001 

Notes: Estimates computed in R3.0.0. 

The individual results from the modelling are illuminating, but it may be difficult to see the 

bigger picture without an overall assessment. Such an assessment can be seen more easily in Table 7. 

That tables suggests that while in chemical industry the increase in subsidies, fuel prices and 

investments significantly improve both carbon and energy intensity, the same set of variables do not 

have significant effects on the carbon and energy intensity in iron & steel industry. Meanwhile, the 

machinery industry, the result depends on the variables (Table 7). While none of the variables 

improve carbon intensity, the increase in oil price, gas price and investment significantly improve 

energy intensity. 

Table 7. Summary of results. 

 
Subsidies 

Fuel price 
Investment 

Oil price Coal price Gas price 

Carbon 

intensity 

Iron & steel n.s n.s n.s n.s n.s 

Chemical * * * * * 

Machinery n.s - n.s - n.s 

Energy 

intensity 

Iron & steel n.s n.s n.s n.s n.s 

Chemical * * * * * 

Machinery n.s * n.s * * 

* = significant to improve carbon/energy intensity (the value negatively impacts on the intensities) 

- = significant to worsen carbon/energy intensity (the value positively impacts on the intensities) 

n.g = not significant 
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5. Discussion 

This paper conducts a time-series regression analysis to assess the factors influencing CO2 

emissions by assessing the degree of impacts of variables (subsidies, fuel prices and investment) on 

carbon and energy intensity. The result indicates that the impacts depends on industry. 

In case of iron & steel industry, none of the variables have significant effects. A possible reason 

is that iron & steel industry require high upfront cost [50]. The physical life of the iron & steel 

facilities such as a blast furnace is long, and maintenance and repair fees are also expensive. Thus, 

the fixed costs, including initial investment and expenses, for maintenance and repair may make it 

difficult to transition to more efficient technologies or lower carbon production methods [57–60]. In 

addition, according to Keidanren (2014), high value added products and environmental regulations 

introduced after 1990 actually increased industrial energy consumption. For example, additional 

energy was required for the implementation of environmental measures such as recycling or 

preventing air and water pollution [61]. 

In the chemical industry, subsidy, fuel prices and investment improved carbon and energy 

intensity. This result makes sense in that the chemical industry has invested approximately 554.5 

billion yen from 1997 to 2012 in global warming countermeasures [61]. Around 10-25 billion JPY 

was invested every year from 2006 to 2011 to improve the efficiencies of facilities and equipment, 

including cogeneration. Expenditures on research and development, as an R&D oriented industry, are 

also larger than other industries [62]. Another consideration is that chemical industry have relatively 

higher operation cost [51], making it beneficial to improve carbon and energy intensity. 

In the machinery industry, although an increase in subsidies for energy supply and demand 

(including energy efficiency and renewable energy) could presumably reduce carbon and energy 

intensity, these effects are not found from the data. Nor does the analysis reveal that investment 

significantly improve energy intensity. Rather only oil and gas prices have the predicted effects on 

improving carbon and energy intensity. 

6. Limitations of This Study 

There are two notable limitations to the paper: 1) modelling and data; and 2) additional drivers 

of carbon and energy intensity. 

In terms of the first set of limitations, although the time-series model is a useful for assessing 

the impact of explanatory variables, the time period 1994 to 2013 for carbon and energy intensity 

data is relatively short (with only 9 lags). A longer time period would arguably generate more robust 

results. In addition, this paper only uses one explanatory variable to assess and compare the impact 

of each variable; it did not assess a combination of variables that may also offer revealing insights 

into the additive effects of different instruments. As for the data, although subsidy data from Special 

Account is used, these figures include subsidies to promote energy efficiency and renewable energy 

for power, building, and transportation sectors not only industries. Thus, it does not always represent 

of subsidies for manufacturing sector. 

In terms of the second set of limitations, there are other factors that may impact carbon and 

energy intensity besides fuel prices, subsidies and investment. For instance, the improvement of CO2 
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emission intensity from electricity may contribute to improvements in carbon intensity—though this 

depends on the share of electricity use to total energy used in industries. The CO2 emission intensity 

of electricity increased from 0.35 in 2010 to 0.487 ktCO2/kWh in 2012 following the Fukushima 

accident [63]. This is mainly due to the increased demands for natural gas in the electricity sector as 

an alternative to nuclear power. In line with the increase in the demands of natural gas, gas price 

went up in Japan from 2011, and the replacement of nuclear power generation to thermal power 

generation, including gas-fired power generation, resulted in an increase in electricity emission 

intensity. In consequence, carbon intensity increased in the machinery sector, especially after 

Fukushima. The effects could be large especially in machinery sector. Electricity accounts for a high 

proportion of total energy consumptions in the machinery industry of between 58% and 74% from 

1990 to 2013
12

. Therefore, increasing CO2 emitted from the electricity sector greatly affects carbon 

intensity. On the other hand, the chemical industry did not have a significant impact on carbon 

intensity although electricity emission intensity increased in 2011. This could be because electricity 

accounts for only 7% of the total energy consumption in the chemical industry. In the time-series 

analysis, while CO2 emission intensity from electricity apparently worsens carbon intensity in the 

iron & steel and machinery industries (with coefficients +0.014 and +0.081 (0.1% probability) 

respectively), the same variable is not significant in the chemical industry. 

7. Conclusion 

From the findings in section 5, the conclusion returns to the initial discussion of the impact of 

carbon tax. Those findings suggest that although the fuel price elasticities of carbon intensity are 

dependent on fuel types and industry sectors, it is possible to increase the price elasticity of carbon 

and energy intensity, especially in chemical and machinery industry if fuel prices become higher. If a 

higher carbon tax is introduced from the current JPY289/tCO2, the impact could be greater and more 

significant on carbon and energy intensity. In the case of subsidies in the chemical industry, subsidies 

appear to reduce carbon intensity. The revenue from carbon tax could partly be used for subsidies on 

renewable energy, energy efficiency or CO2 emissions countermeasures. In terms of policy, this 

paper indicates that the deployment of subsidies could improve carbon intensity and lead to 

reductions in CO2 emissions in key sectors. But the results underline the need for careful analysis of 

the nature and extent to which subsidies affect changes within a sector. A closer analysis may help 

illustrate under which conditions subsidies promote improvements in carbon and energy intensity. 

They could also shed light on when the continuity of subsidies could prevent business sectors from 

making efforts to improve energy efficiency measures and promote CO2 emission reductions, 

perhaps creating barriers to the introduction of new policies such as carbon emission trading. In 

addition, as an alternative for other sources of tax revenue, a carbon tax could be used for the 

reduction of social security contributions for companies or individuals, while promoting the 

reduction of fossil fuel use. 

The time-series analysis shows a clear trend toward improvements in carbon intensity in the 

chemical and machinery industries and improvements in the energy intensity in chemical industry. 

                                                        
12

 METI. Available from: http://www.enecho.meti.go.jp/statistics/total_energy/results.html. 
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Thus, there is a possibility that raising fuel prices and subsidies through a carbon tax could increase 

the contribution to investment to improve carbon and energy intensity in these industries. On the 

other hand, for iron & steel industry, investment in R&D for new technologies for less energy use 

and less emissions or/and technology shift such as from blast furnace to electric furnace would be 

required. 

For further reduction of CO2 emissions, a fuel mix for electricity with less carbon intensity and 

a fuel shift in each industrial sector is also required as well as a reduction in total energy use. The 

results further imply that a combination and harmonisation of various policies could be more 

effective than single policy in improving carbon and energy intensity. A carbon tax could help 

harmonize various instruments including energy price changes and investment. Policies to promote 

investment in less carbon intensive fuels and renewable energy as well as financial support to 

promote the replacement or installation of new facilities and equipment follow from a combination 

of policies and economic incentives may also follow. However, like the analysis offered here, more 

detailed industry specific policy analysis is required to understand these effects. 
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Appendix 

Appendix 1. Equation of ARMA model 

The equation of ARMA(p,q)(P,Q)h is: 

(1 − ∅𝑝𝐵)(1 − 𝜑𝑃𝐵ℎ)𝑦𝑡 = (1 + 𝜃𝑞𝐵)(1 − 𝛿𝑄𝐵ℎ)𝜖𝑡 

Where, yt is carbon or energy intensity at t year and ϵt is white noise of E[ϵt]=0, Var (ϵt)= σ2 at t 

year. B is the backward shift operator (a linear operator), which is a useful notational device when 

working with time series lags. ∅p is parameter when the current value of data has correlation only 

with p year before, the order expresses is one. θqcan be expressed with partial autocorrelation 

coefficient. Each data is influenced by the random shock (historical errors). The parameter θq is 

stationary. Current value of data is influenced by the past errors. If the white noise has correlation 

with the data of one month before, the order becomes one. The combination of AR(p) and MA(q) 

with seasonal components of ARs (P) (Seasonal AR part of order P), 𝜑𝑃 and MAs (Q) (Seasonal 

MA part of order Q) is estimated. 

Appendix 2. Model identification 

For the model analysis, logged carbon intensity and energy intensity data from 1994 to 2013 is 

used. Using the methodology in section 3.1 and the equation in Appendix 1, the ARMA(0,1) model is 

selected as the best fit model for carbon and energy intensity in iron & steel, chemical and machinery 

industry. 

 

Iron & steel industry 

Carbon intensity 

 

In case of iron & steel industry, the ARMA(0,1) model is selected for carbon intensity by 

comparing the result of the Akaike Information Criterion (AIC) as shown in Table A1 to Table A5. 

Although ARMA(0,1) is not the best fit model for the model including oil fuel price variable, this 

analysis uses the same model for data covering carbon intensity in iron & steel industry. 

Table A1. Model selection and test results: Carbon intensity: Subsidy. 
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ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 110.54 −215.08 13.389 0.5723 

ARMA(0,1) 111.8 −217.59 12.068 0.6739 

ARMA(1,1) 112.08 −216.17 10.136 0.8111 

ARMA(1,0): AR1＝s.e. NaN, ARMA(1,1): AR1＝s.e. NaN 

Table A2. Model selection and test results: Carbon intensity: Oil Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 112.15 −218.3 9.2269 0.8654 

ARMA(0,1) 111.96 −217.92 12.575 0.6351 

ARMA(1,1) 113.04 −218.08 7.2962 0.9489 

Table A3. Model selection and test results: Carbon intensity: Coal Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 110.53 −215.06 11.942 0.6834 

ARMA(0,1) 111.04 −216.07 13.781 0.5422 

ARMA(1,1) 111.59 −215.19 11.641 0.7059 

Table A4. Model selection and test results: Carbon intensity: Gas Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 111.42 −216.84 11.662 0.7044 

ARMA(0,1) 111.69 −217.38 13.42 0.5699 

ARMA(1,1) 112.2 −216.41 10.399 0.7939 

Table A5. Model selection and test results: Carbon intensity: Investment. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 111.2 −216.39 9.2154 0.866 

ARMA(0,1) 111.69 −217.38 10.524 0.7855 

ARMA(1,1) 111.96 −215.91 9.9323 0.824 

ARMA(1,0): AR1＝s.e. NaN, ARMA(1,1): AR1＝s.e. NaN 

 

Energy intensity 

 

ARMA(0,1) model is selected for energy intensity in iron & steel industry by comparing the result of 

the AIC as shown in Table A6 to Table A10. 
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Table A6. Model selection and test results: Energy intensity: Subsidy. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 40.23 −74.46 18.456 0.2395 

ARMA(0,1) 41.79 −77.58 12.752 0.6215 

ARMA(1,1) 41.95 −75.89 12.568 0.6356 

Table A7. Model selection and test results: Energy intensity: Oil Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 39.81 −73.63 16.077 0.377 

ARMA(0,1) 40.83 −75.66 13.518 0.5624 

ARMA(1,1) 40.91 −73.82 13.556 0.5594 

Table A8. Model selection and test results: Energy intensity: Coal Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 39.68 −73.36 16.64 0.3408 

ARMA(0,1) 40.64 −75.28 14.275 0.5048 

ARMA(1,1) 40.77 −73.54 14.004 0.5252 

Table A9. Model selection and test results: Energy intensity: Gas Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 39.57 −73.15 17.064 0.315 

ARMA(0,1) 40.67 −75.33 14.087 0.5189 

ARMA(1,1) 40.77 −73.55 14.044 0.5222 

Table A10. Model selection and test results: Energy intensity: Investment. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 39.85 −73.69 17.475 0.2913 

ARMA(0,1) 41.04 −76.07 14.524 0.4863 

ARMA(1,1) 41.41 −74.82 12.78 0.6193 

 

Chemical industry 

Carbon intensity 

 

In case of chemical industry, the ARMA(0,1) model is selected for carbon intensity by comparing the 

result of the AIC as shown in Table A11 to Table A15. Although ARMA(0,1) is not the best fit model 

for the model including oil fuel price variable, this analysis uses the same model for data covering 

carbon intensity in chemical industry. 
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Table A11. Model selection and test results: Carbon intensity: Subsidy. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 102.26 −198.52 11.361 0.7266 

ARMA(0,1) 102.13 −198.26 12.459 0.644 

ARMA(1,1) 102.26 −196.53 11.422 0.7221 

ARMA(1,0): AR1＝s.e. NaN 

Table A12. Model selection and test results: Carbon intensity: Oil Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 100.27 −194.53 9.5491 0.8471 

ARMA(0,1) 99.94 −193.88 9.2392 0.8647 

ARMA(1,1) 100.29 −192.58 9.7751 0.8336 

 

Table A13. Model selection and test results: Carbon intensity: Coal Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 99.92 −193.84 13.701 0.5483 

ARMA(0,1) 100.07 −194.14 14.609 0.4799 

ARMA(1,1) 100.3 −192.61 8.286 0.9118 

Table A14. Model selection and test results: Carbon intensity: Gas Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 99.73 −193.46 6.8141 0.9626 

ARMA(0,1) 100.51 −195.01 9.4475 0.853 

ARMA(1,1) 100.52 −193.05 9.122 0.8711 

Table A15. Model selection and test results: Carbon intensity: Investment. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 103.18 −200.36 13.871 0.5354 

ARMA(0,1) 103.66 −201.31 10.524 0.7855 

ARMA(1,1) 103.67 −199.34 9.9323 0.824 

 

Energy intensity 

 

ARMA(0,1) model is selected for energy intensity in chemical industry by comparing the result of 

the AIC as shown in Table A16 to Table A20. Although ARMA(0,1) is not the best fit model for the 

model including oil, coal and gas variable, this analysis uses the same model for data covering 

energy intensity in chemical industry. 
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Table A16. Model selection and test results: Energy intensity: Subsidy. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 60.85 −115.69 16.477 0.3511 

ARMA(0,1) 61.12 −116.24 14.711 0.4724 

ARMA(1,1) 61.12 −114.25 15.09 0.445 

Table A17. Model selection and test results: Energy intensity: Oil Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 65.15 −124.29 17.383 0.2965 

ARMA(0,1) 65.13 −124.27 13.417 0.5701 

ARMA(1,1) 65.3 −122.59 14.828 0.4639 

Table A18. Model selection and test results: Energy intensity: Coal Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 58.56 −111.13 25.8 0.04018 

ARMA(0,1) 56.97 −107.94 15.684 0.4033 

ARMA(1,1) 58.38 −108.75 18.066 0.2592 

Table A19. Model selection and test results: Energy intensity: Gas Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 62.32 −118.64 15.964 0.3845 

ARMA(0,1) 62.31 −118.62 10.38 0.7952 

ARMA(1,1) 62.32 −116.64 11.347 0.7276 

Table A20. Model selection and test results: Energy intensity: Investment. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 61.26 −116.53 20.173 0.1654 

ARMA(0,1) 61.4 −116.8 15.582 0.4104 

ARMA(1,1) 61.72 −115.45 16.162 0.3714 

 

Machinery industry 

Carbon intensity 

 

In case of machinery industry, the ARMA(0,1) model is selected for carbon intensity by comparing 

the result of the AIC as shown in Table A21 to Table A25. Although ARMA(0,1) is not the best fit 

model for the models including oil price variable, this analysis uses the same model for data covering 

carbon intensity in machinery industry. 
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Table A21. Model selection and test results: Carbon intensity: Subsidy. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 83.11 −160.22 11.073 0.7474 

ARMA(0,1) 85.06 −164.13 14.44 0.4925 

ARMA(1,1) 85.65 −163.29 10.155 0.8099 

Table A22. Model selection and test results: Carbon intensity:Oil Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 85.61 −165.22 25.884 0.03926 

ARMA(0,1) 86.51 −167.03 24.108 0.06329 

ARMA(1,1) 87.5 −167 26.07 0.03729 

Table A23. Model selection and test results: Carbon intensity:Coal Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 83.26 −160.51 32.08 0.006279 

ARMA(0,1) 84.29 −162.58 24.592 0.0557 

ARMA(1,1) 85.32 −162.65 33.455 0.004059 

Table A24. Model selection and test results: Carbon intensity:Gas Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 85.65 −165.31 30.216 0.01117 

ARMA(0,1) 86.32 −166.64 24.988 0.0501 

ARMA(1,1) 87.09 −166.18 25.761 0.04061 

Table A25. Model selection and test results: Carbon intensity: Investment. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 83.48 −160.95 28.167 0.02054 

ARMA(0,1) 84.84 −163.69 20.727 0.1458 

ARMA(1,1) 85.74 −163.49 24.003 0.06505 

 

Energy intensity 

 

The ARMA(0,1) model is selected for energy intensity in machinery sector by comparing the result 

of the AIC as shown in Table A26 to Table A30. 
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Table A26. Model selection and test results: Energy intensity: Subsidy. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 31.55 −57.1 16.787 0.3317 

ARMA(0,1) 32.47 −58.93 11.938 0.6837 

ARMA(1,1) 32.48 −56.95 12.061 0.6744 

Table A27. Model selection and test results: Energy intensity: Oil Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 36.47 −66.95 20.474 0.1545 

ARMA(0,1) 37.98 −69.95 19.185 0.2055 

ARMA(1,1) 38.08 −68.16 7.2962 0.9489 

Table A28. Model selection and test results: Energy intensity: Coal Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 34.09 −62.19 13.701 0.5483 

ARMA(0,1) 36.59 −67.19 14.609 0.4799 

ARMA(1,1) 36.99 −65.98 8.286 0.9118 

Table A29. Model selection and test results: Energy intensity: Gas Fuel prices. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 35.77 −65.55 21.538 0.1205 

ARMA(0,1) 38.08 −70.16 20.65 0.1484 

ARMA(1,1) 38.11 −68.22 16.339 0.3599 

Table A30. Model selection and test results: Energy intensity: Investment. 

ARMA Log likelihood AIC X squared p-Value 

ARMA(1,0) 35.14 −64.27 17.433 0.2936 

ARMA(0,1) 36.57 −67.15 19.324 0.1994 

ARMA(1,1) 36.67 −65.33 12.649 0.6294 

 

© 2016 Takako Wakiyama, et al., licensee AIMS Press. This is an open 

access article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


