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Abstract: For better understanding the role of dynamic factors in the DNA functioning, it is important 

to study the internal mobility of DNA and, in particular, the movement of nonlinear conformational 

distortions -kinks along the DNA chains. In this work, we study the behavior of the kinks in the pPF1 

plasmid containing two genes of fluorescent proteins (EGFP and mCherry). To simulate the movement, 

two coupled nonlinear sine-Gordon equations that describe the angular oscillations of nitrogenous 

bases in the main and complementary chains and take into account the effects of dissipation and the 

action of a constant torsion field. To solve the equations, approximate methods such as the quasi-

homogeneous approximation, the mean field method, and the block method, were used. The obtained 

solutions indicate that two types of kinks moving along the double strand can be formed in any part of 

the plasmid. The profiles of the potential fields in which these kinks are moving are calculated. The 

results of the calculations show that the lowest energy required for the kink formation, corresponds to 

the region located between the genes of green and red proteins (EGFP and mCherry). It is shown that 

it is in this region a pit trap is located for both kinks. Trajectories of the kinks in the pit-trap and nearby 

are constructed. It is shown that there are threshold values of the torsion field, upon reaching which 

the kinks behavior changes dramatically: there is a transition from cyclic motion inside the pit-trap to 

translational motion and exit from the potential pit-trap. 

Keywords: plasmid pPF1; EGFP and mCherry genes; potential energy profile; kink dynamics; 2D and 

3D trajectories 
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1. Introduction  

Dynamics is known to play an important role in the functioning of DNA. Despite this, many 

questions regarding the features of the internal DNA mobility as well as their connection with the 

functioning are still unclear. In this work, we investigate the dynamic behavior of the nonlinear 

conformational distortions—DNA kinks [1], which are small locally unwound regions of the double 

helix, also named open states [2] or, in later works, bubbles [3–5] or transcription bubbles [6–9]. We 

study in detail the DNA kinks movement in the potential field containing a pit-trap. These traps are 

often found in the potential fields of small circular plasmids. 

Plasmids are widely used in genetic engineering to study the functional properties of DNA 

molecules and its fragments. In recent years, plasmids containing genes for fluorescent proteins have 

been especially actively used. By inserting the studied DNA fragments into the intermediate region 

between two genes of fluorescent proteins, for example, between the genes of green and red proteins 

(EGFP [10] and mCherry [11]), researchers judge the intensity and direction of the transcription 

process in these DNA fragments according to the fluorescence spectra.  

To carry out model experiments, we chose the recently created pPF1 plasmid containing a pit trap. 

This plasmid (Figure 1) was constructed by Masulis et al. in 2015 [12]. It was obtained from the pET-28b 

plasmid [13] and supplemented with two genes: EGFP and mCherry, encoding green and red 

fluorescent proteins, respectively. The complete nucleotide sequence of pPF1 was published in 2021 

in the work of Masulis et al. [14] (see the sequence in Appendix where the region between the two 

genes is underlined). 

 

Figure 1. Schematic representation of the plasmid pPF1. The gene EGFP, the gene 

mCherry and the kanamycin resistance gene are shown in green, red and blue, respectively. 

Intermediate regions are shown in yellow. S indicates the beginning of the numbering of 

the nucleotide sequence. The numbers 1, 2, 3, 4, 5, 6 and 7 number the regions. 

For mathematical modeling of the plasmid structure, it is convenient to renumber sequentially the 
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sections of the sequence corresponding to these three genes and intermediate regions between them, 

starting from point S (Figure 1). As a result, we get 7 regions. However, when performing mathematical 

calculations, it its necessary to take into account the circular nature of the plasmid structure. To do this, 

it is convenient to combine the regions to the right and left of the point S (the 1-st and 7-th regions) 

into a single region and call it the (7 + 1)-th region. Data on the coordinates of the regions, the number 

of adenines NA, thymines NT, guanines NG and cytosines NC and the total number of bases in each 

region are presented in Table 1. 

Table 1. Details оf the plasmid pPF1 structure. 

Region 

number 

Region 

coordinates 
𝑁𝐴 𝑁𝑇 𝑁𝐺  𝑁𝐶 𝑁 

1+7 (1-332) + (3382-

5557) 

549 582 709 668 2508 

2 (EGFP) 333..1049 102 172 240 203 717 

3 1050-1133 28 28 14 14 84 

4(mCherry) 1134-1841 163 100 220 225 708 

5 1842-2568 168 208 165 186 727 

6 (Kan) 2569-3381 247 210 162 194 813 

 

Figure 2. Fragment of the pPF1 plasmid nucleotide sequence containing the 3-rd region. 

Red and green markers highlight the genes of red and green proteins, respectively. The 

yellow color shows the intermediate region between the genes. 
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The structure of the 3-rd (intermediate) region is of special attention. It consists of two parts equal 

in length, and the sequence of the second part is complementary and inverted with respect to the 

sequence of the first part. A fragment of the plasmid sequence containing the genes of green and red 

proteins, as well as the intermediate region between them, is shown in Figure 2. Protein genes are 

highlighted with green and red markers and the intermediate region with yellow marker. 

To study the behavior of kinks in the 3-rd region, we chose the McLaughlin-Scott method [15,16] 

with an improved and adapted for DNA algorithm for calculating the dynamic characteristics of kinks [17]. 

The results of the study will be presented in the form of calculated 2D and 3D trajectories of DNA 

kinks. 

2. Model and methods 

There are many mathematical models that are applied to imitate DNA internal mobility and 

elucidate the role of the internal dynamics in the DNA functioning, in the DNA-environment and DNA-

DNA interactions [18–20]. In this work, we use the model based on the assumption that the main 

contribution to the opening of pairs of nitrogenous bases and the formation of open states is made by 

the angular deviations of nitrogenous bases from equilibrium positions (Figure 3). To describe the 

deviations, the Englander model [2] or its modifications which allow solutions in the form of local 

conformational distortions (solitary waves or solitons) moving along the DNA double strand, are often 

used. Here we use modification that takes into account the deviations of bases, both in the main and 

complementary DNA strands, and the effects of dissipation and the action of a constant torsion moment 

𝑀0: 

𝐼n,1

𝑑2φ𝑛,1(𝑡)

𝑑𝑡2 − 𝐾𝑛,1
′ [φ𝑛+1,1(𝑡) − 2φ𝑛,1(𝑡) + φ𝑛−1,1(𝑡)] +

+𝑘𝑛,1−2𝑅n,1(𝑅n,1 + 𝑅𝑛,2) sin φ𝑛,1 (𝑡) − 𝑘𝑛,1−2𝑅n,1𝑅n,2 sin( φ𝑛,1(𝑡) − φ𝑛,2(𝑡)) =

= −β𝑛,1
𝑑φ𝑛,1(𝑡)

𝑑𝑡
+ 𝑀0,

 (1) 

𝐼𝑛,2
𝑑2φ𝑛,2(𝑡)

𝑑𝑡2 − 𝐾𝑛,2
′ [φ𝑛+1,2(𝑡) − 2φ𝑛,2(𝑡) + φ𝑛−1,2(𝑡)] +

+𝑘𝑛,1−2𝑅n,2(𝑅n,1 + 𝑅n,2) sin φ𝑛,2(𝑡) − 𝑘n,1-2𝑅n,1𝑅n,2 sin( φ𝑛,2(𝑡) − φ𝑛,1(𝑡)) =

= −β𝑛,2
𝑑φ𝑛,2(𝑡)

𝑑𝑡
+ 𝑀0.

 (2) 

Here φ𝑛,𝑖(𝑡) is the angular deviation of the n-th nitrogenous base in the i-th chain of one of the six 

regions of the plasmid; 𝐼𝑛,𝑖  is the moment of inertia of the n-th nitrogenous base of the i-th chain; 

𝑅n,i  is the distance from the center of mass of the n-th nitrogenous base of the i-th chain to the sugar-

phosphate backbone;  𝐾𝑛,1
′ = 𝐾𝑅𝑛,𝑖

2 ; K is the rigidity of the sugar-phosphate backbone; 𝛽𝑛,𝑖  = 𝛼𝑅𝑛,𝑖
2 ; 

α is the dissipation coefficient; 𝑘𝑛,𝑖  is a constant characterizing the interaction between bases within 

pairs; i = 1, 2; n = 1, 2, ... N, N is the total number of bases in the region under consideration; 𝑀0  is 

a constant external moment. An example of this type of moment is the torsion moment resulting from 

the interaction of RNA polymerase with the promoter region of DNA at the initial stage of transcription. 

In contrast to the equations used in our previous work [21], modification (1)–(2) takes into account the 

influence of the torsion moment 𝑀0 on the movement of local conformational distortions along the 

DNA double strand. 
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Figure 3. Schematic representation of a DNA double strand fragment. φ
𝑛,1

  is the angular 

deviation of the n-th nitrogenous base in the 1-st chain, φ
𝑛,2

 is the angular deviation of 

the n-th nitrogenous base in the 2-nd chain.  𝑅𝑛+1,1 is the distance from the center of mass 

of the (n+1)-st nitrogenous base to the 1-st sugar-phosphate chain and 𝑅𝑛+1,2  is the 

distance from the center of mass of the (n+1)-st nitrogenous base to the 2-nd sugar-

phosphate chain; a is the distance between the nearest base pairs. 

To simplify the solution of problem (1)–(2), we average the coefficients of the equations within 

each of the 6 regions of the pPF1 plasmid according to formulas: 

𝐼n,i → 𝐼�̅� = 𝐼𝐴𝐶𝐴,𝑖 + 𝐼𝑇𝐶𝑇,𝑖 + 𝐼𝐺𝐶𝐺,𝑖 + 𝐼𝐶𝐶𝐶,𝑖 ,

𝑅n,i → �̅�𝑖 = 𝑅𝐴𝐶𝐴,𝑖 + 𝑅𝑇𝐶𝑇,𝑖 + 𝑅𝐺𝐶𝐺,𝑖 + 𝑅𝐶𝐶𝐶,𝑖 ,

𝐾n,i
′ → �̅�i

′ = 𝐾A
′ 𝐶𝐴,𝑖 + 𝐾T

′𝐶𝑇,𝑖 + 𝐾G
′ 𝐶𝐺,𝑖 + 𝐾C

′𝐶𝐶,𝑖 .

𝑘n,1-2 → �̅�1−2 = 𝑘𝐴−𝑇(𝐶𝐴,1 + 𝐶𝑇,2) + 𝑘𝐺−𝐶(𝐶𝐺,1 + 𝐶𝐶,2),

βn,i → β̅𝑖 = β𝐴𝐶𝐴,𝑖 + β𝑇𝐶𝑇,𝑖 + β𝐺𝐶𝐺,𝑖 + β𝐶𝐶𝐶,𝑖 ,

          (3) 

where Cj,i = Nj,i/N; Nj,i is the number of bases of the j-th type (j = А, Т, G, С) of the i-th chain (i = 1, 2) 

in the region considered. Formulas (3) contain the dynamic parameters that are pertinent to real DNA 

molecules. The values of the parameters are presented in the Table 2. 

Table 2. DNA dynamic parameters [17]. 

Type of the base 

in the sequence 

I 

(10-44 kg∙m2) 

K/  

(10-18 J) 

R 

(10-10 m) 

k1-2  

(10-2 N/m) 

 

(J∙s) 

А 7.61 2.35 5.80 6.20 4.25 

Т 4.86 1.61 4.80 6.20 2.91 

G 8.22 2.27 5.70 9.60 4.10 

C 4.11 1.54 4.70 9.60 2.79 
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Then we apply the continuum approximation, which is valid if the solutions we are looking for are 

smooth. The resulting equations take the form: 

𝐼1̅φ1,𝑡𝑡 − �̅�1
′𝑎2φ1,𝑧𝑧 + �̅�1−2�̅�1(�̅�1 + �̅�2) sin φ1 −

−�̅�1−2�̅�1�̅�2 sin( φ1, − φ2) = −β̅1φ1,𝑡 + 𝑀0,
              (4) 

𝐼2̅φ2,𝑡𝑡 − �̅�2
′𝑎2φ2,𝑧𝑧 + �̅�1−2�̅�1(�̅�1 + �̅�2) sin φ2 −

−�̅�1−2�̅�1�̅�2 sin( φ2 − φ1) = −β̅2φ2,𝑡 + 𝑀0.
              (5) 

Taking into account the distribution of interactions within the DNA molecule, namely "weak" 

hydrogen bonds between nitrogenous bases within complementary pairs and "strong" valence 

interactions along sugar-phosphate chains, we apply the mean field approximation. As a result, instead 

of two coupled equations (4)–(5), we obtain two independent equations: 

𝐼1̅φ1,𝑡𝑡 − �̅�1
′𝑎2φ1,𝑧𝑧 + �̅�1−2�̅�1

2 sin φ1 = −β̅1φ1.𝑡 + 𝑀0,          (6) 

𝐼2̅φ2.𝑡𝑡 − �̅�2
′𝑎2φ2,.𝑧𝑧 + �̅�1−2�̅�2

2 sin φ2 = −β̅2φ2,𝑡 + 𝑀0.          (7) 

The first equation imitates the angular deviations of the bases in the main chain. The second describes 

the angular deviations of the bases in the complementary chain.  

In the particular case �̅�1 = 0 and 𝑀0 = 0 , the first equation reduces to a simple sine-Gordon 

equation: 

𝐼1̅φ1,𝑡𝑡 − �̅�1
′𝑎2φ1,𝑧𝑧 + �̅�1 sin φ1 = 0,                    (8) 

whose one-soliton solution - kink, has the form: 

φ𝑘,1(𝑧, 𝑡) = 4arctg{exp[ (�̅�1/�̅�1)(𝑧 − �̅�𝑘,1(𝑡) ∙ 𝑡 − 𝑧0,1)]}              (9) 

Here �̅�𝑘,1(𝑡) is the kink velocity in the main chain; γ̅1 = (1 − �̅�𝑘,1
2 /�̅�1

2)−1/2 is the Lorentz factor; 

�̅�1 = (�̅�1
′𝑎2/𝐼1̅)1/2 is the sound velocity; �̅�1 = �̅�1−2�̅�1

2;  �̅�1 = (�̅�1
′𝑎2/�̅�1)1/2  is the kink size;  𝑧0,1 is 

the kink coordinate at the initial moment of time. The total energy and rest energy of the kink (9) are 

determined by the following formulas: 

�̅�1 = �̅�0,1 ∙ �̅�1,         (10) 

�̅�0,1 = 8√�̅�1
′�̅�1.         (11) 

In the general case (�̅�1 ≠ 0, 𝑀0 ≠ 0), an exact analytical solution of equation (6) has not yet been 

found. The approximate solution found by the McLaughlin-Scott method has the form [17]: 

�̅�𝑘,1(𝑡) =
[(�̅�0,1�̅�0,1−

�̅�1𝑀0𝜋

4�̅�1
√

�̅�1
�̅�1

) exp(−
�̅�1
�̅�1

(𝑡−𝑡0))+
�̅�1𝑀0𝜋

4�̅�1
√

�̅�1
�̅�1

]

√1+[(
�̅�0,1
�̅�1

�̅�0,1−
𝑀0𝜋

4�̅�1
√

�̅�1
�̅�1

) exp(−
�̅�1
�̅�1

(𝑡−𝑡0))+
𝑀0𝜋

4�̅�1
√

�̅�1
�̅�1

]

2
,   (12) 
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where 𝑡0 is the start time of the first kink; �̅�0,1 is the initial kink velocity; �̅�0,1 = (1 − �̅�0,1
2 /�̅�1

2)−1/2. 

The approximate solution of the second equation (namely, equation (7)), found in a similar way, has 

the form: 

φ𝑘,2(𝑧, 𝑡) = 4arctg{exp[ (�̅�2/�̅�2)(𝑧 − �̅�𝑘,2(𝑡) ∙ 𝑡 − 𝑧0,2)]},    (13) 

where �̅�𝑘,2(𝑡) is the kink velocity in the complementary chain; γ̅2 = (1 − �̅�𝑘,2
2 /�̅�2

2)−
1

2 is the Lorentz 

factor; �̅�2 = (�̅�2
′𝑎2/𝐼2̅)1/2 is the sound velocity; �̅�2 = �̅�1−2�̅�2

2;  �̅�2 = (𝐾2
′𝑎2/�̅�2)1/2  is the kink size; 

  𝑧0,2 is the kink coordinate at the initial moment of time. The total energy and rest energy of the kink 

(13) are determined by the following formulas: 

�̅�2 = �̅�0,2 ∙ �̅�2,         (14) 

�̅�0,2 = 8√�̅�2
′�̅�2.          (15) 

The kink velocity is equal to: 

�̅�𝑘,2(𝑡) =
[(�̅�0,2�̅�0,2−

�̅�2𝑀0𝜋

4�̅�2
√

�̅�2
�̅�2

) exp(−
�̅�2
�̅�2

(𝑡−𝑡0))+
�̅�2𝑀0𝜋

4�̅�2
√

�̅�2
�̅�2

]

√1+[(
�̅�0,2
�̅�2

�̅�0,2−
𝑀0𝜋

4�̅�2
√

�̅�2
�̅�2

) exp(−
�̅�2
�̅�2

(𝑡−𝑡0))+
𝑀0𝜋

4�̅�2
√

�̅�2
�̅�2

]

2
,   (16) 

where �̅�0,2 is the initial velocity; �̅�0,2 = (1 − �̅�0,2
2 /�̅�2

2)−1/2. 

Thus, within the framework of the approximation described above, in any DNA regions, two types of 

kinks: φ𝑘,1(𝑧, 𝑡) and φ𝑘,2(𝑧, 𝑡), can be formed. Moreover, they can be interpreted as quasiparticles 

moving along the DNA double strand. 

3 Results and discussion 

3.1. Profile of the potential field where the first kink moves 

To construct the profile of the potential field in which the kink defined by formula (9), moves, the 

averaged values of the coefficients 𝐼1̅,  𝐾′̅̅̅̅
1, �̅�1  and the rest energy �̅�0,1  were calculated for each 

region of the main sequence. The calculation results are presented in Table 3, and the corresponding 

energy profile is shown in Figure 4a. 

Table 3. Averaged values of the coefficients 𝐼1̅,  𝐾′̅̅̅̅
1, �̅�1  and the rest energy �̅�0,1 

calculated for each region of the main plasmid pPF1 sequence. 

Region number 

 

𝐼1̅×10-44 

(kg∙m2) 

𝐾′̅̅̅
1×10-18 

(N∙m) 

�̅�1×10-20  

(J)  

�̅�0,1×10-18  

(J) 

1 + 7 6.21 1.94 2.23 1.67 

2 (EGFP) 6.16 1.92 2.28 1.67 

3 6.21 1.96 2.04 1.60 

4 (mCherry) 6.30 1.96 2.32 1.71 

5 6.06 1.91 2.14 1.62 

6 (Kan) 6.18 1.95 2.13 1.63 
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Figure 4. Profile of the potential field where the first kink moves (a) and schematic 

presentation of the plasmid pPF1 sequence cut at point S and expanded into a line (b). The 

red small star symbolizes the kink. The arrow indicates the direction of kink movement. 

Vertical gray lines indicate the boundaries of the regions. �̄�0,1
(2)

 and �̄�0,1
(4)

 are the heights 

of the energy barriers that are located in the 2-nd and 4-th sections of the main plasmid 

sequence.  

From Figure 4a it can be seen that the potential field where the kink moves really contains a pit-

trap located between the genes of the green and red proteins (Figure 4b). The formation of the kink in 

this region requires the least amount of energy. Therefore, when simulating the motion of this kink, we 

assume that at the initial moment the kink is activated in the pit-trap. For definiteness, we suggest that 

the starting point is located in the center of the pit-trap (𝑧0,1 = 1092 bp), the starting velocity �̅�0,1  is 

equal to zero and the torsion moment М0 is directed from 5' to 3' end of the main sequence.  

From Figure 4 it can be seen also that the movement of the kink will be hindered by an energy 

barrier located to the right of the pit-trap. To overcome this barrier and continue moving, the following 

condition must 

�̅�0,1
(3)

∙ 𝛾0,1
(3)

≥ �̅�0,1
(4)

        (17) 

where additional superscripts that indicate the region number, are introduced.  

From condition (17), we obtain formula for calculating the threshold value of the kink velocity: 

𝜐𝑐𝑟𝑖𝑡,𝑟𝑖𝑔ℎ𝑡 = С̅1
(3)√1 − (

�̅�0,1
(3)

�̅�0,1
(4))

2

      (18)
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Inserting the values of the parameters gathered in Table 3 into formula (12), we find the threshold 

velocity 𝜐𝑐𝑟𝑖𝑡,𝑟𝑖𝑔ℎ𝑡  = 673.25 m/s. This velocity value corresponds to the threshold value of the 

moment 𝑀0,𝑐𝑟𝑖𝑡,𝑟𝑖𝑔ℎ𝑡= 4.95×10-22 J. 

3.2. First kink behavior in the case 𝑀0 < 𝑀0,𝑐𝑟𝑖𝑡,𝑟𝑖𝑔ℎ𝑡 

Figure 5 illustrates the behavior of the first kink in the case M0 = 2.50×10-22 J which is less than 

𝑀0,𝑐𝑟𝑖𝑡,𝑟𝑖𝑔ℎ𝑡. The time dependence of the kink velocity is presented in Figure 5a. For convenience, we 

divided the timeline into several intervals in accordance with the character of the kink behavior and 

used different colors for different intervals. 

 

Figure 5. Time dependence of the velocity (a) and coordinate (b) of the first kink. The kink 

trajectory on the phase plane {v, z} (c) and the kink 3D trajectory (d). 𝑀0 = 2.50×10-22 J, 

�̅�0,1 =0, 𝑧0,1 = 1092 bp. The segments of the curves corresponding to the time interval 

(0; 5.45×10-11 s) are highlighted in brown, those corresponding to the time interval 

(5.45×10-11 s; 1.42×10-10 s) are highlighted in blue, those corresponding to the time interval 

(1.42×10-10 s; 2.16×10-10 s) are highlighted in red. 

Having determined the kink coordinate by the formula: 
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𝜐𝑘,1 =
𝑑𝑧𝑘,1

𝑑𝑡
,          (19) 

we obtained the time dependence of the kink coordinate (Figure 5b), as well as the kink trajectory on 

the phase plane {υk,1, Zk,1} (Figure 5c) and in the three-dimensional space {υk,1, Zk,1, t} (Figure 5d). 

From Figure 5b, it can be seen that the kink, having started moving from the center of the 3-rd 

section, reaches the right boundary(𝑧𝑟𝑏=1133 bp) at the time 𝑡𝑟𝑏 = 5.45×10-11 s. Inserting this value 

of time into formula (11), we found the kink velocity at the right boundary: 𝜐𝑟𝑏= 476.73 m/s. It turned out 

that this value was less than the threshold velocity 𝜐𝑐𝑟𝑖𝑡,𝑟𝑖𝑔ℎ𝑡 = 673.25 m/s. Therefore, the kink could not 

overcome the right boundary and was reflected from it. This is clearly seen in graphs 5a, b, d (brown 

segments of curves). It is also clearly seen that the motion of the kink in the time interval (0;5.45×10-11 s) 

is divided into two stages: a smooth movement to the right boundary and a sharp reflection from it, 

which corresponds to a sharp vertical drop in the velocity down on graphs 5a and 5c. The velocity at this 

moment changes from a value of 476.73 m/s to a value of 476.73 m/s.  

Then the kink again begins to move smoothly (blue segments of the curves), but in the opposite 

direction. It can be seen from Figures 5a,b,d that, having passed part of the way in the direction of the 

left boundary, the kink smoothly turns back to the right boundary. By the time moment of 1.42×10-10 s, 

the kink reaches the right boundary and is reflected from it. At the same time moment, the kink velocity 

sharply drops down from the value of 411.50 m/s to the value of -411.50 m/s.  

The next cycle of the kink movement (red segments of the curves) also includes (1) a smooth 

movement from the right boundary direction the left boundary, (2) a smooth turn by 180° before 

reaching the left boundary, (3) a smooth movement in the direction of the right boundary, and (4) a 

sharp reflection from the right boundary. Obviously, such cycles will continue. At the same time, the 

kink velocity will decrease upon reaching the right boundary and tend to zero in the limit.  

3.3. First kink behavior in the case 𝑀0 > 𝑀0,𝑐𝑟𝑖𝑡,𝑟𝑖𝑔ℎ𝑡 

Figures 6a and 6b show the time dependences of the first kink velocity and coordinate in the case 

of 𝑀0 = 2.50×10-22 J > 𝑀0,𝑐𝑟𝑖𝑡,𝑟𝑖𝑔ℎ𝑡. In Figures 6c and 6d the kink trajectories on the phase plane {υk,1, 

Zk,1} and in the three-dimensional space {υk,1, Zk,1, t} are presented. 

From the graph of the time dependence of the coordinate presented in Figure 6b, it can be seen 

that the kink, having started moving from the center of the 3-rd region, reaches the right boundary by 

the time 3.42×10-11 s. In this case, the kink velocity at this boundary becomes equal to 𝜐𝑐𝑟𝑖𝑡,𝑟𝑖𝑔ℎ𝑡 = 

775.68 m/s. Since this value is greater than the threshold value of the velocity 𝜐𝑐𝑟𝑖𝑡,𝑟𝑖𝑔ℎ𝑡 = 673.25 m/s, 

the kink overcomes the boundary and enter the 4-th region corresponding to the red protein gene. It 

can be seen that the behavior of the kink includes three stages: a smooth movement to the right 

boundary, a sharp vertical drop down to a value of 409.83 m/s at this boundary and a smooth movement 

in the 4-th region. 
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Figure 6. Time dependence of the velocity (a) and coordinate (b) of the first kink. The kink 

trajectory on the phase plane {v, z} (c) and the kink 3D trajectory (d). 𝑀0 = 6.50×10-22 J, 

�̅�0,1 =0, 𝑧0,1 = 1092 bp. The segments of curves corresponding to the movement of the 

kink in the time interval (0; 3.42×10-11 s) are highlighted in brown, the segments 

corresponding to the movement in the time interval (3.42×10-11 s; 2.16×10-10 s) are 

highlighted in blue. 

3.4. Profile of the potential field where the second kink moves 

Table 4. Averaged values of the coefficients 𝐼2̅,  𝐾′̅̅̅̅
2, �̅�2  and the rest energy �̅�0,2 

calculated for each region of the complementary plasmid pPF1 sequence. 

Region number 

 

𝐼2̅×10-44 

(kg∙m2) 

 𝐾′̅̅̅̅
2×10-18 

     (N∙m) 

�̅�2×10-20 

     (J) 

�̅�0,2 ×10-18 

     (J) 

1+7 6.18 1.94 2.23 1.66 

2 (EGFP) 6.22 1.95 2.28 1.69 

3 6.21 1.96 2.04 1.60 

4 (mCherry) 6.08 1.90 2.27 1.66 

5 6.33 1.98 2.21 1.67 

6 (Kan) 6.22 1.95 2.14 1.64 
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Figure 7. Profile of the potential field where the second kink moves (a), and schematic 

presentation of the plasmid pPF1 sequence cut at point S and expanded into a line (b). The 

blue small star symbolizes the second kink. The arrow indicates the direction of the kink 

movement. Vertical gray lines indicate the boundaries of the regions. �̄�0,2
(2)

 and �̄�0,2
(4)

 are 

the heights of the energy barriers that are located in the 2-nd and 4-th regions of the 

complementary plasmid sequence.  

To construct the profile of the potential field in which the second kink defined by formula (13), 

moves, we calculated the averaged values of the coefficients 𝐼2̅,  𝐾′̅̅̅̅
2, �̅�2 and the rest energy �̅�0,2 for 

each region of the complementary sequence. The calculation results are presented in Table 4, and the 

corresponding energy profile is shown in Figure 7a. 

From Figure 7a it can be seen that the potential field where the second kink moves also contains 

a pit-trap located between the genes of the green and red proteins (Figure 7b). The formation of the 

kink in this region requires the least amount of energy. When modeling the movement of this second 

kink, we assume that at the initial moment of time the kink is activated in the center of the pit-trap well 

(𝑧0,2 = 1092 bp) and its initial velocity �̅�0,2 is equal to zero.  

From Figure 7 it can be seen also that the movement of the second kink will be hindered by an 

energy barrier located to the left of the pit-trap. To overcome the barrier and continue moving, the 

following condition must be fulfilled: 

�̅�0,2
(3)

∙ �̅�0,2
(3)

≥ �̅�0,2
(2)

.          (20) 

Here superscripts indicate the region number.  

From condition (20), we obtain formula for calculating the threshold value of the kink velocity: 
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𝜐𝑐𝑟𝑖𝑡,𝑙𝑒𝑓𝑡 = С̅2
(3)√1 − (

�̅�0,2
(3)

�̅�0,2
(2))

2

 .       (21)

 

Inserting the values of the parameters gathered in Table 3, into formula (21), we find the threshold 

velocity 𝜐𝑐𝑟𝑖𝑡,𝑙𝑒𝑓𝑡 = 627.21 m/s. This velocity value corresponds to the threshold value of the moment 

𝑀0,𝑐𝑟𝑖𝑡,𝑙𝑒𝑓𝑡= 4.20×10-22 J.  

3.5. Second kink behavior 

 

Figure 8. Time dependence of the velocity (a) and coordinate (b) of the second kink. The 

kink trajectory on the phase plane {v, z} (c) and the kink 3D trajectory (d). 𝑀0 = -2.50×10-

22 J, �̅�0,1 = 0, 𝑧0,1 = 1092  bp. The segments of the curves corresponding to the time 

interval (0; 5.55×10-11 s) are highlighted in black, those corresponding to the time interval 

(5.55×10-11 s; 1.41×10-10 s) are highlighted in green, those corresponding to the time 

interval (1.41×10-10 s; 2.15×10-10 s) are highlighted in purple. 

The estimates made above give the absolute values of the threshold kink velocity and the 

threshold torsion moment. When calculating, however, the trajectories of the second kink, we took into 

account the direction of the kink and the direction of the torsion moment. Figures 8 and 9 show the 
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calculation results for the cases 𝑀0 = -2.50×10-22 J and 𝑀0 = -6.50×10-22 J, respectively. 

Figure 8b shows that the kink, having started a smooth movement from the center of the 3-rd section 

to the left boundary (𝑧𝑙𝑏 = 1050 bp) (brown curve segments), reaches it at the time 𝑡𝑙𝑏 = 5.55×10-11 s. 

Its velocity on the left boundary is 𝜐𝑙𝑏= -483.69 m/s. Then the kink is reflected from the left boundary 

and its velocity changes sharply from -483.70 m/s to +483.70 m/s. 

Then the kink again begins to move smoothly (blue segments of the curves), but in the opposite 

direction. Figures 8a, b, d show that, having passed part of the way in the direction of the right boundary, 

the kink smoothly turns back to the left boundary. By the time 1.41×10-10 s the kink reaches the left 

boundary and is reflected from it. In this case, the velocity of the kink rises sharply from -400.80 m/s 

to +400.80 m/s. 

 

Figure 9. Time dependence of the velocity (a) and coordinate (b) of the second kink. The 

kink trajectory on the phase plane {v, z} (c) and the kink 3D trajectory (d). 𝑀0 = -6.50×10-

22 J, �̅�0,1 = 0, 𝑧0,1 = 1092  bp. The segments of the curves corresponding to the time 

interval (0; 3.42×10-11 s) are highlighted in black, those corresponding to the time interval 

(3.42×10-11 s; 2.10×10-10 s) are highlighted in green. 

The next cycle of the kink movement (red segments of the curves) also includes a smooth 

movement from the left boundary in the direction the right boundary, before reaching the right 

boundary, a smooth 180° turn, a smooth movement in the direction of the left boundary and a sharp 
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reflection from this boundary. Obviously, such cycles will continue. At the same time, the kink velocity 

will decrease upon reaching the left boundary and tend to zero in the limit. 

From the graph of the time dependence of the coordinate shown in Figure 9b, it can be seen that 

the second kink, starting from the center of the 3-rd region, reaches the left boundary by the time 

of 3.42 ×10-11 s. The kink velocity at this boundary becomes equal to 𝜐𝑙𝑏= -772.25 m/s. It can be seen 

that the behavior of the second kink includes two stages: a smooth movement to the left boundary and 

a sharp vertical rise to the value of -476.33 m/s at this boundary. Then the kink continues to move 

smoothly in the 2-nd area. 

4. Discussion and conclusions 

In the present work, we have modeled the movement of kinks in the pPF1 plasmid which has 

been recently constructed to study the functional properties of DNA molecules and its fragments. To 

describe the movement of the plasmid kinks mathematically, we used a system of two coupled 

modified sine-Gordon equations that simulate the angular vibrations deviations of nitrogenous bases 

in the main and complementary chains and take into account the effects of dissipation and the action 

of a constant torsion field. 

The inhomogeneity of the plasmid was taken into account approximately, within the framework 

of the so-called quasi-homogeneous approximation. In this case, the plasmid sequence was divided 

into several sections, including EGFP, mCherry, and Kan, as well as intermediate regions between 

them, and the coefficients of the model equations were averaged over each of these regions. We also 

took into account the features of the distribution of interactions within the DNA molecule: the presence 

of “weak” hydrogen bonds between nitrogenous bases inside complementary pairs and “strong” 

valence interactions along the sugar-phosphate chains. This made it possible to approximately 

transform the system of two coupled equations into two independent equations, the solutions of which 

-kinks, were then found by the McLaughlin-Scott method. 

(1) It was shown that in any of the considered regions of the plasmid, the formation of two types 

of kinks was possible, which could be considered as two types of quasi particles having their own 

energy, mass, velocity, and moving along the DNA double strand.  

(2) The profiles of the potential fields in which the kinks moved were calculated. It was found 

that the lowest energy necessary for the formation of the kinks corresponded to the region located 

between the genes of the red and green proteins. It was shown that a pit-trap was located in this region, 

both for one and for the second kink.  

(3) We showed the existing of the threshold values of the torsion field, upon reaching which the 

kinks behavior changed dramatically: there was a transition from cyclic motion inside the pit-trap to 

translational motion and to exit from the potential pit-trap. We calculated the threshold values. For the 

first kink this value was 𝑀0,𝑐𝑟𝑖𝑡,𝑟𝑖𝑔ℎ𝑡= 4.95×10-22 J, and for the second kink 𝑀0,𝑐𝑟𝑖𝑡,𝑙𝑒𝑓𝑡= 4.20×10-22 J.  

(4) We constructed the resulting 2D and 3D kink trajectories that demonstrate the behavior of the 

DNA kinks in the pit-trap and nearby. 

It should be noted, however, that all these results were obtained under a number of limitations. 

We used a simplified model that takes into account only one type of internal motions: the angular 

vibrations of nitrogenous bases. To find analytical solutions, several approximations including the 

quasi-homogeneous approximation, the continuum approximation, the mean field approximation and 

the McLaughlin-Scott approximation, were used. One of the directions of future research may be just 
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related to the search for new methods and approaches to remove these limitations.  

Another direction of future research may be related to computer simulation of experiments carried 

out in genetic engineering. For example, within the framework of the model under consideration, it is 

possible to insert a sequence of interest to us into the region between the genes of fluorescent proteins 

and predict its dynamic and functional properties without resorting to complex and expensive genetic 

engineering experiments. 

Moreover, the simplicity and convenience of the approach described above are very attractive. It 

can be successfully applied in studies of the kink behavior not only in plasmids but in any other DNA 

molecules whose energy profile contains pit traps. It can be also assumed that the mathematical 

apparatus used here can be used more widely, for example, in the physics of inhomogeneous crystals, 

physics of the earth, nonlinear optics and others where the sine-Gordon equation and its modifications 

are used. 

Conflict of interest  

All authors declare no conflicts of interest in this paper. 

References 

1. Zdravković S, Satarić MV, Daniel M (2013) Kink solitons in DNA. Int J Mod Phys B 27: 1350184. 

https://doi.org/10.1142/S0217979213501841 

2. Englander SW, Kallenbach NR, Heeger AJ, et al (1980) Nature of the open state in long 

polynucleotide double helices: possibility of soliton excitations. P Natl Acad Sci USA 77: 7222–

7226. https://doi.org/10.1073/pnas.77.12.7222 

3. Hanke A, Metzler R (2003) Bubble dynamics in DNA. J Phys A: Math Gen 36: L473–L480. 

https://doi.org/10.1088/0305-4470/36/36/101 

4. Altan-Bonnet G, Libchaber A, Krichevsky O (2003) Bubble Dynamics in double-stranded DNA.  

Phys Rev Lett 90: 138101–138105. https://doi.org/10.1103/PhysRevLett.90.138101 

5. Okaly JB, Ndzana FII, Woulaché RL et al (2019) Base pairs opening and bubble transport in 

damped DNA dynamics with transport memory effects. Chaos: Interdiscipl J Nonlinear Sci 29: 

093103. https://doi.org/10.1063/1.5098341 

6. Shikhovtseva ES, Nazarov VN (2016) Non-linear longitudinal compression effect on dynamics 

of the transcription bubble in DAN. Biophys Chem 214–215: 47–53. 

https://doi.org/10.1016/j.bpc.2016.05.005 

7. Grinevich AA, Ryasik AA, Yakushevich LV (2015) Trajectories of DNA bubbles. Chaos, Soliton 

Fract 75: 62–75. https://doi.org/10.1016/j.chaos.2015.02.009 

8. Makasheva KA, Endutkin AV, Zharkov DO (2020) Requirements for DNA bubble structure for 

efficient cleavage by helix-two-turn-helix DNA glycosylases. Mutagenesis 35: 119–128. 

https://doi.org/10.1093/mutage/gez047 

9. Hillebrand M, Kalosakas G, Bishop A R, et al. (2021) Bubble lifetimes in DNA gene promoters 

and their mutations affecting transcription. J Chem Phys 155: 095101. 

https://doi.org/10.1063/5.0060335 

10. The gfp green fluorescent protein [Neisseria gonorrhoeae] sequence, 2020. Available from: 

https://www.ncbi.nlm.nih.gov/gene/7011691 

https://aip.scitation.org/author/Okaly%2C+Joseph+Brizar
https://aip.scitation.org/author/Ndzana%2C+Fabien+II
https://aip.scitation.org/author/Woulach%C3%A9%2C+Rosalie+Laure
https://www.sciencedirect.com/science/article/abs/pii/S0301462216300783#!
https://www.sciencedirect.com/science/article/abs/pii/S0301462216300783#!
file:///C:/Users/Людмила/Downloads/214–215
https://pubmed.ncbi.nlm.nih.gov/?term=Makasheva+KA&cauthor_id=31784740
https://pubmed.ncbi.nlm.nih.gov/?term=Endutkin+AV&cauthor_id=31784740
https://pubmed.ncbi.nlm.nih.gov/?term=Zharkov+DO&cauthor_id=31784740
https://doi.org/10.1093/mutage/gez047
https://www.ncbi.nlm.nih.gov/gene/7011691


146 

AIMS Biophysics  Volume 9, Issue 2, 130–146. 

11. The mCherry sequence and map. Available from: https://www.snapgene.com/resources/plasmid-

files/?set=fluorescent_protein_genes_and_plasmids&plasmid=mCherry 

12. Masulis IS, Babaeva ZSh, Chernyshov SV, et al (2015) Visualizing the activity of Escherichia 

coli divergent promoters and probing their dependence on superhelical density using dual-colour 

fluorescent reporter vector. Sci Rep 5: 11449. https://doi.org/10.1038/srep11449 

13. The pET-28b sequence and map. Available from: https://www.snapgene.com/resources/plasmid-

files/?set=pet_and_duet_vectors_(novagen)&plasmid=pET-28b(%2B) 

14. Grinevich AA, Masulis IS, Yakushevich LV (2021) Mathematical modeling of transcription 

bubble behavior in the pPF1 plasmid and its modified versions: the link between the plasmid 

energy profile and the direction of transcription. Biophysics 66: 209–217. 

15. McLaughlin DW, Scott AC (1978) Perturbation analysis of fluxon dynamics. Phys Rev A 18: 

1652. https://doi.org/10.1103/PhysRevA.18.1652 

16. McLaughlin DW, Scott AC (1977) A multisoliton perturbation theory. In: Lonngren, K., Scott, 

A., Solitons in action, New York: Academic Press, 201–256. 

17. Yakushevich LV, Krasnobaeva LA (2021) Ideas and methods of nonlinear mathematics and 

theoretical physics in DNA science: the McLaughlin-Scott equation and its application to study 

the DNA open state dynamics. Biophys Rev 13: 315–338. https://doi.org/10.1007/s12551-021-

00801-0 

18. Kornyshev AA, Wynveen A (2004) Nonlinear effects in the torsional adjustment of interacting 

DNA. Phys Rev E 69: 041905. https://doi.org/10.1103/PhysRevE.69.041905 

19. Cherstvy AG, Kornyshev AA (2005) DNA melting in aggregates:  impeded or facilitated? J Phys 

Chem B 109: 13024–13029. https://doi.org/10.1021/jp051117i  

20. Peyrard M (2004) Nonlinear dynamics and statistical physics of DNA. Nonlinearity 17: R1. 

https://doi.org/10.1088/0951-7715/17/2/R01 

21. Yakushevich LV, Krasnobaeva LA (2021) Double energy profile of pBR322 plasmid. AIMS 

Biophys 8: 221–232. https://doi.org/10.3934/biophy.2021016 

© 2022 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

file:///C:/Users/Якушевич/Desktop/mCherry%20sequence%20and%20map
https://www.snapgene.com/resources/plasmid-files/?set=pet_and_duet_vectors_(novagen)&plasmid=pET-28b(%2B)
https://www.snapgene.com/resources/plasmid-files/?set=pet_and_duet_vectors_(novagen)&plasmid=pET-28b(%2B)
https://www.sciencedirect.com/science/article/pii/B9780124555808500159
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=A.+G.++Cherstvy
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=A.+A.++Kornyshev
https://doi.org/10.1021/jp051117i
https://iopscience.iop.org/journal/0951-7715

