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Abstract: Due to an ever-increasing market penetration of plug-in hybrid electric vehicles (PHEVs),
the charging demand is expected to become a main determinant of the load in future distribution sys-
tems. In this paper, we investigate the problem of controlling in-home charging of PHEVs to accom-
plish peak load shifting while maximizing the revenue of the distribution service provider (DSP) and
PHEV owners. A leader-follower game model is proposed to characterize the preference and revenue
expectation of PHEV owners and DSP, respectively. The follower (PHEV owner) decides when to
start charging based on the pricing schedule provided by the leader (DSP). The DSP can incentivize
the charging of PHEV owners to avoid system peak load. The costs associated with power distribu-
tion, line loss, and voltage regulation are incorporated in the game model via power flow analysis.
Based on a linear approximation of the power flow equations, the solution of sub-game perfect Nash
equilibrium (SPNE) is obtained. A case study is performed based on the IEEE 13-bus test feeder and
realistic PHEV charging statistics, and the results demonstrate that our proposed PHEV charging con-
trol scheme can significantly improve the power quality in distribution systems by reducing the peak
load and voltage fluctuations.

Keywords: game theory; in-home charging; Nash equilibrium; plug-in hybrid electric vehicle; power
flow analysis

1. Introduction

Following the increasing ownership of private plug-in hybrid electric vehicles (PHEVs), in-home
charging is expected to become one of the common activities of electricity customers in the near future.
Since most PHEV owners are used to charge their PHEVs as soon as they arrive home, the peak load
associated with charging often appears around the rush hours. In the meantime, the residential load
increases due to cooking and other in-home entertainment activities. As a result, the intrinsic peak load
situation is aggravated [1].

379

\protect \relax \protect \edef txr{txr}\protect \xdef \OMX/txex/bx/n/5 {\OT1/txr/m/n/10 }\OMX/txex/bx/n/5 \size@update \enc@update http://www.aimspress.com/journal/energy/
http://dx.doi.org/10.3934/energy.2016.2.379


380

In order to shift the peak load of a power system, there are two main approaches. One is to schedule
the electricity demand by signing a contract between utility company and customers [2]. This approach
can be easily implemented, however, its flexibility and options are limited to be popularized in the
future. Another approach is based on smart pricing. Since the base load and charging demand are time-
varying over a day, the distribution service provider (DSP) can adjust the electricity rate in different
periods such that PHEV owners are willing to shift their charging time to off-peak hours for a lower
price. Various pricing strategy can be applied, such as critical-peak pricing, real-time pricing, and
time-of-use (TOU) pricing [3].

A vital part of smart pricing is to estimate the corresponding charging strategy of PHEV owners.
The game-theoretic approach is ideal to address this issue as it can reveal the relationship between
the pricing strategy of DSP and the charging strategy of PHEV owners. At the Nash equilibrium, all
players in the game have no tendency to alter their decisions. In this way, the DSP can analyze the
group performance of all PHEV owners. In literature, game models are proposed to coordinate the
charging demand of PHEVs and the revenue of the DSP while keeping the stability of the power grid.
In [4], a game theoretic approach is proposed to optimize the schedule of electric vehicle charging in a
parking lot with a highly dynamic electricity price during the day time. Beaude et al. propose a static
non-cooperative game formulation of distributed charging in electric vehicle networks, where several
electric vehicles are connected to a common residential distribution transformer and each player aims
at choosing an optimal starting time of charging [5]. A hierarchical game approach is applied in [6]
with a real-time charging price in the fast charging station. For the in-home charging, Yoon et al.
propose a Stackelberg game based on demand response [7]. The relevance between the weight factor
of each PHEV owner and the optimal price is analyzed, which indicates that the Nash equilibrium
can differ when considering the individual differences among followers in the game model. In [8],
the authors propose a firm-union bargaining game approach for PHEV charging access control, to
determine the starting time of PHEV charging. A central governing procedure to realize the demand-
side management in the game model is developed in [9], which is able to schedule load flexibly over
multiple time periods. A stochastic optimization model for optimal bidding strategies of electric ve-
hicle (EV) aggregators is studied in [10] and [11] considering EV fleet characteristics, hourly loads
and influence of wind-driven generators. In a similar case, a decentralized control method is applied
in [12] to coordinate the charging load and the renewable sources. The price competition among EV
charging stations is studied in [13]. In [14], the interaction among charging stations is modelled by
considering transportation conditions. In [15], the randomness of EV’s availability is considered in a
day-ahead energy market to shape a general profile of the charging demand in distribution system. A
new approach to maintain the system stability through game model is developed in [16], where both
aggregators and EVs consider of the quality of energy requirements. More detailed analysis about
quality of energy requirements can be developed by modifying the utility function in the game formu-
lation, which involves the impact of line loss and voltage regulation on PHEV charging scheduling.
Some recent research works in power engineering propose linear approximation algorithms for power
flow analysis [17–19], which may provide some effective and efficient means to assess the impact of
power flows in distribution systems. Yet, how to incorporate power flow analysis into the game model
of PHEV charging control is still an open issue.

In this paper, we construct a leader-follower game model for PHEV charging control based on the
Stackelberg game framework. Each PHEV owner plays the role of follower, who chooses the start
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time of charging based on the pricing schedule provided by the DSP. When the PHEV owners arrive
home, they continue to make decisions between starting PHEV charging and waiting, until midnight
when they have to sleep. Once they start charging the PHEVs, their costs are fixed which are not
influenced by the alteration of the charging price. For the DSP, he/she can optimize the pricing schedule
according to the arrival probability of PHEVs and the base load of residents. The general utility of the
DSP is related to the energy cost and the payoff from PHEV owners. In order to characterize the
impact of power flows in distribution systems, both line loss and voltage regulation are included in
the cost of the DSP in our proposed game model. Specifically, the line loss and voltage regulation
can be obtained via traditional power flow analysis, which is nonlinear in nature. As a result, the
Nash equilibrium of the game model is obtained through multivariate nonlinear programming with a
high computational complexity. To facilitate practical applications, a linear approximation of power
flow equations is applied in this paper. For the distribution system under consideration, the methods
proposed in [20] and [21] are utilized to analyze line loss and voltage regulation, respectively, based on
which the solution of the sub-game perfect Nash Equilibrium is derived. Extensive simulations based
on the IEEE 13-bus test feeder and realistic PHEV charging statistics are performed to demonstrate the
effectiveness of the proposed PHEV charging control scheme.

The rest of this paper is organized as follows. The system model is introduced in Section 2. The
PHEV charging control problem is formulated as a non-cooperative dynamic game in Section 3. The
solution of the sub-game perfect Nash Equilibrium is presented in Section 4. In Section 5, a case study
is provided to verify our theoretical analysis. The concluding remarks are drawn in Section 6 with
future work.

2. System Model

In the electricity market, the retailers can adjust the customers’ electricity demand through various
pricing schedules [23]. Stability and stochastic analysis of the responding demand can be performed
to help reduce the cost of the DSP while protecting the power grid [24]. On the other hand, in energy
transactions, the electricity customers are often price-driven [25]. So in our market model, the DSP
earns revenue from the fee of charging service, while its cost includes the cost of generation, line loss
and voltage regulation. On the other hand, the PHEV owners can benefit from the low electricity price
at certain time by adjusting its starting time of charging according to the pricing schedule.

Consider a distribution feeder with N buses. When there are kn PHEVs charging in the residential
houses on bus n, the total electric power consumption of PHEV charging is given by

Pc =

N∑
n=1

knPper (1)

where Pper is the charging power of each PHEV. With a considerable penetration of PHEVs, the line
loss on the feeder cannot be ignored. In other words, to distribute a certain amount of load, the DSP has
to supply a larger amount of electric power due to the line loss. For the PHEV owners, it is difficulty
to estimate the influence of line loss on their charging price. However, for the DSP, the line loss is
directly included in the total cost of electricity delivery. In other words, only the DSP investigates the
cost associated with the line loss. To maximize the revenue, the DSP can adjust the electricity price
according to the line cost. Since the PHEV owners make charging decisions according to the electricity
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price, they are indirectly influenced by the cost associated with line loss. Through power flow analysis,
the line loss caused by PHEV charging can be obtained by the base load and charging load on each
bus as well as the admittance matrix of the distribution system. Furthermore, when there is a large
number of PHEVs charging at the same time, the voltage drop on some terminal nodes can be severe,
which may result in an inferior power quality in the distribution system. Therefore, the DSP needs to
take operations on the voltage regulator once it is necessary to increase the voltages of terminal nodes.
However, there is a cost associated with the voltage regulation. Here we apply an approach of reactive
power compensation as voltage regulation [21], where the cost of voltage regulation can be converted
into power compensation. Thus, the actual power consumption of PHEV charging can be calculated as

E = Pc + Pl + Qr (2)

where Pc is the total charging load, Pl is the extra line loss caused by PHEV charging in comparison
with the case without PHEV charging, and Qr is the reactive power compensation for voltage regulation
determined by base load and charging load of the distribution system. Note that both Pl and Qr are
nonlinear functions which can be obtained through power flow analysis. Based on (2), the total cost of
the DSP is given by

C = aE (3)

where a > 0 is the cost coefficient. Note that in practice, the relationship between electric power
consumption and cost can be more complicated if we also consider other factors in power distribution,
such as operation, maintenance, billing/collection/administration, depreciation, and interest [22]. Yet,
an extension to more detailed cost models for the DSP (e.g., quadratic model and translog model [22])
is left for our future work.

In terms of the charging process, we consider a dynamic process over a whole night, which consists
of a sequence {1, 2, . . . ,T } of time slots. The duration of each time slot is ∆t, during which the charging
process can be regarded as a static process. In time slot ti, the DSP publishes a TOU price pi. Each
PHEV owner makes a decision on starting PHEV charging or waiting, based on the TOU price and
prior knowledge of historical prices as well as general electricity usage. Besides, the decision makers
in time slot ti can be categorized into two types: one is the newly arriving PHEV owners, the number
of whom is constant on each bus in time slot ti; the other consists of PHEV owners that have made
the decisions of waiting before, the number of whom is determined by the strategies of PHEV owners.
Mathematically, the relationship between the two parties is given by

Mn
i = Mn

i,arrival + Mn
i−1,wait = Mn

i,charge + Mn
i,wait (4)

where Mn
i is the number of decision makers in time slot ti on bus n, while Mn

i,arrival, Mn
i,wait and Mn

i,charge
are the numbers of newly arriving, waiting and charging PHEVs, respectively. Besides, given the
charging duration d of PHEVs, we can express the total number of charging PHEVs on bus n in time
slot ti (kn,i, which corresponds to kn in (1)) as follows:

kn,i =

i∑
t=i−d+1

Mn
t,charge. (5)

Furthermore, the PHEV owners need to concern about the delay discomfort as the cost of waiting. In
other words, a long waiting time can only be offset by a considerable revenue of charging. Otherwise,
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the PHEV owners will continue to wait. In case that they do not charge over night, the owners can
refuel PHEVs with gas for their daily commute demand.

The base load is another significant factor for the DSP. Even if there is no PHEV charging, the base
load of daily electricity usage of residents may lead to peak load and voltage instability. The load
of PHEV charging will aggravate the peak load. Taking the PHEV charging into consideration, the
per-slot load in (2) can be expressed as

Ei = Pc,i + Pl,i + Qr,i (6)

where Ei, Pc,i, Pl,i, and Qr,i are the actual total load, charging load, line loss, and reactive power
compensation for voltage regulation in time slot ti, respectively. Thus, we can express the cost function
of the DSP in (3) over all time slots as

C =

T∑
i=1

Ci = a
T∑

i=1

Ei.

3. Formulation of the Non-cooperative Dynamic Game

Generally speaking, the pricing process between the retailer and customers can be modelled by a
leader-follower game, where the leader is the retailer and the follower is the group of all customers.
Accordingly, the revenue of the follower is the welfare of all potential customers. In other words, each
customer always makes a decision to maximize the group interest instead of an individual one, which
is not a proper way to estimate the individual charging behaviour. Therefore, we apply a new model
with an individual revenue function in order to obtain the total electric power consumption closer to
the reality. We also take some factors of power flow into consideration. In this way, the individual
characteristic of charging behaviour is distinguished by detailed factors like location, starting time,
and individual revenue of charging.

3.1. Game formulation

The charging process can be divided into two steps. At first, the DSP publishes the TOU price
in advance. Then, the PHEV owners determine when to start charging. The available information of
PHEV owners for decision-making includes the degree of patience to wait, speculative price limit and
real-time price; In order to determine a proper pricing schedule, the DSP should have the knowledge
about the number of arriving PHEVs in each time slot on each bus of distribution system, the average
charging duration, the charging strategies of PHEV owners and the cost of power distribution including
the cost of generation, line loss and voltage regulation. Therefore, the charging process can be modelled
as a game with incomplete information, since the pricing strategy and utility of the DSP are unknown
to the PHEV owners, while the decision criterions of the PHEV owners are unknown to the DSP. To
determine the pricing schedule, the DSP needs to analyze the charging strategies of PHEV owners and
estimate the total additional electric power consumption due to the charging process. The best pricing
strategy for the DSP is to minimize the cost with a maximized revenue. The strategic form of the game
is defined by Γ =

{
Mi ∪ D,

{
xn,k

}
,
{
Un,k

}
, p,R (p)

}
, the components of which are listed as follows:

• Mi is the set of PHEV owners who play the role of decision makers in time slot ti on each bus
according to the price maker D;
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• xn,k is the strategy of PHEV owner k on bus n, where xn,k = C denots starting PHEV charging and
xn,k =W represents waiting;
• Un,k is the utility function of PHEV owner k on bus n, which is characterized by the speculative

price limit, historical price, and real time price;
• p = {p1, p2, . . . , pT } is the vector of TOU pricing schedule provided by the DSP;
• R (p) is the utility function of the DSP, which depends on the price vector p.

3.2. Utility function of PHEV owner

We denote the PHEV owner in each residential house as k ∈ {1, 2, . . . ,K}. The utility function of
PHEV owner k is denoted by Uk (xk, p, plim,w, i), where xk ∈ {C,W} is the decision of starting PHEV
charging or waiting, p is the vector of the real-time price, plim is the speculative price limit, and time
slot ti is the decision time of the PHEV owner. To model of the charging behaviour in response to the
real-time price, two assumptions are made as follows.

1. The speculative price limit increases with the increasing waiting time according a discounting
process plim(t) = wt plim(0);

2. The speculative price limit is subject to an exponential distribution.

Here, w ∈ (0, 1) is the delay discomfort coefficient of the PHEV owner. The physical meaning is that
the speculative price limit reduces by a factor of w after waiting for each time slot with duration ∆t.
The details of the two assumptions are discussed in Subsections 3.2.2 and 3.4, respectively.

3.2.1. Utility of charging

According to the consumer choice behaviour model in [26], the individual speculative price limit
plim can be expressed by the real-time price pi adding a deviation ε. Here ε is a random variable
influenced by unobservable characteristics. Due to different past purchasing experience, purchase
demand and waiting time, the value of plim varies. And the real-time price is also time-varying. As a
result, ε, the deviation of speculative price limit and real-time price can indicate the price gap between
expectation and reality. If the speculative price limit is greater than or equal to the real-time price,
the PHEV owner tends to start charging. Otherwise, a decision of waiting is likely to be made by the
PHEV owner. Mathematically, we have

Uk (C, p, plim,w, i) = plim − pi (7)

where pi is the price in time slot ti, obtained from vector p.

3.2.2. Utility of waiting

In the decision making process of PHEV owner, the utility of waiting in time slot ti can be expressed
with the expected utility of charging later. However, due to the inconvenience of waiting, the specu-
lative price limit after waiting is lower. According to [27], the satisfaction rating usually decreases
along with time, and the tendency of decreasing gradually slows down. Therefore, in our model, we
approximate the speculative price limit after waiting for t time slots as ωt plim. Accordingly, the utility
of waiting for one time slot is given by

Uk (C, p, plim,w, i + 1) = wplim − pi+1. (8)
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Similarly, the utility of charging in t time slots later is given by

Uk (C, p, plim,w, i + t) = wt plim − pi+t. (9)

Based on (9), the utility of waiting can be expressed by

Uk (W, p, plim,w, i) =
1

T − i

T∑
t=i+1

Uk (C, p, plim,w, t)

=
1

T − i

Wi plim −

T∑
t=i+1

pt


(10)

where Wi is a constant determined by the discount factor w, given by

Wi =
wT−i − 1

w − 1
. (11)

From (7) and (10), the utility function of PHEV owners can be obtained.

3.3. Utility function of DSP

In general, the utility of DSP depends on the revenue from charging and the relative cost. The
latest models in [28–30] define the utility of DSP as the revenue minus the cost. In these models,
the revenue can be calculated based on electricity consumption multiplied by the price. The cost
needs to be estimated and can involve factors such as generation cost, line loss, as well as voltage
regulation. Since a time-varying system is considered in this paper, these factors are also time-varying.
Mathematically, the utility of DSP in each time slot can be expressed by the revenue minus the cost
given by

Ui = piPc,i − aEi

= (pi − a) Pc,i − aPl,i − aQr,i.
(12)

Thus, the optimal pricing strategy p∗ of the DSP can be obtained by solving the following nonlinear
programming problem:

max
p

T∑
i=1

Ui (13)

s.t. pi ∈ (plim,∞) . (14)

In (13), it is obvious that the utility of the DSP depends on not only the pricing strategy and the cost of
electricity consumption, but also the demand response in terms of PHEV charging scheduling as well
as the cost on the power grid. Furthermore, the utility function of the DSP is a time varying function,
which means that directly increasing the charging price in the peak hour is not a proper solution. The
reason is that, on one hand, the charging load before the peak hour will be maintained. As a result, it
will be too late to reduce the charging load on the peak hour. On the other hand, in essence, the control
of the charging load is to redistribute the number of charging PHEVs in each time slot. Due to the
continuity of time, to make the off-peak price cheap is another proper strategy to incentivize the PHEV
owners’ tendency of off-peak charging. In this way, the DSP can realize the goal of peak load shifting
with revenue maximization.
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3.4. Charging power

In time slot i, given the TOU price vector p, whether to charge the PHEV is determined by the
speculative price limit plim. Based on (7) and (10), the condition of charging is given by

Uk (xk = C) > Uk (xk =W) . (15)

Equivalently, we have

plim − pi >
1

T − i

Wi plim −

T∑
t=i+1

pt

 . (16)

Then, the value of plim is given by

plim >

(T − i) pi −
T∑

t=i+1
pt

T − i −Wi
. (17)

Given the discount factor w, the right hand side of (17) is a function of the TOU price vector. Here, we
define a variable B (i) as

B (i) ,
(T − i) pi −

T∑
t=i+1

pt

T − i −Wi
. (18)

Then, we can regard B (i) as a threshold function of the speculative price limit, so that the only
determinant factor is plim. In other words, when plim is larger than B (i), it is more beneficial for the
owner to start PHEV charging right away. Otherwise, waiting will be a proper choice. In this way,
we can estimate an individual decision by a unified function, which indicates the group performance
of PHEV owners. Based on the statistics obtained by investigating historical data, the distribution of
speculative price limit can be obtained. In general, the number of customers under certain speculative
price limit decreases with the increase of the value of the speculative price limit. According to [31],
exponentially distributed reservation prices are widely used. Here, the reservation price means an
expected acceptable price for customers, which is similar to the definition of speculative price limit in
our model. However, conventional exponential distribution starts from zero, while the electricity price
can hardly be zero due to the cost associated with the power flow analysis. So we set an additional
lower bound (pmin) for the speculative price limit. Accordingly, the speculative price limit can be
modelled as plim − pmin ∼ exp (λ), where λ is a constant obtained from historical data. In this way, we
can estimate the expected number of charging PHEVs, given by

M
n
i,charge = Mn

i

∫ ∞

B(i)−pmin

λe−λxdx = Mn
i e−λ[B(i)−pmin]. (19)

Based on the expected number of charging PHEVs, the expected charging power can be calculated
based on (1) and (5).

3.5. Line loss

Consider every bus on the feeder as a PQ bus. For the DSP, the average load in time slot i on each
bus, i.e., s̄i,1, s̄i,2, . . . , s̄i,N , are available. Adding the electric power consumption of PHEV charging, the
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actual load on each bus is given by

ŝi,n = s̄i,n + Pper

i∑
t=i−d+1

M
n
t,charge (20)

where d is the average charging duration of each PHEV. Generally speaking, for a distribution feeder,
the line loss can be calculated by the voltage drop and the impedance between each two connected
buses, given by

Pl =

N∑
i=1

N∑
j=1

(
vi − v j

)2∣∣∣Zi, j

∣∣∣ (21)

where vi is the voltage on bus i, and Zi, j is the impedance between bus i and j. There are many
approaches of power flow analysis to calculate the voltage on each bus with the load data. Here we
apply an approach of linear approximation [20] to simplify the computation. Mathematically, we have

vi = V0e jθ0

(
1 +

Zŝi

V2
0

)
(22)

where vi is the voltage vector, V0e jθ0 is the voltage on the slack bus, Z is the impedance matrix, and
ŝi is the total load vector. Based on (20), (21), and (22), we can calculate the total line loss as a linear
function of the load. Specifically, the line loss resulted from PHEV charging can be calculated as

Pl,i = Pl (ŝi) − Pl (s̄i) . (23)

3.6. Voltage regulation

Another electricity distribution cost is resulted from voltage regulation. There are various ap-
proaches to deal with the voltage drop. In this paper, we consider that the voltage is regulated by
reactive power compensation. The corresponding cost of voltage regulation depends on the compen-
sated reactive power. For example, if the voltage regulator is installed on bus m, the load on bus m is
s̄m = 0 − jQm. Then the compensated reactive power can be obtained via nonlinear programming. The
solution is the minimum value of Qm that satisfies vn > vmin,∀n, where vmin is the minimum voltage
based on power quality requirement and vn can obtained from (22).

4. Solution of Sub-game Perfect Nash Equilibrium

Recall from the previous section, the utility of the DSP (13) is a complex nonlinear function. As
a result, the existence of the solution cannot be proved directly. Besides, the solution of the sub-
game perfect Nash equilibrium (SPNE) is also hard to be obtained. Therefore, in this section, we
will simplify (13) and propose a practical approach to solve the problem through iterations of linear
functions.

Given the pricing vector p, a constant sequence of B (i) can be obtained according to (18). Then we
can calculate the charging rate in each time slot, given by

µi,n = e−λ[B(i)−pmin] =
M

n
i,charge

Mn
i

. (24)
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Based on (4) and together with the charging rate µn
i and the arrival number Mn

i,arrival, the number of
PHEVs that start charging in time slot i can be rewritten recursively, given by

M
n
i,charge =


µ1,nMn

1,arrival i = 1

µi,n

i∑
t=1

[
Mn

t,arrival

i−1∏
j=t

(
1 − µi,n

)]
i > 1.

(25)

Since given the price vector p, the values of µi,n and Mn
i,arrival are all available, thus the number of

PHEVs that start to charge in time slot i can also be obtained as a constant sequence. According to
(20), the total charging load on bus n in time slot i is given by

sc,i,n = Pper

i∑
t=i−d+1

M
n
t,charge. (26)

Up to now, we have converted the price into a sequence of uncoupled variables sc,i,n, which only
depends on the pricing schedule provided by the DSP. In this way, (13) can be rewritten as a function
of sc,i,n, given by

U (s) =

T∑
i=1

[
(pi − a) Pc,i (s) − aPl,i (s) − aQr,i (s)

]
(27)

where s ,
[
sc,1,1, . . . , sc,T,N

]
is the charging load vector. If SPNE exists, the solution should be either

one of the stationary points or on the boundary of the domain of definition. The partial derivative
function of (27) is given separately in the following. For the charging consumption Pc,i, it is easy to
calculate the partial derivative function, given by

∂Pc,i

∂sc,i,n
= pi − a. (28)

According to (21), the partial derivative function of Pl,i is given by

∂Pl,i

∂sc,i,n
=

N∑
m=1

N∑
n=1

2 (vm − vn)∣∣∣Zm,n

∣∣∣ ∂ (vm − vn)
∂sc,i,n

, (29)

where vn has been given in (22). Thus, we have

vi,n = V0e jθ0

1 +
1

V2
0

N∑
m=1

Zm,n
(
s̄i,m + sc,i,m

) . (30)

The partial derivative of vi,n is given by

∂vi,n

∂sc,i,n
=

e jθ0

V0
Zn,n. (31)

Therefore, the partial derivative function of Pl is a homogeneous linear function of the vector s.
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Assume bus f experiences the most significant voltage drop on the feeder. Also, we consider a
typical placement of the voltage regulator, i.e., at the beginning of the feeder (on bus 2). Then, we have
s̄i,2 = 0 and sc,i,2 = −Qr,i. Together with (30), the compensated reactive power is given by

Qr,i =
1

Z2, f

 N∑
m=1,m,2

Zm, f
(
s̄i,m + sc,i,m

)
−

(
vi, f

V0e jθ0
− 1

)
V2

0


vi, f = vmin.

(32)

The partial derivative function of Qr,i is a constant, given by

∂Qr

sc,i,n
=

∆Zn, f

Z2, f
. (33)

Combining (28), (31), and (32), the condition of the stationary points is given by a set of linear
equations as follows 

p1 − α1
...

pT − αT×N

 − a


δ1,1 · · · δ1,T×N
...

. . .
...

δT×N,1 · · · δT×N,T×N




sc,1,1
...

sc,T,N

 = 0 (34)

where α and δ are all constants determined by the power grid and electricity cost. In this way, given
an initial value of p, the charging load vector s can be obtained through (24)-(26). Then a new value
of p can be obtained from (34). Based on the iterations, the final result will converge to an optimal
pricing schedule. Even though some variables may exceed the bounds, we can replace them by the
boundary values and remove the corresponding equations in (26). Since both p and s are continuous
on the bounded domain of definition, we can always find a solution from (26), i.e., the solution of
SPNE always exists.

5. Case Study

Our case study is based on the IEEE 13-Bus distribution test feeder. Each bus is assumed to be a
service transformer in a residential area, as shown in Figure 1. Both the daily base load and PHEV
charging load are delivered through the same feeder. The voltage regulator is installed close to the slack
bus. Besides, the rated power and voltage on the slack bus are 4.16 MVA and 4.16 kV , respectively. The
hourly base load is obtained from the data set of Electric Reliability Council of Texas (ERCOT) [32],
which manages the electric power for 24 million Texas customers - representing about 90 percent of
the state’s electric load. For the in-home charging station, we use the parameters of CT4000 Level 2
Commercial Charging Stations [33] in our simulations. The charging power is 7.2 kW and the charging
duration is approximately 3 hours. The TOU price provided by the DSP varies every 30 minutes.

Four cases are considered in our simulations. In case 1, the PHEV owners start charging as soon
as they arrive home; In case 2, the optimal TOU pricing is calculated based on our model with the
speculative price limit discount factor w = 0.98 and the distribution parameter of speculative price
limit λ = 1; In case 3, we reduce the value of w to 0.96 to evaluate the impact of delay discomfort as
the cost of waiting; In case 4, we halve the value of λ to evaluate the impact of speculative price limit.
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Figure 1. IEEE 13-bus distribution test feeder.

In the following, we will observe the influence of PHEV charging control on the load, charging rate µ,
line loss, and voltage regulator consumption. Besides, to simplify the simulations, we define a per unit
price with respect to the base price a, given by

ηi =
pi

a
(p.u.) . (35)

Since a is a constant, according to (35) and ηi, we can ignore the impact of a on the results.

In Figure 2, we can find that the TOU price delays the peak load of charging effectively. The
standard deviation of the load over the night has been reduced by 27.1%. In case 1, the peak load
comes at around 7:00 pm and in case 2, the dominant peak load is mainly at 9:00 pm. Figure 3 shows
the charging rate in each case. In case 1, the charging demand of every PHEV can be satisfied while
in case 2 not. Due to the high base load and arriving home late, some of the PHEV owners will keep
waiting until the midnight. If they cannot find a proper time to start charging, they can refuel their
PHEVs with gas for the driving demand in the next day. Besides, it should be noticed that in our
model, the peak load shifting is postponed. The off-peak load period between early arrival peak of
PHEVs and the peak of base load is much shorter compared with the charging duration, such that the
charge rate is always low then.

Figure 4 and Figure 5 demonstrate the line loss and voltage regulation in each case. The delivery ef-
ficiency has been improved. Specifically, for the voltage regulation, the total consumption is decreased
by 14.9%. And the details of the voltage range after regulation is shown in Table 1. More importantly,
we can observe that the fluctuation of the voltage regulation has been remitted. Accordingly, the num-
ber of time to operate the voltage regulator is reduced, which can significantly reduce the wear and tear
of voltage regulator.
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Figure 2. The total electricity consumption in each case.
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Figure 3. The accumulated charging rate in each case.
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Figure 4. The total line loss in each case.
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Figure 5. The voltage regulation (reactive power compensation) in each case.
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Table 1. Maximum and minimum voltages of each bus.

Bus number Maximum voltage / p.u. Minimum voltage / p.u.

3 0.9925+j0.0772 0.9962 + j0.0386
4 0.9929+j0.0810 0.9964 + j0.0405
5 0.9932+j0.0841 0.9965 + j0.0420
6 0.9935+j0.0821 0.9967 + j0.0410
7 0.9939+j0.0837 0.9969 + j0.0418
8 0.9880+j0.1316 0.9940 + j0.0658
9 0.9880+j0.1346 0.9944 + j0.0680

10 0.9914+j0.1401 0.9957 + j0.0700
11 0.9887+j0.1344 0.9944 + j0.0671
12 0.9899+j0.1360 0.9949 + j0.0679
13 0.9892+j0.1355 0.9946 + j0.0677
14 0.9881+j0.1329 0.9940 + j0.0664

For the decision factor of PHEV owners, we can find an obvious relevance to the peak load shifting
result. The value of w close to 0 means the intolerance of waiting. In other words, as long as the PHEV
owners are patient enough, they can always find a proper time to start charging without aggravating the
peak load. Moreover, the value of λ denotes the PHEV owner’ sensitivity to the price fluctuation. The
more the value of λ is close to 1, the more the TOU price can influence the charging preference.

Since the solution to our model is iterative, the traditional methods of computational complexity
analysis can hardly be applied here. Therefore, we use the number of iterations to indicate the com-
putational cost of our solution. As shown in Figure 6, the per unit price ηi converges within about 10
iterations. And in each iteration, we mainly solve the linear equations (34). According to the result,
the computational cost is acceptable.

6. Conclusion

In this paper, we propose a leader-follower game model between PHEV owners and the DSP. The
utility of each PHEV owner is formulated by considering the distribution of speculative price limit.
For the utility of the DSP, we take two factors of power flow analysis into consideration, i.e., line
loss and voltage regulation. To obtain the solution of the optimal price, we apply an approximated
linear function in power flow analysis and propose the corresponding optimal algorithm. Simulation
results demonstrate that our proposed model can improve the power quality of the distribution system,
in terms of lower system peak load and less voltage fluctuations. In our future work, we will take
the randomness of PHEV owners into consideration, including the randomness in arrival time and
tolerance of price variation, as well as the stochastic base load.
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Figure 6. Convergence of the per unit price.
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